УДК 550.388.2

ОТКЛИК ПОЛНОГО ЭЛЕКТРОННОГО СОДЕРЖАНИЯ ИОНОСФЕРЫ НА КОНВЕКТИВНЫЕ ВИХРИ

© 2019 г. В. Е. Пронин^{1,} *, В. А. Пилипенко², В. И. Захаров¹, Д. Л. Мюрр³, В. А. Мартинес-Беденко²

¹Московский государственный университет им. М.В. Ломоносова, г. Москва, Россия ²Институт физики Земли им. О.Ю. Шмидта РАН, г. Москва, Россия ³Центр атмосферной и космической физики, Университет Аугсбург, Миннеаполис, США *tolgamrab@yandex.ru Поступила в редакцию 04.08.2017 г. После доработки 12.02.2018 г. Принята к публикации 30.03.2018 г.

В работе рассматривается отклик полного электронного содержания (ПЭС) ионосферы Земли на импульсные геомагнитные возмущения – конвективные вихри (Travelling Convection Vortices). Для выделения *TCV* использовались данные сетей наземных магнитометров в Арктической Канаде и Гренландии, вариации ПЭС получены при обработке данных приемных станций IGS и UNAVCO глобальной навигационной спутниковой системы GPS. Обнаружены ионосферные возмущения связанные с *TCV*. Использование сети станций позволяет оценить динамику появления и скорость распространения возмущения в пространстве.

DOI: 10.1134/S0023420619020079

ВВЕДЕНИЕ

Исследования состояния околоземной среды, кратко именуемое "космическая погода", выходят за рамки чисто академического интереса по мере возрастания количества проблем, связанных с нарушениями нормального функционирования наземных и спутниковых технологических систем. Особую важность приобретают помехи сигналов глобальных навигационных спутниковых систем GLONASS и GPS при сильных возмущениях космической погоды (солнечные вспышки, магнитные бури и суббури [1], высыпания частиц [2] и т.п.), что сказывается на качестве навигационных функций. При этом, чем шире внедряются космические технологии, тем чувствительнее для экономики и жизнедеятельности становятся их сбои и выходы из строя. Изменчивость факторов космической погоды и их воздействие на околоземную среду являются естественной нормой, их невозможно избежать, но необходимо изучать и учитывать для успешного функционирования навигационных систем. Ионосфера является внутренней границей околоземного пространства, где энергия магнитосферной плазмы переносится в атмосферу. Хотя значительный объем информации о свойствах взаимодействия между магнитосферой, ионосферой, и атмосферой может быть получен с помощью наземных магнитометров и околоземных спутников, особенности переноса энергии через ионосферу остаются закрытыми для непосредственного наблюдения. В настоящее время ионосферные проявления магнитосферных и атмосферных возмущений могут быть зафиксированы с помощью все более широко развивающихся глобальных спутниковых навигационных систем (GPS, GLONASS, и др.) [3, 4]. В качестве побочного продукта, эти системы дают информацию о вариациях интегрального ионосферного параметра (вдоль радиолуча) - полного электронного содержания ПЭС (т.н. Total Electron Content). ПЭС наблюдения оказались достаточно чувствительными, чтобы обнаруживать акустические и внутренние гравитационные волны от землетрясений [5, 6], цунами [7], тайфунов [8], а также интенсивные магнитогидродинамические (МГД) волны в ионосфере [9]. Несмотря на определенные успехи, физический механизм возмущения ПЭС, связанный с магнитосферными возмущениями, остается не выясненным окончательно.

Взаимодействие между солнечным ветром и магнитосферой служит источником многообразных видов нестационарных процессов и возмущений разных пространственных и временных масштабов. При этом интенсивные возмущения могут наблюдаться не в период высокой магнитосферной активности (магнитные бури и суббури), а при спокойной геомагнитной обстановке. Такими импульсными возмущения являются специфичные для дневной высокоширотной ионосферы движущиеся конвективные вихри *TCV*, являющимися откликом на локальное воздействие на магнитосферу [10]. Наземным проявлением *TCV* являются уединенные магнитные импульсы *MIE* (magnetic impulse event) — спорадические возмущения геомагнитного поля длительностью ~5–10 мин и с амплитудами ~100 нТ [11].

Физический механизм и пространственная структура TCV не определены однозначно. Геомагнитные наблюдения могут детектировать только интегральный эффект магнитосферноионосферных токов, поэтому мелкомасштабные свойства ТСУ нельзя определить, исходя только из данных наземных магнитометров. В картине эквивалентных ионосферных токов TCV проявляется как двойной вихрь с характерными размерами до ~1000 км. Эти вихревые структуры образуются вокруг пары (восходящего и нисходящего) продольных токов между ионосферой и магнитосферой [12, 13]. Пространственная локальность этого возмущения приводит к тому, что оно проявляется не только в горизонтальной (X), но и вертикальной (Z) компоненте магнитного поля. Обычно *TCV* распространяются по долготе в анти-солнечном направлении со скоростью ~5-10 км/с [14]. Эта скорость соответствует ионосферной проекции скорости обтекания флангов магнитосферы потоком солнечной плазмы. Картина азимутального распространения ТСУ подобна движению пузыря в текущей кипящей жидкости: возникшее возмущение нарастает по мере движения, а затем спадает. Наблюдаемая форма возмущения в фиксированной точке наблюдения определяется как его распространением, так и нарастанием/спаданием во времени.

Активное исследование этих возмущений стимулировалось предположением о том, что они являются наземным проявлением импульсного пересоединения межпланетного и магнитосферного магнитных полей на дневной магнитопаузе [15]. Возможным источником ТСУ могут быть импульсные вариации динамического давления солнечного ветра [16, 17]. Спорадически возникаюшие локальные области горячей плазмы в переходном слое магнитосферы (hot flow anomalies) также могут быть источником TCV [18]. TCV могут проявляться не только в виде уединенных импульсов, но и в виде квазипериодической последовательности возмущений. Сопровождающее генерацию *TCV* интенсивное магнитное возмущение в магнитосфере может вызывать высыпание энергичных магнитосферных электронов [19, 20]. Многие важные характеристики *TCV* все еще не были должным образом изучены и интерпретированы.

В этой работе мы покажем, что импульсные уединенные геомагнитные возмущения типа *TCV/MIE* также могут быть зарегистрированы с

помощью сети GPS-приемников. Одновременный анализ данных наземных магнитометров и ПЭС вариаций позволяет получить новую информацию о взаимосвязи между импульсными геомагнитными и ионосферными возмущениями.

ДАННЫЕ НАБЛЮДЕНИЙ

В работе использовались данные магнитометров различных наземных сетей – CARISMA, CANMOS, Greenland Coastal Array, и MACCS с временным разрешением 1 с. Карта с положением выбранных станций приведена на рис. 1, координаты станций даны в табл. 1. С учетом топологии используемых сетей были сформированы меридиональный и два долготных профиля. Меридиональный профиль станций вдоль геомагнитной долготы $\Lambda \sim 40^{\circ}$ (Гренландия) включает в себя станции KUV-UPN-UMQ-GDH-STF-SKT-GHB-FHB-NAQ. Долготные профили составлены из станций вдоль геомагнитной доль геомагнитной широты $\Phi \sim 75^{\circ}$: BLC-CDR-PGG-GDH, и вдоль широты 72° : RAN-IQA-STF-SCO.

Возмушения в ионосфере рассматривались в виде вариаций ПЭС, полученных при обработке данных приемников сигналов глобальной навигационной спутниковой системы GPS, входящих в сети IGS и UNAVCO. Мы располагали данными с 30-с разрешением 11 станций-приемников GPS (рис. 1) для получения информации о состоянии ионосферы (координаты приемников даны в таблице). Вычисление ПЭС вдоль радиотрассы спутник - приемник производилось по известному методу с использованием данных двух-частотных фазовых измерений [3]. Наклонное ПЭС вдоль радиолуча спутник – приемник пересчитывалось в вертикальный ПЭС в подъионосферной точке (пересечение радиолуча с ионосферным максимумом на высоте 300 км). Абсолютные значения ПЭС не рассчитывались и не использовались в работе. Во время анализированных относительно коротких временных интервалов нефизических скачков фазы (cycle slips) не отмечено. Данные GPS ограничивались по углу возвышения (угол между поверхностью Земли и направлением радиолуча на спутник) α > 5°. Вариации ПЭС представлены в единицах TECu (1 TECu = 10^{16} частиц/см²). Трек. соответствующий GPS спутнику с PRN номером XX и приемнику YYYY обозначаются как ХХҮҮҮҮ.

Рассмотрим результаты совместного анализа магнитометрических и ионосферных данных на примере события 15.I.2011.

ГЕОМАГНИТНОЕ ВОЗМУЩЕНИЕ

Уединенный магнитный импульс типа *TCV* наблюдался 15.I.2011 около 10.45 UT (рис. 2). Возбуждение этого импульса не связано с какими-либо

Рис. 1. Карта магнитных станций сетей CARISMA, MACCS, и Greenland Coastal Array (черные кружки), и GPS-приемников (ромбы), данные которых использованы в работе. Сетка геомагнитных координат показана сплошными линиями, географических – пунктирными.

сильными возмущениями в межпланетной среде: согласно базе данных OMNI скорость солнечного ветра $V \sim 470$ км/с, его давление $P \sim 1.4$ нПа и плотность $N \sim 3$ см⁻³ были стабильны, лишь магнитное поле в 10.40 UT несколько изменило ориентацию – Bz резко упало от 0 до –2 нТл. Высокоширотные геомагнитные индексы AL, AU имеют в период времени 10–12 UT амплитуды менее 20 нT, т.е. показывают практическое отсутствие магнитной возмущенности.

В этот момент Гренландский профиль вдоль геомагнитной долготы 40° находился в утреннем секторе (~09 LT). Наибольшее по величине возмущение ~200 нTл с длительностью ~12 мин на-

Таблица 1

Магнитные станции							GPS-приемники		
Станция	Код	Geographic		Geomagnetic		Сеть	Станция	Geo	
		Lat	Long	Lat	Long	CCIB	Станция	Lat	Long
Rankin Inlet	RAN	62.80	267.67	73.7	-029.0	CARISMA	Bake	64.32	-96.00
Pangnirtung	PGG	66.10	294.20	75.2	020.1	MACCS	Chur	58.76	-94.09
Iqaluit	IQA	63.75	291.47	72.1	014.5	CANMOS	Halc	68.77	-81.26
Cape Dorset	CDR	64.20	283.40	74.6	001.2	MACCS	Iqal	63.76	-68.51
Baker Lake	BLC	64.30	264.00	74.3	326.1	CANMOS	Kaga	69.22	-49.82
Kullorsuaq	KUV	74.57	302.82	81.2	044.5	Greenland	Kuuj	55.28	-77.75
Upernavik	UPN	72.78	303.85	79.5	042.0	Greenland	Nain	56.54	-61.69
Umanaq	UMQ	70.68	307.87	76.9	043.9	Greenland	Ponc	72.69	-77.96
Godhavn	GDH	69.25	306.47	75.8	040.4	Greenland	Qiki	67.56	-64.03
S. Stromfjord	STF	67.02	309.28	73.2	041.7	Greenland	Reso	74.69	-94.89
Sukkertoppen	SKT	65.42	307.10	72.0	038.0	Greenland	Sch2	54.83	-66.83
Godthab	GHB	64.17	308.27	70.6	038.5	Greenland			
Frederikshab	FHB	62.00	310.32	68.0	039.6	Greenland			
Narsarsuaq	NAQ	61.18	314.57	66.3	043.9	Greenland			
Scoresbysund	SCO	70.48	338.03	71.6	073.2	Greenland			

Рис. 2. Возмущение магнитного поля 15.1.2011, зафиксированное станциями Гренландского профиля KUV-UPN-UMQ-GDH-STF-SKT-GHB-FHB-NAQ: (слева) *Х*-компонента, (справа) *Z*-компонента.

блюдалось по *X*-компоненте на $\Phi \sim 75^{\circ}$ (GDH) (рис. 2, слева), и по *Z*-компоненте ~150 нТл с длительностью ~5 мин на $\Phi \sim 73^{\circ}$ (STF) (рис. 2, справа).

Данные азимутального профиля на $\Phi \sim 75^{\circ}$ показывают, что импульс распространялся с востока на запад (т.е. в анти-солнечном направлении). В процессе распространения импульс усилился от ~50 нТл на станции GDH до наибольшей величины ~200 нТл на станциях PGG и CDR, и затем ослабился до ~50 нТл на BLC.

Аналогичную картину можно видеть по магнитным данным профиля $\Phi \sim 73^{\circ}$ (рис. 3). Импульс *TCV* возник на восточном побережье Гренландии (SCO), достиг максимума своей амплитуды ~200 нТл на восточном побережье Канады (IQA), а затем ослабился до уровня фоновых флуктуаций при распространении до станции RAN.

Эффекты азимутального распространения наиболее четко видны между парами станций PGG-CDR и STF-IQA. Кросс-корреляционный анализ показал, что временной сдвиг магнитного сигнала по X-компоненте между станциями IQA-STF составляет $\Delta t = 200$ с (X-компонента) и $\Delta t = 150$ с (Z-компонента). Этот временной сдвиг между станциями, разнесенными по геомагнитной долготе на $\Delta \Lambda = 25.9^{\circ}$ и по расстоянию $\Delta x =$ = 740 км, соответствует угловой скорости $\Omega =$ = 0.13 град/с и азимутальной компоненте скорости V = 3.7 км/с, при максимуме коэффициента корреляции R = 0.75 по X-компоненте. Оценки по *Z*-компоненте дают $\Omega = 0.17$ град/с и *V* = 4.9 км/с при *R* = 0.76. Поскольку вариации *Z*-компоненты подвержены влиянию берегового эффекта, результаты полученные для этой компоненты менее надежны.

Кросс-корреляционный анализ для пары станций PGG–CDR с $\Delta\Lambda = 18.9^{\circ}$ и $\Delta x = 647$ км дал следующие значения: по *X*-компоненте R = 0.9, $\Delta t = 200$ с, $\Omega = 0.09$ град/с, V = 3.2 км/с; и по *Z*-компоненте R = 0.85, $\Delta t = 300$ с, $\Omega = 0.06$ град/с, V = 2.2 км/с.

На геомагнитной оболочке $\Phi \sim 72^{\circ}-73^{\circ}$ (IQA, STF) импульс вызвал затухающий квазипериодический ($T \sim 3-4$ мин) отклик в геомагнитном поле, преимущественно по *X*-компоненте (рис. 3).

ИОНОСФЕРНОЕ ВОЗМУЩЕНИЕ

В качестве первого шага изучена возможность автоматического определения характерного отклика на событие *TCV* в ионосферных данных. Были разработаны несколько алгоритмов, выделяющих изолированные флуктуации фиксированной длительности на заданном фоне. Верхняя граница, соответствующая сбою определялась как 6 TECu/min [21]. Появление возмущения определялось, как превышение фонового значения в полтора раза или (если фоновое значение слишком мало) — как превышение порога в 0.4 TECu. Пример типичной формы изолированной флуктуации

Рис. 3. Возмущение магнитного поля, зафиксированное станциями профиля ran-iqa-stf-sco вдоль 73° магнитной широты.

ПЭС (для трассы llqiki), выделенной с помощью автоматического алгоритма, показан на рис. 4. Созданное программное обеспечение позволяет рассмотреть множество временных рядов флуктуаций ПЭС, соответствующих различным парам спутник-приемник, с учетом координат подъионосферных точек. Таким образом были получены карты движения подъионосферных точек ("треки") с указанием времени и координат возмущения, представленные на рис. 6.

Анализ данных с приемников GPS с помощью описанного алгоритма выявил уединенные возмущения ПЭС (рис. 5). Эти возмущения сопровождаются скачком производной сигнала. Величина вариаций ПЭС составляла более 1 ТЕСи, производной – более 0.5 ТЕСи/тіп. Автоматически выделенные ионосферные возмущения оказались близки по времени и длительности (5–10 мин) к вариациям, наблюдаемым в магнитометрических данных.

По карте движения подыоносферных точек в интересующий нас период времени (рис. 6) были выделены профили по долготе и широте.

Меридиональный профиль возмущений ПЭС вдоль западного побережья Гренландии (рис. 7) показывает, что возмущения достигают амплитуд ~2 TECu (треки 22qiki, 19qiki) и локализованы по широте в пределах ~5°, что согласуется с локализацией вомущения в магнитных данных.

КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ том 57 № 2 2019

Наблюдаемое возмущение быстро затухает в ионосфере при распространении, отчетливые вариации видны только на двух восточных треках профиля $\Phi \sim 75^{\circ}$. Здесь так же наблюдается западное направление распространения, как и для магнитного возмущения. Корреляционный анализ треков 28qiki и 28kaga, дает временной сдвиг $\Delta t = 210$ с, при коэффициенте корреляции R = 0.61.

Рис. 4. Пример типичной формы изолированной флуктуации ПЭС, выделенной с помощью автоматического алгоритма (точки показывают определяемый автоматически центр возмущения).

Рис. 5. Пример автоматического выделения изолированных флуктуаций на карте с меткой времени, соответствующей центру флуктуации. Размер маркера пропорционален амплитуде возмущения.

Рис. 6. Карта подыоносферных треков, соответствующих по локализации выбранным профилям наземных магнетометров.

Рис. 7. Вариации ПЭС (удален тренд с периодами более 5 мин) соответствующие подыоносферным точкам, образующих профиль по широте (~40° восточной долготы) вдоль западного побережья Гренландии.

В предположении, что возмущение равномерно распространялось между центрами треков вдоль поверхности Земли, означает скорость V = 3 км/с.

Профиль ионосферных треков, соответствующий $\Phi \sim 72^{\circ}$ более удобен для рассмотрения (рис. 8). На этих широтах проявляется квазипериодические флуктуации ПЭС, соответствующие магнитным пульсациям, возбуждаемые импульсом *TCV*. Сопоставление возмущений на радиотрассах 11iqal и 19qiki отчетливо показывает западное распространение возмущения. Корреляционный анализ дает сдвиг $\Delta t = 210$ с при R = 0.70. В предположении, что возмущение распространялось между центрами треков, вдоль поверхности Земли, обнаруженный временной сдвиг соответствует скорости V = 4 км/с.

Таким образом, в ионосферных данных наблюдается картина распространения возмущения, аналогичная представленной в магнитных данных. Изолированные флуктуации ПЭС длительностью ~10 мин распространяются на запад со скоростями ~3–4 км/с.

Сопоставление волновых форм геомагнитных и ионосферных вариаций на близких магнитных и GPS станциях возможно на парах *STF*-19qiki и *IQA*-17iqal. На этих широтах импульс *TCV* сопровождался всплеском периодических колебаний (рис. 9). Для более строгого обоснования когерентности ионосферных и геомагнитных сигналов и их фазовых соотношений, был применен кросс-

спектральный анализ, подтвердивший визуальные впечатления. Для этих пар магнитных и GPS станций кросс-спектральный анализ дает величину спектральной когерентности между магнитными и ионосферными возмущениями $\gamma(f) \sim 0.55-0.75$ (в зависимости от компоненты) вблизи характерных частот возмущений 5–6 мГц (не показано). Фазовые сдвиги между магнитным и ионосферными возмущениями гореднее значение в частотной области вблизи максимума когерентности составляет $\Delta \phi \sim 75^\circ$.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В данной работе показана возможность выделения возмущений ПЭС, вызванных конвективными ионосферными вихрями *TCV* на высоких широтах. Нами рассмотрено событие 2011-01-15, когда были совместно проанализированы данные наземных магнитометров и данные о возмущениях ПЭС.

Наземный магнитный импульс TCV с длительностью ~10 мин и амплитудой ~100 нТл был зарегистрирован в предполуденные часы на сети станций западного побережья Гренландии и Северной Канады. В азимутальном направлении импульс распространялся со скоростью 3.2–3.7 км/с в западном направлении (рис. 2, 3). В меридиональной пространственной структуре магнитного импульса TCV виден временной сдвиг (рис. 2), соот-

Рис. 8. Вариации ПЭС соответствующие подыоносферным точкам 19kaga-19qiki-11iqal-17iqal, образующих профиль по долготе на широте 72°.

ветствующий кажущейся фазовой скорости направленной к полюсу. Этот сдвиг, по-видимому, обусловлен тем, что возмущение от экваториальной плоскости магнитосферы переносится к ионосфере нестационарным продольным током, и на более высоких широтах с более длинными силовыми линиями этот процесс занимает больше времени, чем на более низких широтах. Пространственная локализация *TCV* указывает на то, что это геомагнитное возмущение создается альвеновской МГД модой.

В ионосферных данных с помощью созданного алгоритма был зафиксирован отклик на *TCV*, проявляющийся также в виде уединенного импульса ПЭС с длительностью ~10 мин и амплитудой до 2 TECu. В вариациях TEC проявляются не только собственно импульс *TCV*, но и сопутствующие *Pc5* пульсации. Скорость распространения ионосферного возмущения, оцененная по высокоамплитудным флуктуациям ПЭС оставляет около 3-4 км/с, в юго-западном направлении.

Вопрос о механизме воздействия TCV на ионосферу пока открыт. Ни одно из напрашивающихся объяснений не может быть безоговорочно принято. Высыпание энергичных (30–100 кэВ) электронов [2], которое может проявляться во всплеске риометрического поглощения сопровождающего TCV [19, 20], создает дополнительную ионизацию в нижних слоях ионосферы, который вносят малый вклад в ПЭС. Вариации ПЭС могут быть вызваны переносом низкоэнергичных электронов вдоль силовых линий в ионосферу, связанным с продольным током в структуре TCV [9]. Интенсивности продольных токов внутри TCV достаточно велики, что может вызвать появление аномального продольного электрического поля и ускорение электронов верхней ионосферы до энергий 0.1—1 кэВ [22]. Такие надтепловые электроны могут вызвать дополнительную ионизацию ионосферы на высотах F-слоя, дающего основной вклад в ПЭС. Однако для надежного обоснования механизма ионосферного отклика необходимо численное моделирование для реальных ионосферных условий.

ЗАКЛЮЧЕНИЕ

Проведенный анализ показал принципиальную возможность использования GPS технологий для исследования динамики проявления магнитных возмущений в ионосфере Земли. Анализ вариаций ПЭС ввыявил наличие ионосферного отклика на магнитное возмущение *TCV* с амплитудой достигающей на отдельных станциях 150–200 нТл. Ионосферное возмущение представляет собой изолированные флуктуации ПЭС с амплитудой до 2 ТЕСи и с характерной длительностью ~10 мин. На некоторых широтах, импульс вызвал и появление сильно затухающих квазипериодических возмущений ПЭС с характерными частотами ~3.5–5.5 мГц. Скорость распространения ионосферного возмущения в азимутальном направлении ~3–4 км/с

Рис. 9. Сопоставление волновых форм геомагнитных (*X*-компонента) и ионосферных (вертикальный ПЭС) вариаций на близких магнитных станциях и GPS-треках.

согласуется со скоростью распространения магнитного импульса вдоль земной поверхности, определенной по данным магнетометров.

Работа поддержана грантами РФФИ № 18-05-00108 (ПВЕ, ПВА) и 18-35-00649 (ПВЕ). Мы признательные рецензенту за вдумчивое чтение нашей работы и полезные замечания. В работе использовались данные магнитометров сетей СА-RISMA (www.carisma.ca), Greenland Coastal Array (www.space.dtu.dk), и MACCS (space.augsburg.edu/ space/MaccsHome.html), а также архивные данные GPS наблюдений сетей IGS и UNAVCO.

СПИСОК ЛИТЕРАТУРЫ

 Захаров В.И., Ясюкевич Ю.В., Титова М.А. Влияние магнитных бурь и суббурь на сбои навигационной системы GPS в высоких широтах // Космич. исслед. 2016. V. 54. Р. 23–33. Suvorova A.V., Dmitriev A.V., Tsai L.-C. et al. TEC evidence for near-equatorial energy deposition by 30 keV electrons in the topside ionosphere // J. Geophys. Res. 2013. V. 118. P. 4672–4695.

- 3. Афраймович Э.Л., Перевалова Н.П. GPS-мониторинг верхней атмосферы Земли // Иркутск: ГУНЦРВХВСНЦ СО РАМН, 2006.
- Ясюкевич Ю.В. и др. Отклик ионосферы на гелио- и геофизические возмущающие факторы по данным GPS. Иркутск: Изд-во ИГУ, 2013.
- Komjathy A., Galvan D.A., Stephensetal P. Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study // Earth Planets Space. 2012. V. 64. P. 1287–1294.
- 6. Ясюкевич Ю.В., Захаров В.И., Куницын В.Е., Воейков С.В. Отклик ионосферы на великое японское землетрясение 11 марта 2011 г. по данным различных GPS методик // Геомагнетизм и аэрономия. 2014. Т. 54. № 6. С. 1–10.

- 7. Гохберг М.Б., Лапшин В.М., Стеблов Г.М. и др. Ионосферный отклик на подводные Курильские землетрясения по наблюдениям со спутников GPS // Исследования Земли из космоса. 2011. № 1. С. 30–38.
- 8. Захаров В.И., Куницын В.Е. Региональные особенности атмосферных проявлений тропических циклонов по данным наземных GPS-сетей // Геомагнетизм и аэрономия. 2012. Т. 52. № 4. С. 562.
- Pilipenko V., Belakhovsky V., Murretal D. Modulation of total electron content by ULFPc 5 waves // J. Geophys. Res. 2014. V. 119. P. 4358–4369.
- Korotova G.I., Sibeck D.G., Singer H.J. et al. Interplanetary magnetic field control of dayside transient event occurrence and motion in the ionosphere and magnetosphere // Annales Geophysicae. 2004. V. 22. P. 4197–4202.
- Lanzerott L.J., Wolfe A., Trivedy N. et al. Magnetic impulse events at high latitudes: magnetopause and boundary layer plasma processes // J. Geophys. Res. 1990. V. 95. P. 97–107.
- Lanzerotti L.J., Hunsucker R.D., Rice D. et al. Ionosphere and ground-based response to field-aligned currents near the magnetospheric cusp regions // J. Geophys. Res. 1992. V. 92. P. 7739–7743.
- McHenry M.A., Clauer C.R. Modeled ground magnetic signatures of flux transfer events // J. Geophys. Res. 1987. V. 92. P. 11231–11240.
- 14. Engebretson M.J., Yeoman T.K., Oksavik K. et al. Multiinstrument observations from Svalbard of a traveling convection vortex, electromagnetic ion cyclotron wave burst, and proton precipitation associated with a bow shock instability // J. Geophys. Res. 2013. V. 118. № 6. P. 2975–299.

- Lanzerotti L.J., Lee L.C., Maclennan C.G. et al. Possible evidence of flux transfer events in the polar ionosphere // Geophys. Res. Lett. 1986. V. 13. P. 1089–1092.
- Kivelson M.G., Southwood D.J. Ionospheric travelling vortex generation by solar wind buffeting of the magnetosphere // J. Geophys. Res. 1991. V. 96. P. 1661.
- Glassmeier K-H., Heppner C. Traveling magnetospheric convection twin vortices: another case study, global characteristics, and a model // J. Geophys. Res. 1992. V. 97. P. 3977–3992.
- Murr D.L., Hughes W.J. Solar wind drivers of traveling convection vortices // Geophys. Res. Lett. 2003. V. 30. № 7, 1354, doi 10.1029/2002GL015498
- 19. Воробьев В.Г., Зверев В.Л., Старков Г.В. Геомагнитные импульсы в дневной высокоширотной области: основные морфологические характеристики и связь с динамикой дневных сияний // Геомагнетизм и аэрономия. 1993. Т. 33. № 5. С. 69–79.
- Mende S.B., Rairden R.L., Lanzerotti L.J., Maclennan C.G. Magnetic impulses and related optical signatures in the dayside aurora // Geophys. Res. Lett. 1990. V. 17. P. 131.
- Захаров В.И., Ясюкевич Ю.В., Пронин В.Е. Метод статистического определения уровня сбоев полной электронной концентрации по данным GPS наблюдений // Ученые записки физического факультета МГУ. 2017. № 1.
- Шалимов С.Л., Пилипенко В.А. Возможный механизм взаимосвязи интенсивных продольных токов в магнитосфере и гидромагнитных шумов диапазона Pi1 // Геомагн. и аэрономия. 1999. Т. 39. С. 23–28.