УДК 546.46,546.41

СЛОИСТЫЕ *транс*-1,4-ЦИКЛОГЕКСАНДИКАРБОКСИЛАТЫ ДВУХВАЛЕНТНЫХ МЕТАЛЛОВ: СИНТЕЗ, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ТЕРМИЧЕСКИЕ СВОЙСТВА

© 2022 г. П. А. Демаков¹, В. П. Федин^{1, *}

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия

*e-mail: cluster@niic.nsc.ru Поступила в редакцию 12.11.2021 г. После доработки 29.11.2021 г. Принята к публикации 30.11.2021 г.

Реакцией нитрата магния с *транс*-1,4-циклогександикарбоновой кислотой (H₂Chdc) в растворителях N,N-диметилформамиде (DMF) и N-метилпирролидоне (NMP) получены новые координационные полимеры [Mg₃(DMF)₄(Chdc)₃] (I), [Mg₃(DMF)₂(NMP)₂(Chdc)₃] (II) и [Mg₃(NMP)₄(Chdc)₃] (III). Из ацетата кальция и H₂Chdc в NMP получен координационный полимер [Ca₃(NMP)₄(Chdc)₃] (IV). Реакцией нитрата кадмия с H₂Chdc и уротропином (Ur) в DMF получен координационный полимер [Cd(Ur)(DMF)(Chdc)] (V). Строение полученных соединений установлено методом рентгеноструктурного анализа монокристаллов (CIF files CCDC № 2120662 (I), 2120666 (II), 2120664 (III), 2120663 (IV), 2120665 (V)). Координационные полимеры шелочноземельных металлов I–IV построены на основе трехъядерных карбоксилатных блоков {M₃(OOC)₆}, связанных мостиковыми дикарбоксилатными линкерами в слои тригональной геометрии. Соединение кадмия V построено на основе одноядерных фрагментов {Cd(N_{Ur})₂(DMF)(OOC)₂}, связанных мостиковыми *транс*-1,4-циклогександикарбоксилатами и молекулами уротропина также в полимерные слои. Соединения I–III охарактеризованы методами ИК-спектроскопии, элементного и термогравиметрического анализов.

Ключевые слова: щелочноземельные металлы, кадмий, координационные полимеры, металл-органические каркасы, синтез, алифатические лиганды, слоистые соединения, рентгеноструктурный анализ, термическая стабильность

DOI: 10.31857/S0132344X22050048

Металл-органические координационные полимеры (**МОКП**) активно исследуются в последние два десятилетия как перспективные сорбенты, катализаторы, люминофоры, сенсоры. Значительная часть МОКП построена на основе полиядерных фрагментов или кластеров, использование которых позволяет задавать топологию, связность и необходимые физико-химические свойства координационной решетки [1–7], в то время как варьирование длины и природы мостикового лиганда открывает возможность управления пористостью и сорбционными свойствами полимера [8–13].

Синтез и исследование низкоразмерных координационных полимеров представляют большой интерес для получения функциональных пленок, мембран и каталитически активных материалов [14–18]. Использование топологически "плоских" металлоцентров, в том числе и полиядерных, является методом направленной генерации двумерных структур. Большой интерес для синтеза МОКП представляют катионы легких металлов (Li⁺, Mg²⁺, Al³⁺, Ca²⁺, Sc³⁺). Низкая атомная масса металлоцентра позволяет максимизировать удельные физикохимические характеристики [19–26]. Соли легких щелочноземельных металлов легкодоступны и дешевы, а МОКП на их основе получено сравнительно немного. С другой стороны, Cd²⁺, несмотря на свою высокую токсичность, широко используется в химии МОКП благодаря интересным оптическим и люминесцентным свойствам его координационных соединений [27–32].

В настоящей работе проведены синтез, установление кристаллической структуры и физикохимическая характеризация пяти новых слоистых *mpaнc*-1,4-циклогександикарбосилатов двухвалентных щелочноземельных металлов и кадмия – $[Mg_3(DMF)_4(Chdc)_3]$ (I), $[Mg_3(DMF)_2(NMP)_2(Chdc)_3]$ (II), $[Mg_3(NMP)_4(Chdc)_3]$ (III), $[Ca_3(NMP)_4(Chdc)_3]$ (IV) и [Cd(Ur)(DMF)(Chdc)] (V).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все исхолные вещества использовали в виле коммерчески доступных реактивов без дополнительной очистки. В качестве растворителя использовали N, N-диметилформамид (DMF) квалификации "х. ч.", N-метилпирролидон (NMP) квалификации "ч. д. а." и смесь DMF с NMP соответственно.

ИК-спектры в лиапазоне 4000-400 см⁻¹ регистрировали в таблетках с KBr на Фурье-спектрометре Scimitar FTS 2000. Термогравиметрический анализ (ТГА) проводили на термоанализаторе NETZSCH TG 209 F1 при линейном нагревании образцов в атмосфере Не со скоростью 10 град мин⁻¹. Элементный анализ выполнен на CHNSанализаторе varioMICROcube.

Синтез [Mg₃(DMF)₄(Chdc)₃] (I). В стеклянной банке с завинчивающейся крышкой смешивали 375 мг (1.45 ммоль) гексагидрата нитрата магния, 250 мг (1.45 ммоль) *транс*-1,4-циклогександикарбоновой кислоты и 12.5 мл N.N-диметилформамида. Смесь обрабатывали в ультразвуковой бане в течение 5 мин и нагревали при 120°C в течение 24 ч. Полученный бесцветный крупнокристаллический осадок отфильтровывали на бумажном пористом фильтре, промывали DMF (2 × 10 мл), затем ацетоном (5 мл) и сушили на воздухе. Строение продукта установлено методом РСА. Выход 147 мг (35%). ИК-спектр (КВг: v. см⁻¹): 3440 ш.сл v(O-H), 2916 ср v(Csp³-H), 2854 ср $v(Csp^3-H)$, 1660 c v(C=O), 1616 c v(C=O), 1570 cp v_{as}(COO), 1417 с v_s(COO). ТGА: потеря массы в интервале ~240-280°C $\Delta m = 33\%$ (расчет на 4DMF).

Найдено, %:	C 49.4;	Н 6.7;	N 6.4.
Для C ₃₆ H ₅₄ O ₁₆ M	g ₃		
вычислено, %:	C 49.4;	Н 6.7;	N 6.4.

Синтез [Mg₃(DMF)₂(NMP)₂(Chdc)₃] (II). В стеклянной банке с завинчиваюшейся крышкой смешивали 375 мг (1.45 ммоль) гексагидрата нитрата магния, 250 мг (1.45 ммоль) транс-1,4-циклогександикарбоновой кислоты, 6.25 мл N-метилпирролидона (NMP) и 6.25 мл N, N-диметилформамида. Смесь обрабатывали в ультразвуковой бане в течение 5 мин и нагревали при 120°С в течение 24 ч. Полученный бесцветный крупнокристаллический осадок отфильтровывали на бумажном пористом фильтре, промывали DMF (2 × 10 мл), затем ацетоном (5 мл) и сушили на воздухе. Строение продукта установлено методом РСА. Выход 148 мг (33%).

ИК-спектр (КВг; v, см⁻¹): 3430 ш.о.сл v(O–H), 2940, 2913 cp v(Csp³-H), 2853 cp v(Csp³-H), 1661 c v(C=O), 1614 c v(C=O), 1563 cp $v_{as}(COO)$, 1416 c $v_{e}(COO)$. TGA: потеря массы при ~220°C $\Delta m = 16\%$ (расчет на 2DMF); в интервале $280-380^{\circ}$ C $\Delta m =$ = 21% (расчет на 2NMP).

Найдено, %:	C 51.3;	Н 6.2;	N 6.1.
Для C ₄₀ H ₅₈ O ₁₆ Mg ₃			
вычислено, %:	C 51.8;	Н 6.7;	N 6.0.

Синтез [Mg₃(NMP)₄(Chdc)₃] (III). В стеклянной банке с завинчиваюшейся крышкой смешивали 100 мг (0.39 ммоль) гексагидрата нитрата магния. 67 мг (0.39 ммоль) *транс*-1.4-шиклогександикарбоновой кислоты и 5.00 мл NMP. Смесь обрабатывали в ультразвуковой бане в течение 10 мин и нагревали при 120°С в течение 48 ч. Полученный бесцветный крупнокристаллический осадок отфильтровывали на бумажном пористом фильтре, промывали NMP (2 × 10 мл), затем ацетоном (5 мл) и сушили на воздухе. Строение продукта установлено методом РСА. Выход 102 мг (27%). ИК-спектр (КВг; v, см⁻¹): 3420 ш.сл v(О–Н), 2941, 2910 c v(Csp³-H), 2853 cp v(Csp³-H), 1665 cp v(C=O), 1562 cp $v_{as}(COO)$, 1412 c $v_{s}(COO)$. TGA: потеря массы при ~190°С $\Delta m = 21\%$ (расчет на 2NMP); в интервале $200-350^{\circ}C \Delta m = 20\%$ (расчет на 2NMP).

Найдено, %:	C 54.8;	Н 6.9;	N 5.9.
Для C ₄₄ H ₆₂ O ₁₆ Mg ₃			
вычислено, %:	C 53.9;	Н 6.8;	N 5.7.

Синтез [Ca₃(NMP)₄(Chdc)₃] (IV). В стеклянной ампуле смешивали 16.0 мг (0.101 ммоль) ацетата кальция, 17.0 мг (0.099 ммоль) транс-1,4-циклогександикарбоновой кислоты и 1.00 мл N-метилпирролидона. Смесь обрабатывали в ультразвуковой бане в течение 10 мин, ампулу запаивали и нагревали при 130°С в течение 24 ч. Полученные крупные кристаллы отбирали для РСА. Строение и состав продукта установили методом РСА.

Синтез [Cd(Ur)(DMF)(Chdc)] (V). В стеклянной банке с завинчивающейся крышкой смешивали 30.0 мг (0.097 ммоль) тетрагидрата нитрата кадмия, 17.0 мг (0.099 ммоль) транс-1,4-циклогександикарбоновой кислоты, 30.0 мг (0.214 ммоль) уротропина, 1.00 мл N, N-диметилформамида и 20.0 мкл (0.216 ммоль) 65%-ного водного раствора НСЮ₄. Смесь обрабатывали в ультразвуковой бане в течение 5 мин и нагревали при 90°С в течение 48 ч. Полученный бесцветный крупнокристаллический осадок отфильтровывали на бумажном пористом фильтре, промывали DMF (3 × 2 мл) и сушили на воздухе. Строение и состава продукта установили методом РСА. Выход 6.7 мг (14%).

ИК-спектр (КВг; v, см⁻¹): 3394 ш.с v(О–Н), 2990 сл v(Csp²-H), 2934, 2917 с v(Csp³-H), 2853 ср

КООРДИНАЦИОННАЯ ХИМИЯ том 48 Nº 5 2022

271

 $v(Csp^3-H)$, 1650 c v(C=O), 1556 c $v_{as}(COO)$, 1412 c $v_s(COO)$.

РСА. Дифракционные данные для монокристаллов соединений I-IV получены при 130 К на автоматическом дифрактометре Agilent Xcalibur, оснащенном двухкоординатным детектором AtlasS2 (графитовый монохроматор, $\lambda(MoK_{\alpha}) =$ = 0.71073 Å, ω -сканирование). Интегрирование, учет поглощения, определение параметров элементарной ячейки проводили с использованием пакета программ CrysAlisPro [33]. Дифракционные данные для монокристаллов соединения V накоплены на станции "Белок" Курчатовского источника синхротронного излучения (детектор Rayonix SX165; $\lambda = 0.79272$ Å). Интегрирование, учет поглощения, определение параметров элементарной ячейки проводили с использованием программного пакета XDS [34]. Кристаллические структуры расшифрованы с использованием программы SHELXT [35] и уточнены полноматричным МНК в анизотропном (за исключением атомов водорода) приближении с использованием программы SHELXL [36]. Позиции атомов водорода органических лигандов рассчитаны геометрически и уточнены по модели "наездника". Кристаллографические данные и детали дифракционных экспериментов приведены в табл. 1.

Полные таблицы межатомных расстояний и валентных углов, координаты атомов и параметры атомных смещений депонированы в Кембриджский банк структурных данных (CIF files CCDC № 2120662 (I), 2120666 (II), 2120664 (III), 2120663 (IV), 2120665 (V); deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk), а также могут быть получены у авторов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Соединения магния I–III получены в сходных сольвотермальных условиях реакцией между гексагидратом нитрата магния и *транс*-1,4-циклогександикарбоновой кислотой (H₂Chdc) при 120°С. Соединения I и II изоструктурны друг другу и кристаллизуются в моноклинной сингонии с пространственной группой $P2_1/n$ и Z = 2. Неожиданно полученное в NMP соединение III не является изоструктурным его аналогам I и II, полученным в присутствии DMF, и кристаллизуется в ромбической сингонии с пространственной группой *Pbca* и Z = 4.

Независимая часть структур I—III включает по два атома магния. Ион Mg(1) занимает частное положение и находится в близком к правильному октаэдрическом окружении, состоящем из двух атомов О координированных молекул амидных растворителей, двух атомов О от двух мостиковых карбоксильных групп и двух атомов О хелатирующей карбоксильной группы. Длины связей Mg(1)–O_{амил}

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 5 2022

лежат в интервале 2.0344(12)...2.1332(11) Å. Длины связей Mg(1)-O_{COO} составляют от 2.0141(11) до 2.182(3) Å. Ион Mg(2) находится в общем положении и принимает правильное октаэдрическое окружение шестью атомами О от шести карбоксильных групп с длинами связей $Mg(2)-O_{CQO}$, лежащими в интервале 2.0256(19)-2.1272(10) Å. Два иона Mg(1) и один ион Mg(2) объединены в трехъядерные карбоксилатные блоки {Mg₃(O)₄- $(\kappa^{1},\kappa^{1}-OOCR)_{4}(\kappa^{1},\kappa^{2}-OOCR)_{2}$ (рис. 1а–1в), весьма распространенные для Mg²⁺ и ряда двухвалентных катионов переходных металлов, таких как Zn²⁺, Co²⁺ и Mn²⁺ [37–42]. Блоки соединены мостиковыми *транс*-1,4-циклогександикарбоксилатами в тригональные слои (рис. 2а, 2б) с однослойной (АА) упаковкой в случаях I, II и двухслойной (ABAB) упаковкой в случае III. Кристаллическая структура соединений I-III является плотноупакованной и не содержит пустот.

Соединение IV получено реакцией между ацетатом кальция и H_2 Chdc в NMP при 130°C. Оно не изоструктурно магниевым І-ІІІ и кристаллизуется в моноклинной сингонии с пространственной группой $P2_1/c$ и Z = 4. Независимая часть включает три атома кальция. Координационная геометрия Ca(1) и Ca(3) принимает вид одношапочного октаэдра с КЧ 7 за счет смены типа координации еще одной карбоксильной группы с κ^1, κ^1 на κ^1, κ^2 . Длины связей Ca(1/3)-O_{амил} лежат в интервале 2.287(2)-2.363(3) Å. Длины связей Ca(1/3)-О_{соо} составляют от 2.308(2) до 2.509(2) Å. Ион Са(2) принимает октаэдрическое окружение с длинами связей Ca(2)-O_{COO}, лежащими в интервале 2.284(2)-2.348(2) Å. Увеличение КЧ терминальных Ca²⁺ с 6 до 7 приводит, таким образом, к трехъядерным блокам {Ca₃(O)₄(κ^1,κ^1 -OOCR)₂(κ^1,κ^2 -OOCR)₄} (рис. 1г). Несмотря на различие в типе координации, блоки сохраняют связность 6 и формируют аналогичные тригональные слои, включающие мостиковые *транс*-1,4-циклогександикарбоксилатами (рис. 2в). Слои имеют упаковку АВАВ. Кристаллическая структура IV также является плотной и не содержит пустот.

Соединения I–III являются первыми известными примерами *транс*-1,4-циклогександикарбоксилатов магния. В литературе ранее был описан один *транс*-1,4-циклогександикарбоксилат кальция [Ca(H₂O)₂(Chdc)] \cdot H₂O [43], имеющий трехмерную структуру, построенную на основе полимерных металл-карбоксилатных цепочек, и полученный в водной среде. По всей видимости, химическая природа амидного растворителя (DMF или NMP) является определяющим фактором в образовании новых координационных полимеров щелочноземельных металлов I–IV.

Соединение V получено реакцией между тетрагидратом нитрата кадмия, H₂Chdc и уротропи-

ДЕМАКОВ, ФЕДИН

Параметр	Значение				
Параметр	Ι	II	III	IV	V
Брутто-формула	$C_{36}H_{58}N_4O_{16}Mg_3$	$C_{40}H_{62}N_4O_{16}Mg_3$	$C_{44}H_{66}N_4O_{16}Mg_3$	C44H66N4O16Ca3	$C_{17}H_{29}N_5O_5Cd$
M	875.79	927.86	979.93	1027.24	495.85
Сингония	Моноклинная	Моноклинная	Ромбическая	Моноклинная	Моноклинная
Пр. группа	$P2_{1}/n$	$P2_{1}/n$	Pbca	$P2_{1}/c$	$P2_{1}/n$
a, Å	14.1965(12)	14.3851(12)	9.7689(4)	27.4596(10)	11.464(2)
b, Å	9.8578(8)	9.7670(6)	17.7212(7)	10.4047(3)	9.728(2)
<i>c</i> , Å	16.8763(14)	17.1475(13)	27.0559(13)	17.7601(6)	17.056(3)
α, град	90	90	90	90	90
β, град	111.143(10)	112.257(9)	90	104.697(4)	92.82(3)
ү, град	90	90	90	90	90
<i>V</i> , Å ³	2202.8(3)	2229.7(3)	4683.8(3)	4908.2(3)	1899.8 (6)
Ζ	2	2	4	4	4
ρ(выч.), гсм ⁻³	1.320	1.382	1.390	1.390	1.734
μ, мм ⁻¹	0.14	0.14	0.14	0.41	1.57
<i>F</i> (000)	932	988	2088	2184	1016
Размер кристалла, мм	$0.30 \times 0.07 \times 0.07$	$0.30 \times 0.13 \times 0.04$	$0.52 \times 0.49 \times 0.05$	$0.26 \times 0.25 \times 0.08$	$0.24 \times 0.24 \times 0.04$
Область сканирования по θ, град	3.31-25.35	3.31-25.35	3.45-29.46	3.45-25.35	2.3–28.5
Диапазон	$-17 \le h \le 17,$	$-14 \le h \le 17$,	$-13 \le h \le 8,$	$-32 \le h \le 33,$	$-13 \le h \le 3,$
индексов hkl	$-8 \le k \le 11,$ $-20 \le l \le 16$	$-11 \le k \le 11,$ $-20 \le l \le 17$	$-24 \le k \le 15,$ $-21 \le l \le 33$	$-10 \le k \le 12,$ $-21 \le l \le 21$	$-11 \le k \le 11,$ $-20 \le l \le 20$
Измерено отражений/ независимых (<i>R_{int}</i>)	10 118/4000 (0.0366)	10238/4058 (0.0291)	16873/5627 (0.0230)	24 119/8956 (0.0327)	12057/3459 (0.0621)
Отражений с <i>I</i> > 2σ(<i>I</i>)	3177	3283	4618	7932	3023
GOOF	1.122	1.019	1.031	1.230	1.038
<i>R</i> -факторы	$R_1 = 0.0700$,	$R_1 = 0.0595,$	$R_1 = 0.0414,$	$R_1 = 0.0600,$	$R_1 = 0.0321,$
$(I \ge 2\sigma(I))$	$wR_1 = 0.154$	$wR_1 = 0.1428$	$wR_1 = 0.0934$	$wR_1 = 0.1195$	$wR_1 = 0.0725$
<i>R</i> -факторы (по всем	$R_2 = 0.0883$,	$R_2 = 0.0786$,	$R_2 = 0.0556$,	$R_2 = 0.0694$,	$R_2 = 0.0382$,
отражениям)	$wR_2 = 0.1610$	$wR_2 = 0.1560$	$wR_2 = 0.0986$	$wR_2 = 0.1223$	$wR_2 = 0.0750$
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, e \text{ Å}^{-3}$	0.69/-0.52	0.86/-0.88	0.43/-0.39	0.61/-0.56	0.57/-0.68

Таблица 1. Кристаллографические параметры и детали рентгеноструктурного эксперимента структур I–V

ном Ur в среде DMF при 90°С. Для полного растворения реагентов производили добавление сильной хлорной кислоты $HClO_4$ в эквимолярном отношении к основанию Ur. Соединение V кристаллизуется в моноклинной сингонии с пространственной группой $P2_1/n$ и Z = 4. Независимая часть включает один атом кадмия. Его координационное окружение состоит из двух атомов азота от двух бидентатно-мостиковых молекул уротропина, одного атома кислорода координированного растворителя DMF и четырех атомов O от двух бидентатно-хелатирующих карбоксильных групп. Длины связей Cd–N составляют 2.342(2) и 2.487(2) Å. Длина связи Cd–O_{DMF} равна

2.406(2) Å. Длины связей Cd $-O_{COO}$ лежат в интервале 2.3190(18)-2.4857(19) Å. Координационное число Cd(II), таким образом, равно 7. Металлоцентры (узлы), показанные на рис. За, являются четырехсвязными и соединены *транс*-1,4-циклогександикарбоксилатами вдоль кристаллографической оси *с* в зигзагообразные цепочки. Цепочки соединены мостиковыми лигандами Ur вдоль оси *b* с образованием двумерных координационных слоев (рис. 36). Двуслойная (ABAB) упаковка слоев в трехмерной кристаллической структуре V также является плотной и не содержит пустот.

Три *транс*-1,4-циклогександикарбоксилата кадмия, полученные без использования дополнитель-

Рис. 1. Трехъядерные карбоксилатные блоки {M₃(амид)₄(OOCR)₆} в структурах I (а), II (б), III (в) и IV (г). Вторые позиции разупорядоченных молекул DMF и NMP изображены полупрозрачными. (На рис. 1–3 атомы М – зеленый, N – синий, О – красный; атомы водорода не показаны.)

273

Рис. 2. Координационные слои $\{M_3(aмид)_4(Chdc)_3\}$ в структурах I (а), III (б) и IV (в). Показана только одна из возможных позиций DMF и NMP.

Рис. 3. Фрагмент {Cd(DMF)(Ur)₂(OOCR)₂} в V и его связывание с соседними атомами Cd(II) (a). Координационный слой в V, вид вдоль оси a (б).

ных N-донорных лигандов, были известны ранее. Цепочечное соединение $[Cd(H_2O)_2(C_8H_{10}O_4)]$, построенное на основе одноядерных фрагментов, было получено в водной среде [38] с использованием пиперидина как модулятора основности среды. Трехмерный МОКП [Cd(H_2O)(Chdc)] $\cdot 0.5CH_3CN$, построенный на основе полимерных металлкарбоксилатных цепочек, был получен нами ранее в смеси воды и ацетонитрила с использованием 1,4диазабицикло[2.2.2]октана (Dabco) как модулятора основности [44]. В DMF без использования модуляторов был получен трехмерный каркас $[Cd_2(DMF)(Chdc)_2]$, также построенный на основе полимерных карбоксилатных цепочек [45]. По всей видимости, уротропин в среде DMF является достаточно сильным лигандом для образования координационных решеток с его участием, в отличие от рассмотренных выше случаев пиперидина в воде и Dabco в водно-ацетонитрильных смесях. Подобные примеры проявления двойственной природы уротропина (основание—лиганд) в синтезе МОКП были опубликованы ранее [40, 44, 46—48].

Термическая стабильность соединений магния I—III охарактеризована методом ТГА (рис. 4). Соединение $[Mg_3(DMF)_4(Chdc)_3]$ (I) теряет координированный растворитель при 240—280°С. Масса твердого остатка при 600°С составляет 21% и соответствует оксиду магния (теор. 17%) с примесью углерода, возникающей, по всей видимости, из-за неполного улетучивания органических линкеров. Соединение $[Mg_3(DMF)_2(NMP)_2(Chdc)_3]$ (II) сту-

Рис. 4. Графики ТГА для соединений I-III.

пенчато теряет координированный растворитель при 220°C (DMF) и в интервале 280-380°C (NMP). Масса твердого остатка при 600°С составляет 20% и соответствует оксиду магния (теор. 13%) с продуктами термического разложения органических лигандов. Соединение [Mg₃(NMP)₄-(Chdc)₃] (III) ступенчато теряет координированный растворитель при 190°С (2NMP) и в интервале 200-350°С (2NMP). Масса твердого остатка при 600°C составляет 17% и также соответствует оксиду магния (теор. 12%) с продуктами термического разложения органических лигандов. Снижение термической стабильности в ряду I > II > III, находящееся в необычной обратной зависимости растворителя температуры кипения OT $(T_{\text{KMI}}(\text{DMF}) = 153^{\circ}\text{C} < T_{\text{KMI}}(\text{NMP}) = 202^{\circ}\text{C}), \text{ Bepo$ ятно, связано с увеличением молекулярного размера растворителя, приводящим к "разрыхлению" кристаллической структуры координационных полимеров, выражаемому рядом V/Z: 1101.4 Å^3 (I) < 1114.9 Å^3 (II) < 1171.0 Å^3 (III).

Таким образом, в работе получены и структурно охарактеризованы пять новых слоистых металл-органических координационных полимеров — *транс*-1,4-циклогександикарбоксилатов двухвалентных металлов. Соединения магния I-III и кальция IV построены на основе карбоксилатных трехъядерных блоков $\{M_3(OOCR)_6\}$, которые формируют шестисвязанные координационные слои тригональной геометрии. Соединение кадмия V построено на основе одноядерных фрагментов {Cd(N_{Ur})₂-(DMF)(OOCR)₂}, однако также является слоистым за счет мостиковой координации дитопных уротропина и Chdc²⁻. Соединения I-III охарактеризованы методами ИК-спектроскопии, элементного и термогравиметрического анализов. По данным ТГА получен необычный ряд термической стабильности структурно близких МОКП магния $[Mg_3(DMF)_4(Chdc)_3] > [Mg_3-(DMF)_2(NMP)_2(Chdc)_3] > [Mg_3(NMP)_4-(Chdc)_3], находящейся в обратной зависимости$ от температуры кипения координированногорастворителя. Подобный эффект отнесен к увеличению молекулярного размера растворителя,приводящему к "разрыхлению" упаковки координационных решеток в кристалле.

Авторы заявляют, что у них нет конфликта интересов.

ФИНАНСИРОВАНИЕ

Работа поддержана Министерством науки и высшего образования Российской Федерации (проект № 121031700321-3).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ha J., Lee J.H., Moon H.R.* // Inorg. Chem. Front. 2020. V. 7. P. 12.
- Sapianik A.A., Fedin V.P. // Russ. J. Coord. Chem. 2020. V. 46. P. 443. https://doi.org/10.1134/S1070328420060093
- 3. Litvinova Y.M., Gayfulin Y.M., Samsonenko D.G. et al. // Russ. Chem. Bull. 2020. V. 69. P. 1264.
- Ji Q.-S., Wen W.-F., Liu S.Z. et al. // Inorg. Chim. Acta. 2021. V. 519. P. 120278.
- 5. *Lyszczek R., Rusinek I., Ostasz A. et al.* // Materials. 2021. V. 14. 4871.
- Grebenyuk D., Zobel M., Polentarutti M. et al. // Inorg. Chem. 2021. V. 60. P. 8049.
- Kalmutzki M.J., Hanikel N., Yaghi O.M. // Sci. Adv. 2018. V. 4. 9180.
- Bolotov V.A., Kovalenko K.A., Samsonenko D.G. et al. // Inorg. Chem. 2018. V. 57. P. 5074.
- 9. Demakov P.A., Volynkin S.S., Samsonenko D.G. et al. // Molecules. 2020. V. 25. 4396.
- Lysova A.A., Samsonenko D.G., Kovalenko K.A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. P. 20561.
- 11. *Yuan R., Chen H., Zhu Q.-Q. et al.* // J. Solid. State Chem. 2021. V. 297. 122036.
- Jiang H., Alezi D., Eddaoudi M. // Nat. Rev. Mater. 2021. V. 6. P. 466.
- He T., Kong X.-J., Li J.-R. // Acc. Chem. Res. 2021. V. 54. P. 3083.
- 14. *Tan Y.C., Zeng H.C.* // ChemCatChem. 2019. V. 11. P. 3138.
- 15. Koshevoi E.I., Samsonenko D.G., Dorovatovskii P.V. et al. // J. Struct. Chem. 2020. V. 61. P. 431.
- Warfsmann J., Tokay B., Champness N.R. // CrystEng-Comm. 2020. V. 22. P. 1009.
- Demakov P.A., Yudina Y.A., Samsonenko D.G. et al. // J. Struct. Chem. 2021. V. 62. P. 403.
- Zorina-Tikhonova E.N., Chistyakov A.S., Matyukhina A.K. et al. // J. Struct. Chem. 2021. V. 62. P. 1209.

- 19. Marakulin A.V., Lysova A.A., Samsonenko D.G. et al. // Russ. Chem. Bull. 2020. V. 69. P. 360.
- 20. Dubskikh V.A., Lysova A.A., Samsonenko D.G. et al. // CrystEngComm. 2020. V. 22. P. 6295.
- 21. Xian S., Lin Y., Wang H. et al. // Small. 2021. V. 17. P. 2005165.
- 22. *Rambabu D., Lakraychi A.E., Wang J. et al.* // J. Am. Chem. Soc. 2021. V. 143. P. 11641.
- Zorina-Tikhonova E.N., Chistyakov A.S., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 409. https://doi.org/10.1134/S1070328421060099
- 24. Steinke F., Javed A., Wöhlbrandt S. et al. // Dalton Trans. 2021. V. 50. P. 13572.
- 25. Barsukova M.O., Kovalenko K.A., Nizovtsev A.S. et al. // Inorg. Chem. 2021. V. 60. P. 2996.
- Wang T., Chang M., Yan T. et al. // Ind. Eng. Chem. Res. 2021. V. 60. P. 5976.
- 27. *Guo X.-Z., Chen S.-S., Li W.-D. et al.* // ACS Omega. 2019. V. 4. P. 11540.
- Marchenko R.D., Lysova A.A., Samsonenko D.G. et al. // Polyhedron. 2020. V. 177. 114330.
- 29. Zhang L.-Y., Lu L.-P., Zhu M.-L. // J. Chem. Cryst. 2020. V. 50. P. 122.
- Pavlov D.I., Ryadun A.A., Samsonenko D.G. et al. // Russ. Chem. Bull. 2021. V. 70. P. 857.
- Zhang Y.-N., Chen J.-L., Su C.-Y. et al. // J. Solid State Chem. 2021. V. 302. P. 122407.
- 32. Smirnova K.S., Sukhikh T.S., Adonin S.A. et al. // J. Struct. Chem. 2021. V. 62. P. 718.
- 33. CrysAlisPro Software system. Version 1.171.40.84a. 2020.

- 34. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 125.
- 35. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
- 36. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- Williams C.A., Blake A.J., Hubberstey P. et al. // Chem. Commun. 2005. V. 43. P. 5435.
- 38. *Thirumurugan A., Avinash M.B., Rao C.N.R.* // Dalton Trans. 2006. V. 1. P. 221.
- Wang L., Wang L., Song T. et al. // J. Solid State Chem. 2012. V. 190. P. 208.
- 40. Demakov P.A., Sapchenko S.A., Samsonenko D.G. et al. // Russ. Chem. Bull. 2018. V. 67. P. 490. https://doi.org/10.1007/s11172-018-2098-3
- 41. Lysova A.A., Samsonenko D.G., Kovalenko K.A. et al. // Russ. Chem. Bull. 2019. V. 68. P. 793.
- 42. Dubskikh V.A., Lysova A.A., Samsonenko D.G. et al. // Molecules. 2021. V. 26. 1269.
- Wang X., San L.K., Nguyen H. et al. // J. Coord. Chem. 2013. V. 66. P. 826.
- 44. Demakov P.A., Bogomyakov A.S., Urlukov A.S. et al. // Materials. 2020. V. 13. 486.
- 45. *Yoon M., Sun H.J., Lee D.H. et al.* // Bull. Korean Chem. Soc. 2012. V. 33. P. 3111.
- 46. Sapchenko S.A., Saparbaev E.S., Samsonenko D.G. et al. // Russ. J. Coord. Chem. 2013. V. 39. P. 549. https://doi.org/10.1134/S1070328413080071
- 47. Sapchenko S.A., Samsonenko D.G., Fedin V.P. // Polyhedron. 2013. V. 55. P. 179.
- 48. Sapchenko S.A., Barsukova M.O., Nokhrina T.V. et al. // Russ. Chem. Bull. 2020. V. 69. P. 461.