УДК 546.732:546.742:539.26

СИНТЕЗ И КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ НОВЫХ ТРЕХЪЯДЕРНЫХ ФТОРОКАРБОКСИЛАТНЫХ КОМПЛЕКСОВ КОБАЛЬТА(II) И НИКЕЛЯ(II)

© 2022 г. Д. С. Терещенко¹, Т. Ю. Глазунова^{1, *}, М. Е. Бузоверов¹, Э. Х. Лермонтова², В. Е. Гончаренко¹

¹Московский государственный университет им. М.В. Ломоносова, Москва, Россия ²Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия *e-mail: ctpavc@mail.ru

Поступила в редакцию 12.12.2021 г. После доработки 14.03.2022 г. Принята к публикации 15.03.2022 г.

Синтезированы и кристаллографически изучены три новых комплекса, относящихся к семейству фторокарбоксилатометаллатов 3*d*-металлов. Изотипные комплексные соединения K[Co₃(µ₃-F) (CF₃COO)₆(CH₃COOH)₃](CH₃COOH) (I) и K[Ni₃(µ₃-F)(CF₃COO)₆(CH₃COOH)₃](CH₃COOH)_{0.6}-(CF₃COO)₆(CH₃COOH)_{0.4} (II) являются аналогами фторотрифторацетатометаллатов(II) калия, в которых аксиальные лиганды заменены на молекулы уксусной кислоты. Комплекс NH₄[Ni₃(µ₃-F)(CH₃COO)₆-(CH₃COOH)₃](CH₃COOH)₆ (III) – первый пример фторокарбоксилата с ацетатными мостиковыми лигандами. Присутствие уксусной кислоты в реакционной системе приводит к увеличению координационного числа щелочного металла и, за счет образования развитой системы водородных связей, – к увеличению размерности структуры от цепочечной в изученных ранее аналогах до слоистой. Строение комплексного фторокарбоксилатного аниона в III схоже с фторотрифторацетатными аналогами I, II, сохраняется характер взаимодействия комплексного аниона с однозарядным катионом, структура реализована в виде гофрированных слоев, образованных цепями, связанными между собой водородными связями с сольватными молекулами уксусной кислоты (CCDC № 2124887 (I), 2124888 (II), 2127163 (III)).

Ключевые слова: синтез, кристаллическая структура, трифторацетатные комплексы, ацетатные комплексы, трифторацетат кобальта, трифторацетат никеля **DOI:** 10.31857/S0132344X22090079

Настоящее исследование является продолжением цикла работ, посвященных изучению и выявлению критериев существования фторокарбоксилатометаллатных комплексов, содержащих трехъядерный фрагмент $[M_3(\mu_3-F)(RCOO)_6(L)_3].$ В предыдущих работах мы сообщали об открытии нового семейства фторотрифторацетатных комплексов, последующее развитие данного направления привело к получению и структурной характеризации более 15 фторотрифторацетатных комплексов переходных металлов общей формулы М'[М₃(µ₃- $F(CF_{3}COO)_{6}(L)_{3}$ (M' = Li-Cs, NH₄; M = Mn, Fe, Co, Ni, Zn; $L = CF_3COO^-$, CF_3COOH , H_2O) [1]. Ha настояший момент эти данные являются наиболее систематическим изучением строения и свойств указанного семейства карбоксилатов. Все изученные нами комплексы образованы однозарядными анионами $[M_3(\mu_3-F)(CF_3COO)_6(L)_3]^-$, в которых три атома переходного металла, находящиеся в вершинах практически правильного треугольника, планарно координируют тридентатный атом фтора. Каждая пара атомов 3*d*-металла связана между собой двумя бидентатными трифторацетатными группами. Координационное окружение атома 3d-металла дополняют до октаэдрического атомы кислорода аксиальных лигандов. Нами описана возможность замены аксиальных лигандов и, соответственно, изменения состава комплексов варьированием условий синтеза, что может приводить к изменению размерности структуры [2]. Противоионами к комплексным анионам являются однозарядные катионы щелочного металла, аммония или нитрозония [1, 3]. В зависимости от состава комплексного аниона и размера катиона в состав соединений могут входить молекулы растворителя, участвующие в формировании структуры.

Фторокарбоксилатные комплексы, содержащие трехъядерный фрагмент $[M_3(\mu_3-F)(RCOO)_6(L)_3]$, оказываются устойчивыми и могут быть структурными блоками для получения каркасных структур при использовании двухосновных карбоновых кислот. Примерами могут служить металл-

органические каркасы (MOFs) на базе кадмиевых изо-никотинатных комплексов $[Cd_3(\mu_3-F)(Ina)_4 (4-\text{Pic})_3$] · BF₄, [Cd₃(μ_3 -F)(Ina)₃(4,4'-Bipy)₂(4-Pic)₂] · $\cdot 2BF_4 \cdot (4,4'-Bipy) \cdot 2H_2O$, $[Cd_3(\mu_3-F)(Ina)_3(4,4' BiSpy_{2}] \cdot 2BF_{4} \cdot (4,4'-Bipy) \cdot 2H_{2}O$, где Ina – изоникотинат, 4,4'-Віру – 4,4'-бипиридин, 4-Ріс – 4Нметилпиридин [4], металл-органический кар- $[H_{1,1}F_{0,5}Na_{0,3}K_{0,1}][Mn_3(\mu_3-F)(Tcpep)_2(DMF)$ кас $(H_2O)_2$] · 9H₂O · 2DMF, где Тсрер – *mpuc(napa*карбоксифенилэтинил)фосфин (Р{С=СС₆H₅-4- $CO_{2}H_{3}$ [5], MOFs на основе комплексов кобальта и никеля с 4-(4,4'-бипиридиний)-бензойной кислотой и классическими каркасообразующими двухосновными кислотами, такими как терефталевая кислота и ее производные, бифенилдикарбоновая и стильбендикарбоновая кислоты [6].

Фторокарбоксилатные комплексы, содержащие трехъядерный фрагмент $[M_3(\mu_3-F)(RCOO)_6-(L)_3]$ могут быть образованы как *p*-металлами, например в трехъядерном трифторацетатном комплексе магния $[Mg_3(\mu_3-F)(TFA)_6(OCH_3)_2(Py)] \cdot 4(PyH) \cdot OMe$ [7], так и различными атомами металла, как в гетерометаллических гетеровалентных пивалатных комплексах $[Ni_2Cr(\mu_3-F)(Piv)_6(HPiv)_3]$, $[Ni_2Cr(\mu_3-F)(Piv)_6(Py)_3]$ и $[Ni_2Cr(\mu_3-F)(Piv)_6(4-CH_3-Py)_3]$ [8]. Изучение магнитных свойств данных соединений делает их популярным объектом для исследования.

В настояшей работе мы продолжаем систематическое изучение семейства фторокарбоксилатометаллатов 3*d*-металлов, основанное на выявлении критериев его существования. Основное внимание уделено возможности получения представителей данного семейства соединений при использовании уксусной кислоты, формированию комплексов в смеси уксусной и трифторуксусной кислот. Описываются впервые полученные комплексные соединения $K[Co_3(\mu_3-F)(CF_3COO)_6 (CH_3COOH)_3$ (CH_3COOH) (I), K[Ni₃(µ₃-F)(CF₃COO)₆- $(CH_3COOH)_3 (CH_3COOH)_{0.6} (CF_3COOH)_{0.4}$ (II), NH₄[Ni₃(µ₃-F)(CH₃COO)₆(CH₃COOH)₃](CH₃COOH)₆ (III). Обсуждается строение треугольных трехъядерных анионов, координационное окружение катионов щелочного металла, а также особенности упаковки анионов и катионов в указанных структурах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных реагентов использовали CoCO₃ · nCo(OH)₂ · mH₂O ("ч."), NiCO₃ ("ч. д. а."), KHF₂ ("ос. ч."), NH₄F ("ч. д. а."), CH₃COOH (ледяная "ч."), CF₃COOH (99.9% "ч.").

Для синтеза соединений I–III готовили растворы исходных соединений в ледяной уксусной кислоте и оставляли их для концентрирования в эксикаторе над P₄O₁₀ при комнатной температуре. Тетрагидраты трифторацетатов кобальта и никеля $M(CF_3COO)_2(H_2O)_4$ (M = Co, Ni), используемые при синтезе, получали по методике [1]. Во всех случаях через 7—9 сут начиналась кристаллизация неустойчивых на воздухе соединений. Пригодные для PCA пластинчатые монокристаллы соединений I—III отбирали из маточного раствора соответствующих соединений. Через 2 нед. поликристаллические соединения I—III отфильтровывали от маточного раствора и сушили в токе аргона. Однофазность полученных соединений во всех случаях подтверждали методом РФА (Huber G670 Guinier camera, Ge (111) монохроматор, Cu $K_{\alpha I}$).

Синтез К[Со₃(µ₃-F)(CF₃COO)₆(CH₃COOH)₃]-(CH₃COOH) (I). К раствору 3.570 г (10 ммоль) Со(TFA)₂(H₂O)₄ в 15 мл ледяной уксусной кислоты добавляли 0.260 г (3.3 ммоль) КНF₂. Выход I 64%.

Синтез K[Ni₃(µ₃-F)(CF₃COO)₆(CH₃COOH)₃]-(CH₃COOH)_{0.6}(CF₃COOH)_{0.4} (II). К раствору 3.570 г (10 ммоль) Ni(TFA)₂(H₂O)₄ в 15 мл 99% уксусной кислоте добавляли 0.260 г (3.3 ммоль) KHF₂. Выход II 76%.

Синтез NH₄[Ni₃(µ₃-F)(CH₃COO)₆(CH₃COOH)₃]-(CH₃COOH)₆ (III). К раствору 2.488 г (10 ммоль) Ni(OAc)₂(H₂O)₄ в 25 мл ледяной уксусной кислоты добавляли 0.122 г (3.3 ммоль) NH₄F. Выход III 58%.

РСА. Сбор данных для соединений I и II проходил с использованием дифрактометра Bruker D8 Quest с детектором Photon III при температуре 100(2) К, излучение Мо K_{α} ($\lambda = 0.71073$ Å), режим φиω-сканирования, для соединения III сбор экспериментальных данных проведен на автоматическом дифрактометре Bruker SMART APEX II (Мо K_{α} -излучение, $\lambda = 0.71073$ Å, графитовый монохроматор) при температуре 150 К в режиме ω-сканирования. Учет поглощения введен по измерениям интенсивностей эквивалентных отражений [9]. Структуры расшифрованы прямыми методами и уточнены полноматричным анизотропным МНК по F^2 с использованием программных пакетов SHELXTL и Olex2 [10-12]. Атомы водорода помещены в рассчитанные позиции и уточнены с помощью модели "наездника". Заселенности разупорядоченных CF₃-групп уточнены с использованием свободных переменных. Кристаллографические данные, параметры эксперимента и уточнения структуры приведены в табл. 1.

Координаты атомов, длины связей, валентные углы и параметры теплового смещения депонированы в Кембриджском банке структурных данных (ССDС № 2124887 (I), 2124888 (II), 2127163 (III)).

ТЕРЕЩЕНКО и др.

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур I–III

Параметр	Значение				
Параметр	Ι	II	III		
Брутто-формула	C ₂₀ H ₁₆ F ₁₉ O ₂₀ KCo ₃	C ₂₀ H ₁₆ F ₁₉ O ₂₀ KNi ₃	C ₃₀ H ₅₈ FNO ₃₀ Ni ₃		
Μ	1153.22	1174.15	1107.90		
Температура, К	100(2)	100(2)	150(2)		
Размер кристалла, мм	$0.133 \times 0.129 \times 0.038$	$0.154 \times 0.133 \times 0.046$	$0.600 \times 0.300 \times 0.080$		
Сингония	Моноклинная	Моноклинная	Моноклинная		
Пр. группа	$P2_{1}/c$	$P2_{1}/c$	$P2_1/n$		
<i>a</i> , Å	10.2799(4)	10.3517(9)	13.0632(2)		
b, Å	22.9727(7)	22.7966(18)	14.2954(2)		
<i>c</i> , Å	17.0025(6)	16.9531(15)	26.9907(4)		
β, град	96.993(2)	97.464(3)	101.8180(10)		
$V, Å^3$	3985.4(2)	3966.8(6)	4933.50(13)		
Ζ	4	4	4		
ρ(выч.), г/см ³	1.922	1.966	1.492		
μ, мм ⁻¹	1.500	1.683	1.227		
<i>F</i> (000)	2268	2318	2312		
Диапазон θ, град	2.15-26.00	1.98-26.00	2.099-27.00		
Диапазон индексов	$-12 \le h \le 12,$	$-12 \le h \le 12,$	$-16 \le h \le 16,$		
	$-23 \le k \le 28,$	$-27 \le k \le 28,$	$-18 \le k \le 18,$		
D V	$-20 \le l \le 20$	$-20 \le l \le 20$	$-34 \le l \le 34$		
Всего отражений	30671	301268	56898		
Независимых отражений (R_{int})	7820 (0.0659)	7790 (0.0763)	101764 (0.0424)		
Полнота данных по θ, %	99.9	100	99.9		
Число параметров/ограничений	555/45	589/94	647/37		
GOOF	1.035	1.040	1.011		
$R_1 (I \ge 2\sigma(I))$	0.0693	0.0668	0.0346		
<i>wR</i> ₂ (по всем данным)	0.1817	0.1728	0.0828		
$\Delta \rho_{max} / \Delta \rho_{min}$, e/Å ³	1.980/-1.356	1.751/-1.698	0.523/-0.574		

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Синтез соединений К[Со₃(µ₃-F)(CF₃COO)₆-(CH₃COOH)₃](CH₃COOH) (I) и К[Ni₃(µ₃-F)-(CF₃COO)₆(CH₃COOH)₃](CH₃COOH)_{0.6}(CF₃COOH)_{0.4} (II) осуществляли взаимодействием тетрагидрата трифторацетата никеля или кобальта с избытком концентрированной уксусной кислоты в присутствии кислого фторида калия. Уксусная кислота, как более слабая, присутствовала в системе преимущественно в недиссоциированном виде и вошла в кристаллическую структуру комплекса в качестве нейтрального лиганда.

При использовании в качестве исходного соединения ацетата никеля впервые получен фтороацетатоникелат(II) аммония $NH_4[Ni_3(\mu_3-F)(CH_3COO)_6(CH_3COOH)_3](CH_3COOH)_6$ (III). Соединения I–III построены из трехъядерных комплексных анионов общей формулы $[M_3(\mu_3 - F)(RCOO)_6(CH_3COOH)_3]^-$ (R = CF₃ (I, II) или CH₃ (III) и катионов калия (I, II) или аммония (III). Атомы *d*-металла, образующие комплексный анион расположены по вершинам практически правильного треугольника, тридентатный атом фтора располагается в плоскости треугольника, каждая пара атомов металла связана между собой двумя карбоксилатными группами (трифторацетатной в I, II или ацетатной в III). Координационное окружение атома металла дополняет до октаэдрического карбонильный атом кислорода молекулы уксусной кислоты, выступающей в качестве нейтрального лиганда.

При сравнении комплексных анионов в структурах I и II при переходе от Со к Ni наблюдается уменьшение длин связей в координационном

Рис. 1. Строение комплексных анионов в II (а) и III (б).

окружении атомов переходного металла, обусловленное уменьшением ионного радиуса атома-комплексообразователя. Как видно из табл. 2, наиболее чувствительными к изменению ионного радиуса оказываются связи М-О_{экв} с атомами кислорода мостиковых трифторацетатных групп, тогда как длины связей М-F и М-Оакс изменяются не так значительно. При переходе от Со к Ni изменение средних длин связей М-О_{экв} составляет 0.044 Å, что несколько меньше разницы в ионных радиусах Co²⁺ и Ni²⁺ с координационным числом 6, составляющей 0.055 Å [13]. Связи М М-О_{экв} F и M М-О_{экв} О_{акс} в среднем укорачиваются лишь на 0.027 Å. Уменьшение длин связей в координационном окружении атома переходного металла приводит к уменьшению размеров комплексного аниона в целом. Средние расстояния М...М в I и II составляют 3.51 и 3.46 Å соответственно.

Уместно рассмотреть влияние замены лигандов на изменение геометрии комплексного аниона в ряду [Ni₃(μ_3 -F)(CF₃COO)₆(CF₃COOH)₃]⁻ [3], [Ni₃(μ_3 -F)(CF₃COO)₆(AcOH)₃]⁻ (II) и [Ni₃(μ_3 -F)-(AcO)₆(AcOH)₃]⁻ (III). При введении в качестве аксиальных лигандов молекул уксусной кислоты вместо трифторуксусной наблюдается закономерное уменьшение средних длин связей М–O_{акс} (2.118 Å в [3] и 2.067 Å в II), обусловленное увеличением донорной способности лиганда. При замене трифторацетатных групп на ацетатные в роли мостиковых лигандов вместо ожидаемого уменьшения длин связей М–O_{экв} наблюдается увеличение средних расстояний М–O_{акс} (2.067 Å в II и 2.099 Å в III) и уменьшение расстояний М–F (1.999 Å в II и 1.976 Å в III), приводящее к более сильному искажению октаэдрического окружения атомов никеля (табл. 2). При этом средние расстояния Ni...Ni в рассматриваемом ряду составляют 3.44 [3], 3.46 (II) и 3.42 (III) Å соответственно.

В структурах I—III комплексные анионы за счет образования контактов с катионами связаны в бесконечные цепи, объединенные в слои различного строения посредством системы водородных связей с участием сольватных молекул уксусной кислоты.

В І и ІІ атомы кислорода мостиковых трифторацетатных групп O(1), O(14), карбонильный атом кислорода О(17) аксиальной молекулы уксусной кислоты и атом фтора F(15) трифторметильной группы образуют контакты с атомом калия, который, в свою очередь, связан с соседним трехъядерным анионом посредством контактов с атомами кислорода O(8), O(15) мостиковых трифторацетатных групп, карбонильным атом кислорода О(11) аксиальной молекулы уксусной кислоты и атомом фтора F(10) (рис. 1). Кроме того, атом калия образует контакт с карбонильным атомом кислорода О(19) сольватной молекулы уксусной кислоты. При этом корректно ограничить координационный полиэдр атома калия представляется затруднительным. Так, расстояния К...О находятся в интервалах 2.729(4)-3.122(4) (средн. 2.85 Å) в структуре I и 2.728(4)-3.128(5) Å (средн. 2.85 Å) в структуре II, расстояния К...F составляют 2.86(3)-3.119(19) Å (средн. 3.00 Å) в структуре I и 2.842(16)—3.152(19) (средн. 2.97 Å) в структуре II.

Посредством атомов калия трехъядерные анионы связаны в бесконечные зигзагообразные це-

ТЕРЕЩЕНКО и др.

Таблица 2. Расстояния (Å) и углы (град) в координационном окружении атомов металла в структурах I–III

Связь -	d, Å		Игол	ω, град			
	Ι	II	III	утол	Ι	II	III
M(1)–F(1)	2.032(3)	2.008(3)	1.9696(11)	F(1)M(1)O(2)	92.5(1)	92.9(1)	95.38(5)
M(1)–O(2)	2.103(4)	2.050(4)	2.0555(15)	F(1)M(1)O(4)	90.3(1)	91.1(1)	92.46(6)
M(1)–O(4)	2.081(4)	2.042(4)	2.0369(15)	F(1)M(1)O(7)	93.5(1)	93.6(1)	92.62(6)
M(1)–O(7)	2.065(4)	2.017(4)	2.0250(16)	F(1)M(1)O(9)	89.2(1)	90.9(1)	93.59(5)
M(1)-O(9)	2.084(4)	2.025(4)	2.0439(15)	F(1)M(1)O(5)	174.5(1)	176.3(1)	178.08(6)
M(1)–O(5)	2.078(4)	2.060(4)	2.0880(15)	O(4)M(1)O(2)	87.9(2)	88.7(2)	90.59(7)
				O(7)M(1)O(4)	90.3(2)	88.6(2)	89.27(7)
				O(7)M(1)O(9)	92.6(2)	93.8(2)	91.06(7)
				O(9)M(1)O(2)	89.2(2)	88.8(2)	88.24(6)
M(2)-F(1)	2.014(3)	1.990(3)	1.9734(12)	F(1)M(2)O(1)	96.5(1)	96.3(1)	90.90(6)
M(2)–O(1)	2.076(4)	2.037(4)	2.0674(15)	F(1)M(2)O(3)	88.7(1)	89.8(1)	94.23(6)
M(2)–O(3)	2.099(4)	2.057(4)	2.0384(15)	F(1)M(2)O(14)	92.6(1)	93.0(1)	91.56(6)
M(2)-O(14)	2.084(4)	2.036(4)	2.0139(15)	F(1)M(2)O(16)	95.7(1)	96.1(1)	94.82(6)
M(2)-O(16)	2.049(4)	2.017(4)	2.0303(15)	F(1)M(2)O(17)	178.0(1)	178.6(1)	178.38(6)
M(2)-O(17)	2.105(4)	2.084(4)	2.1179(16)	O(1)M(2)O(3)	89.9(2)	89.9(2)	90.68(6)
				O(1)M(2)O(14)	86.1(2)	86.5(2)	89.55(6)
				O(16)M(2)O(3)	91.4(2)	90.8(2)	86.12(6)
				O(16)M(2)O(14)	92.4(2)	92.3(2)	93.08(6)
M(3)-F(1)	2.033(3)	1.998(3)	1.9792(12)	F(1)M(3)O(8)	93.7(1)	93.6(1)	89.40(6)
M(3)–O(8)	2.055(4)	2.014(4)	2.0565(15)	F(1)M(3)O(10)	92.8(1)	93.5(1)	93.88(5)
M(3)-O(10)	2.089(4)	2.041(4)	2.0720(16)	F(1)M(3)O(13)	91.1(1)	91.2(1)	89.86(5)
M(3)-O(13)	2.049(4)	2.022(4)	2.0387(15)	F(1)M(3)O(15)	95.5(1)	95.3(1)	98.13(6)
M(3)-O(15)	2.072(4)	2.030(4)	2.0172(15)	F(1)M(3)O(11)	177.2(1)	176.4(1)	178.68(6)
M(3)–O(11)	2.099(4)	2.058(4)	2.0908(15)	O(8)M(3)O(10)	90.7(2)	91.6(2)	89.59(6)
				O(8)M(3)O(15)	87.9(2)	87.9(2)	88.78(6)
				O(13)M(3)O(10)	85.7(2)	85.8(2)	89.82(6)
				O(13)M(3)O(15)	94.9(2)	94.0(2)	91.96(6)
$M-F^*$	2.026	1.999	1.974	M(1)F(1)M(3)	119.9(1)	119.4(2)	120.65(6)
$M{-}O_{_{\! \! 3KB}}{}^{**}$	2.076	2.032	2.041	M(2)F(1)M(3)	117.7(1)	118.6(2)	117.96(6)
М-О _{акс} ***	2.094	2.067	2.099	M(2)F(1)M(1)	122.3(1)	122.0(2)	121.30(6)

* Усредненные длины связей М–F. ** Усредненные длины связей М–O с участием мостиковых карбоксилатных групп. *** Усредненные длины связей М–O с участием аксиальных молекул CH₃CO₂H.

Рис. 2. Строение слоя в II.

пи вдоль оси с. Сольватные молекулы уксусной кислоты объединены между собой в димеры посредством водородных связей, соединяя цепи в слои, параллельные плоскости {bc} (рис. 2). Интересно отметить, что в структуре II сольватные молекулы уксусной кислоты частично статистически замещены молекулами трифторуксусной кислоты с заселенностями 0.6/0.4 соответственно. При этом молекулы трифторуксусной кислоты располагаются таким образом, что водородная связь образуется не с сольватной молекулой уксусной кислоты соседней цепи, а с атомом кислорода O(17), принадлежащим той же цепи. В структуре I такого разупорядочения не наблюдается. Таким образом, в структуре II цепи оказываются связаны между собой слабее, чем в структуре І. Параметры водородных связей для структур I, II приведены в табл. 3.

В структуре III анионы связаны между собой в спиральные цепи, расположенные вдоль оси b, посредством образования водородных связей с катионами аммония N(1)-H(1A)...O(2), N(1)-H(1B)...O(9), N(1)–H(1D)...O(3), N(1)–H(1D)...O(16) (рис. 3, табл. 3). Цепи сшиты между собой в гофрированные слои, параллельные плоскости {0, 0, 1}, системой водородных связей с участием катиона аммония, двух сольватных молекул уксусной кислоты и атома кислорода О(8) бидентатной ацетатной группы. Так, атом водорода катиона аммония H(1C) образует водородную связь N(1)-H(1C)...O(25) с карбонильным атомом кислорода сольватной молекулы уксусной кислоты, гидроксильная группа которой образует водородную связь O(24)-H(24)...O(22) с карбонильным атомом кислорода второй сольватной молекулы

уксусной кислоты, гидроксильная группа которой, в свою очередь, связана водородной связью O(23)-H(23)...O(8) с атомом кислорода O(8), принадлежащему соседней цепи.

Атомы кислорода из координационного окружения атома Ni(3) принимают участие в образовании еще одной системы водородных связей с тремя сольватными молекулами уксусной кислоты (рис. 4). Так, атомы кислорода O(11) и O(15) образуют вилочковую водородную связь О(26)-Н(26)...(О11, О15) с гидроксильной группой одной сольватной молекулы уксусной кислоты. Атом кислорода О(13) образует водородную связь О(21)-Н(21)...О(13) с гидроксильной группой другой молекулы уксусной кислоты, карбонильный атом которой, в свою очередь, образует водородную связь О(29)-Н(29)...О(20) с гидроксильной группой третьей молекулы уксусной кислоты. В структуре также присутствуют свободные димеры уксусной кислоты, расположенные между слоями и связанные с остальной структурой ван-дер-ваальсовыми взаимодействиями.

В заключение отметим, что впервые синтезированный комплекс $NH_4[Ni_3(\mu_3-F)(CH_3COO)_6-(CH_3COOH)_3](CH_3COOH)_6$ (III) показывает принципиальную возможность существования трехъядерных фтороацетатных комплексов переходных металлов. Получение комплексов K[Co₃(μ_3 -F)(CF₃COO)₆(CH₃COOH)₃](CH₃COOH) (I) и K[Ni₃(μ_3 -F)(CF₃COO)₆(CH₃COOH)₃](CH₃COOH)_{0.6}-(CF₃COOH)_{0.4} (II) при использовании в качестве исходных соединений фактически смеси уксусной и трифторуксусной кислот свидетельствует о типичных конкурирующих реакциях замены ли-

ТЕРЕЩЕНКО и др.

5	Λ	Λ
2	+	υ

Таблица 3. Геометрические параметры водородных связей для комплексов I–III

	Расстояние, Å			Угол			
D-H···A	D-H	Н…А	D…A	D–Н А, град			
I							
O(6)-H(6)O(2)	0.840(5)	1.853(5)	2.695(6)	163.1			
O(12)-H(12)O(10)	0.840(5)	1.865(5)	2.687(6)	167.0			
O(18)-H(18)O(3)	0.839(5)	1.804(5)	2.636(6)	165.5			
O(20)-H(20)O(19)	0.840(5)	1.939(6)	2.678(8)	163.5			
O(6)-H(6)O(2)	0.840(5)	1.881(5)	2.670(7)	163.4			
O(12)-H(12)O(10)	0.840(5)	1.862(5)	2.683(6)	164.5			
O(18)-H(18)O(3)	0.841(5)	1.815(4)	2.617(7)	162.2			
O(20)-H(20)O(19)	0.840(5)	1.861(5)	2.768(12)	168.7			
O(21)-H(21)O(17)	0.840(5)	2.263(5)	2.888(15)	144.5			
		III	l I	I			
O(6)-H(6)O(4)	0.840(3)	1.740(2)	2.568(2)	168.1			
O(12)-H(12)O(10)	0.840(2)	1.723(2)	2.549(2)	167.2			
O(18)-H(18)O(1)	0.840(2)	1.700(2)	2.526(2)	167.0			
O(24)-H(24)O(22)	0.840(3)	1.801(3)	2.605(3)	159.4			
O(23)-H(23)O(8)	0.840(2)	1.786(2)	2.621(2)	171.5			
O(21)-H(21)O(13)	0.840(2)	1.785(2)	2.603(2)	164.1			
O(26)-H(26)O(11)	0.840(2)	2.295(2)	3.046(3)	148.5			
O(26)-H(26)O(15)	0.840(2)	2.241(2)	2.888	134.0			
O(29)-H(29)O(20)	0.840(2)	2.265(3)	2.687(4)	169.4			
O(30)-H(30)O(31)	0.840(2)	2.265(3)	2.653	175.7			
N(1)-H(1A)O(2)	0.958(2)	2.141(2)	2.883	133.4			
N(1)-H(1B)O(9)	0.969(2)	1.953(2)	2.823(3)	148.2(17)			
N(1)-H(1C)O(25)	0.959(2)	2.416(2)	2.802(3)	174.0(18)			
N(1)-H(1D)O(3)	0.959(2)	2.443(2)	3.028(3)	147.4(16)			
N(1)-H(1D)O(16)	0.959(2)	1.955(2)	2.816(3)	125.5(15)			

гандов, происходящих при формировании каркаса комплексного аниона. При этом замена лигандов, формирующих комплексный анион, приводит к изменению размера самого комплексного аниона.

Вне зависимости от природы карбоновой кислоты, участвующей в образовании комплексного аниона, катионы щелочного металла и аммония связывают комплексные анионы в цепи. Увеличение размерности структуры за счет образования большого числа водородных связей достигается введением уксусной кислоты в состав соединения.

Авторы заявляют об отсутствии конфликта интересов.

БЛАГОДАРНОСТИ

Рентгеноструктурный анализ выполнен с использованием оборудования, приобретенного за счет средств программы развития Московского университета, а также ЦКП ИОНХ РАН в рамках государствен-

Рис. 3. Строение слоя в III.

Рис. 4. Система водородных связей в III.

ного задания ИОНХ РАН в области фундаментальных научных исследований.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке российского фонда фундаментальных исследований (грант № 19-03-01059 А).

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 9 2022

СПИСОК ЛИТЕРАТУРЫ

- 1. Морозов И.В., Карпова Е.В., Глазунова Т.Ю. и др. // Коорд. химия. 2016. Т. 42. № 10. С. 609 (Morozov I.V., Karpova E.V., Glazunova T.Y. et al. // Russ. J. Coord. Chem. 2016. V. 42. Р. 647). https://doi.org/10.1134/S107032841610002X
- 2. Глазунова Т.Ю., Терещенко Д.С., Бузоверов М.Е. и др. // Коорд. химия. 2021. Т. 47. № 5. С. 307

(*Glazunova T.Y., Tereshchenko D.S., Buzoverov M.E. et al.* // Russ. J. Coord. Chem. 2021. V. 47. P. 347). https://doi.org/10.1134/S1070328421040023

- 3. Терещенко Д.С., Морозов И.В., Болталин А.И. и др. // Журн. неорган. химии. 2004. Т. 49. № 6. С. 919 (Tereshchenko D.S., Morozov I.V., Boltalin A.I. et al. // Russ. J. Inorg. Chem. 2004. V. 49. № 6. Р. 836).
- Zai-Lai Xie, Mei-Ling Feng, Bin Tan, Xiao-Ying Huang // Cryst. Eng. Commun. 2012. V. 14. P. 4894. https://doi.org/10.1039/C2CE25169H
- Reynolds III J.E., Walsh K.M., Li B. et al. // Chem. Commun. 2018. V. 54. P. 9937. https://doi.org/10.1039/C8CC05402A
- Aulakh D., Islamoglu T., Bagundes V.F. et al. // Chem. Mater. 2018. V. 30. P. 8332. https://doi.org/10.1021/acs.chemmater.8b03885
- Noack J., Fritz C., Flügel C. et al. // Dalton Trans. 2013. V. 42. P. 5706.
- https://doi.org/10.1039/C3DT32652G

- Walsh J.P.S., Meadows S.B., Ghirri A. et al. // Inorg. Chem. 2015. V. 54. P. 12019. https://doi.org/10.1021/acs.inorgchem.5b01898
- 9. *Sheldrick G.M.* SADABS. Program for Scaling and Correction of Area Detector Data. Göttingen (Germany): Univ. of Göttingen, 1997.
- 10. *Sheldrick G.M.* // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- 11. *Sheldrick G.M.* // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Shannon R.D. // Acta Crystallogr. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551