УДК 523.98

ВОЗМУЩЕННЫЕ ПОТОКИ ВО ВНУТРЕННЕМ СОЛНЕЧНОМ ВЕТРЕ И ВБЛИЗИ ОРБИТЫ ЗЕМЛИ

© 2019 г. А. И. Ефимов^{1,} *, Л. А. Луканина¹, В. М. Смирнов¹, И. В. Чашей², М. К. Бёрд^{3, 4}, М. Петцольд⁴

¹Институт радиотехники и электроники им. В.А. Котельникова РАН, Фрязино, Россия ²Физический институт им. П.Н. Лебедева РАН, Москва, Россия ³Институт астрономии им. Аргеландера Боннского университета, Бонн, Германия

⁴Институт исследования окружающей среды Кёльнского университета, Кёльн, Германия

*efimov@ms.ire.rssi.ru Поступила в редакцию 29.03.2019 г. После доработки 04.06.2019 г. Принята к публикации 04.07.2019 г.

Выбросы корональной массы из активных областей на Солнце могут наблюдаться как серии разнесенных во времени индивидуальных событий во внутреннем солнечном ветре и околоземной плазме. С целью поиска таких событий проведен анализ данных экспериментов двухчастотного радиозондирования солнечного ветра сигналами KA *Rosetta* и *Mars Express*. В циклах экспериментов, выполненных в 2010 и 2011 гг., измерялись флуктуации частоты сигналов *X*- и *S*-диапазонов. Проведено сравнение временных вариаций уровня флуктуаций частоты, измеряемых во внутреннем солнечном ветре, с временными вариациями средних параметров плазмы, зарегистрированных вблизи орбиты Земли. Благодаря тому, что циклы радиозондирования имели достаточно большую длительность, удалось зафиксировать события, в которых значительные усиления флуктуаций частоты во внутреннем солнечном ветре и возрастания концентрации плазмы вблизи орбиты Земли связаны со вспышечными процессами в одной и той же активной области на Солнце. При этом усиления флуктуаций частоты на восточном лимбе происходят раньше, чем у орбиты Земли, а на западном – позже. Временной сдвиг для западного лимба оказывается меньше, чем для восточного. Знак временного сдвига и соотношения между его численными значениями обусловлены перемещением активной области относительно центрального меридиана за счет вращения Солнца.

DOI: 10.1134/S0023420619060037

ВВЕДЕНИЕ

Радиозондирование солнечного ветра когерентными сигналами КА позволяет исследовать характеристики движущейся плазмы в широком диапазоне расстояний от Солнца и гелиоширот, в том числе и в тех областях, которые недоступны для локальных измерений. При радиозондировании измеряются модуляции радиосигналов движущимися неоднородностями солнечного ветра. В экспериментах, выполненных с помощью многочисленных КА, исследовались усредненные радиально-широтные профили уровня и спектров турбулентности внутреннего солнечного ветра, а также скорости движения модулирующих неоднородностей [1-3]. Помимо усредненных характеристик движущейся плазмы радиозондирование позволяет детектировать и исследовать во внутреннем солнечном ветре индивидуальные события, связанные со вспышечной активностью [4, 5].

В результате анализа данных измерений флуктуаций частоты просвечивающих радиосигналов

были получены радиальные зависимости интенсивности флуктуаций частоты, изучены режимы турбулентности солнечного ветра при различных гелиоцентрических расстояниях для низкоширотных, среднеширотных и высокоширотных областей сверхкороны Солнца [6]. Было установлено, что интенсивность флуктуаций частоты возрастает с приближением лучевой линии к Солнцу по закону, близкому к степенному. В результате анализа материалов радиозондирования внутреннего солнечного ветра сигналами спутника Юпитера Galileo, полученных в 1994-2002 гг. [7], было показано, что уровень флуктуаций при невозмущенных условиях в гелиосфере для низкоширотных областей изменяется незначительно в течение 11-летнего цикла солнечной активности.

В настоящей работе сравниваются результаты наблюдений флуктуаций частоты радиосигналов КА *Rosetta* и *Mars Express*, осуществлявших зондирование околосолнечной плазмы, и данные измерений локальными методами характеристик око-

Рис. 1. Расстояние до трассы радиосвязи при проведении экспериментов по корональному радиозондированию с использованием KA *Rosetta* (а) и *Mars Express* (б) в 2010/2011 гг. [6].

лоземной плазмы с борта искусственных спутников Земли (ИСЗ).

КРАТКОЕ ОПИСАНИЕ ЭКСПЕРИМЕНТОВ

В течение 2010—2011 гг. были выполнены продолжительные серии экспериментов по радиозондированию околосолнечной плазмы сигналами европейских космических аппаратов *Rosetta* (с 3.Х.2010 г. по 31.Х.2010 г.) и *Mars Express* (с 25.ХІІ.2010 г. по 27.ІІІ.2011 г.). Непрерывное слежение за состоянием внутреннего солнечного ветра (радиальные расстояния от 4 до 42 солнечных радиусов R_s) осуществлялось в течение длительного промежутка времени, превышающего 6 периодов вращения Солнца ($T_0 \approx 27$ сут).

Внутренние области солнечного ветра просвечивались когерентными сигналами *S*-диапазона (длина волны $\lambda = 13.1$ см) и *X*-диапазона ($\lambda = 3.6$ см). Прицельные расстояния радиолуча изменялись от 36.2 до 3.9 $R_{\rm s}$ при заходе космических аппаратов за Солнце (восточный лимб) и от 4.0 до 41.7 $R_{\rm s}$ при выходе из-за Солнца (западный лимб).

КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ том 57 № 6 2019

Наибольшее приближение лучевой линии КА *Rosetta*—Земля к центру Солнца составило ~6.2 *R*_s 16.Х.2010 г., когда радиолиния проходила над северным полюсом Солнца. Для КА *Mars Express* наибольшее сближение с центром Солнца произошло 4.II.2011 г., когда космический аппарат был виден под южным полюсом Солнца. Положение трассы радиосвязи относительно Солнца в картинной плоскости (относительно наблюдателя с Земли) для каждого КА показано на рис. 1.

Исследуемыми характеристиками зондирующих радиоволн являлись интенсивность и форма временных спектров флуктуаций частоты *S*- и *X*-диапазонов, а также дифференциальной частоты этих сигналов.

Временные вариации флуктуаций частоты сравниваются с данными измерений концентрации протонов N_p , скорости движения плазмы V и индукции магнитного поля B бортовыми приборами ИСЗ *Wind* в смежные периоды времени.

Данные радиозондирования получены с помощью KA *Rosetta* и *Mars Express* и относятся к периодам с 3.Х.2010 г. по 31.Х.2010 г. и с 25.ХІІ.2010 г.

Рис. 2. Временная зависимость интенсивности флуктуаций частоты *X*-диапазона по данным радиозондирования сигналами КА *Rosetta*. Пунктирной линией показан переход от фазы захода КА за Солнце к фазе выхода из-за него.

по 27.III.2011 г. Идентификация индивидуальных событий производилась на основе сопоставления усилений флуктуаций частоты во внешней короне Солнца с вариациями параметров плазмы в околоземном пространстве, аналогичный подход был реализован в работе [8].

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

При проведении экспериментов радиозондирования с использованием КА *Rosetta* и *Mars Express* в 2010/2011 гг. на фоне плавных радиальных зависимостей были зарегистрированы значительные локальные повышения флуктуаций частоты зондирующих радиосигналов. Причинами возмущений такого рода могут быть вращающиеся вместе с Солнцем (коротирующие) структуры солнечного ветра [9], а также спонтанные кратковременные всплески.

Сильное увеличение флуктуаций частоты было зарегистрировано 11.Х.2010 г. (DOY 284 – день от начала года), когда зондировались области сверхкороны, расположенные к востоку от центра Солнца и к северу от экваториальной плоскости. Прицельное расстояние радиолуча составляло в среднем 13.5 R_s . При невозмущенных условиях для таких гелиоцентрических расстояний интенсивность (среднеквадратичное отклонение) флуктуаций частоты зондирующих радиоволн *S*-диапазона составляет $\sigma_s = (0.13 \pm 0.02)$ Гц, а для *X*-диапазона близка к $\sigma_x = (0.06 \pm 0.02)$ Гц. Для исключения влияния шумов солнечного происхождения на малых гелиоцентрических расстояния

яниях в этой работе использовались данные о флуктуациях частоты только *X*-диапазона. За время радиозондирования околосолнечной плазмы (2.69 ч) интенсивность флуктуаций радиосигналов *X*-диапазона изменялась от 0.03 до 0.25 Гц, т.е. более чем в 8 раз.

Рис. 2 представляет значения интенсивности флуктуаций частоты сигналов *X*-диапазона КА *Rosetta*, зарегистрированных при радиозондировании околосолнечной плазмы в 2010 г. Видно, что на фоне монотонного изменения интенсивности флуктуаций частоты, связанного с приближением лучевой линии к Солнцу (заход) или при ее удалении от Солнца (выход), наблюдались резкие возрастания σ_x . Такие события происходили 11.X.2010 г. (DOY 284), 15.X.2010 г. (DOY 288), 19.X.2010 г. (DOY 297), 22.X.2010 г. (DOY 304).

Проанализируем более детально событие, которое привело к усилению флуктуаций частоты на трассе радиосвязи 11.Х.2010 г. По данным коронографа *SOHO* LASCO *C2* получены снимки выброса корональной массы (СМЕ) типа "Частичное Гало" (Partial Halo), которые были взяты из каталога СМЕ [10], где также содержатся сведения о его скорости движения и удаленности от Солнца. На рис. За видны возмущенные потоки плазмы, направленные в сторону трассы радиосвязи КА *Rosetta*-Земля. Именно в начале измерений в 08.59 UT 11.Х.2010 г. выявлена максимальная интенсивность флуктуаций частоты, которая спадает через 2 ч, оставаясь при этом выше обычного для спокойного солнечного ветра уровня. На

Рис. 3. СМЕ 10.Х.2010 г.: (а) данные коронографа *SOHO LASCO C2* 03.12 UT 11.Х.2010 г.; (б) временная зависимость радиального расстояния центральной части СМЕ; (в) радиальная зависимость скорости движения.

рис. Зб видно, что в это время расчетное местонахождение СМЕ ~17 $R_{\rm s}$. Учитывая деформацию и рассеяние облака, можно утверждать, что причиной повышенных значений флуктуаций частоты на трассе КА-Земля является корональный выброс, зарегистрированный на расстоянии около 2 $R_{\rm s}$ от центра Солнца 10.Х.2010 г. в 22.16 UT. По данным рис. Зв можно оценить скорость движения СМЕ на расстояниях, превышающих 20 $R_{\rm s}$, и время, необходимое для достижения Земли возмущенными потоками.

Спустя 4 дня (15.Х.2010 г. – DOY 288) на орбите Земли был зарегистрирован повышенный уровень концентрации протонов N_p и индукции магнитного поля *B* (рис. 4). Значения этих величин превысили фоновый уровень примерно в 7 раз. Сопоставив данные о скорости СМЕ и уверенную корреляцию флуктуаций частоты на трассе радиосвязи с характеристиками околоземной плазмы, можно утверждать, что возмущения, наблюдавшиеся вблизи Солнца, достигли орбиты Земли.

Через 9 суток (24.Х.2010 г. – DOY 297) на трассе радиосвязи КА *Rosetta*-Земля, западный лимб, регистрируется пятикратное увеличение флуктуаций частоты (прицельное расстояние радиолуча $R = 21.88R_s$). С помощью каталога СМЕ можно сопоставить произошедшие на Солнце события (слабый корональный выброс – рис. 5) с изменениями характеристик радиоволн. Выброс двигался с достаточно малой скоростью и достиг радиолинии только спустя 21 ч от времени старта.

Об этом событии можно сказать, что повышенные флуктуации генерировались той же областью, что и на восточной стороне 13.2 сут ранее (полпериода вращения Солнца).

В табл. 1 сопоставлены повышенные значения характеристик околосолнечной и околоземной

Рис. 4. Временная зависимость характеристик солнечного ветра в околоземном пространстве по данным ИСЗ *Wind* с 3.X.2010 г. по 1.XI.2010 г. (а) протонная концентрация; (б) магнитное поле; (в) скорость солнечного ветра.

			<u>^</u>	
Измерения	Дата День года	Время суток, часы	Гелиоцентрическое расстояние, R/R_s	Событие
Рентгеновское излучение, Вт/м ²	_	_	_	Фоновые показатели
СМЕ (оптические наблюдения)	10.X.2010 283	22.0	2.0	(около 8 · 10 °) Частичное Гало (Partial Halo)
Восточный лимб:				
Интенсивность флуктуаций частоты σ _x , Гц	11.X.2010 284	9.0	13.5	Возрастание в 8 раз (от 0.03 до 0.25)
Околоземное пространство:				
Протонная концентрация N_p , n/cm^3	15.X.2010 288	4.0	214.9	Возрастание в 7 раз (от 5 до 32)
Магнитное поле В, нТл	15.X.2010 288	4.5	214.9	Возрастание в 7 раз (от 1.2 до 8.1)
Рентгеновское излучение, Вт/м ²	23.X.2010 296	13.0	1.0	Слабая вспышка (от $7 \cdot 10^{-8}$ до $1.4 \cdot 10^{-7}$)
СМЕ (оптические наблюдения)	23.X.2010 296	13.5	2.0	Слабое СМЕ
Западный лимб:				
Интенсивность флуктуаций частоты σ _x , Гц	24.X.2010 297	10.0	21.9	Возрастание в 5 раз (от 0.012 до 0.062)

Габлица 1.	Цикл	наблю,	дений г	повышенной	активности	области	солнечной	короны

Рис. 5. СМЕ 23.Х.2010 г.: (а) данные коронографа *SOHO LASCO C2* 13.25 UT; (б) временная зависимость радиального расстояния центральной части СМЕ; (в) радиальная зависимость скорости движения.

плазмы с локальными наблюдениями в период с 10.X.2010 г. по 24.X.2010 г.

Подобные события наблюдались и в эксперименте радиозондирования околосолнечной плазмы сигналами KA *Mars Express*. На рис. 6 приведены значения интенсивности флуктуаций частоты, полученные за весь период проведения эксперимента. Как на фазе захода КА за Солнце (восточный лимб), так и на фазе выхода (западный лимб) четко видно несколько выбросов, когда флуктуации частоты резко возрастали.

Проведен анализ событий с 28.I.2011 г. по 10.II.2011 г., для которых составлена табл. 2.

На трассе радиосвязи 28.I.2011 г. ($R = 7.2 R_s$, восточный лимб) был зарегистрирован повышенный уровень флуктуаций частоты *X*-диапазо-

на. На рис. 7а представлены данные измерений рентгеновского излучения, выполненные спутником Земли GOES-15 [ftp://satdat.ngdc.noaa.gov/ sem/goes/data/full/]. Стрелкой на этом рисунке отмечена вспышка класса С (C1.5 = $1.5 \cdot 10^{-6}$ BT/м²), которая вызвала СМЕ. На рис. 76 видно, что на западном лимбе ранее зарегистрирован более масштабный выброс, который был вызван вспышкой класса М (M1.3 = $1.3 \cdot 10^{-5}$ Вт/м²). Данные о скорости и местонахождении СМЕ представлены на рис. 7в, 7г. Видно, что выброс проходил через трассу радиосвязи около 11 ч, но облако сильно вытянуто, и можно наблюдать эффекты еще в течение нескольких часов. Действительно, 28.1.2011 г. было проведено 2 сеанса измерений флуктуаций частоты. Первый был длительностью около 3 ч (с

2019

Рис. 6. Временная зависимость интенсивности флуктуаций частоты *X*-диапазона по данным радиозондирования сигналами КА *Mars Express*. Пунктирной линией показан переход от фазы захода КА за Солнце к фазе выхода из-за него.

05.46 до 8.46 UT), причем повышенных значений флуктуаций не было зарегистрировано. Для второго сеанса (с 13.44 до 15.19 UT) интенсивность флуктуаций частоты возросла в 7 раз. Данные ИСЗ *Wind* представлены на рис. 8. Около Земли 31.I.2011 г. неоднократно наблюдается повышение значений характеристик плазмы в несколько раз (максимум протонной концентрации в этот день $N_n = 90 \ n/\text{сm}^3$).

Через полпериода вращения Солнца от произошедшего события на восточном лимбе наблю-

Измерения	Дата День года	Время суток, часы	Гелиоцентрическое расстояние, $R/R_{\rm s}$	Событие
Рентгеновское излучение, Вт/м ²	28.I.2011 028	4.5	1.0	Возрастание на порядок
СМЕ (оптические наблюдения)	28.I.2011 028	5.0	2.0	(от 1.38 · 10 · до 1.5 · 10 ·) Частичное Гало (Partial Halo)
Восточный лимб: Интенсивность флуктуаций частоты σ _x , Гц	28.I.2011 028	13.8	7.2	Возрастание в 7 раз (от 0.1 до 0.69)
Околоземное пространство: Протонная концентрация N_p , n/cm^3	31.I.2011 031	18.0	214.9	Возрастание в 9 раз (от 8 до 71)
Магнитное поле <i>В</i> , нТл	31.I.2011 031	18.0	214.9	Возрастание в 7.5 раз (от 3 до 23)
Рентгеновское излучение, Вт/м ²	10.II.2011 041	13.5	1.0	Возрастание на порядок (от 2 6 \cdot 10 ⁻⁷ до 2 6 \cdot 10 ⁻⁶)
СМЕ (оптические наблюдения)	10.II.2011 041	14.2	2.0	Частичное Гало (Partial Halo)
Западный лимб: Интенсивность флуктуаций частоты б _х , Гц	10.II.2011 041	17.1	6.4	Возрастание в 6 раз (от 0.14 до 0.79)

Таблица 2. Цикл наблюдений повышенной активности области солнечной короны с 28. І. 2011 по 10. ІІ. 2011.

Рис. 7. СМЕ 28.1.2011 г.: (а) регистрация вспышки на Солнце в рентгеновском диапазоне по данным спутника Земли *GOES*-15; (б) данные коронографа *SOHO* LASCO C2 13.25 UT; (в) временная зависимость радиального расстояния центральной части СМЕ; (г) радиальная зависимость скорости движения.

даются следующие проявления повышенной активности на западном лимбе: вспышка на Солнце (рис. 9а), СМЕ (рис. 96–9г) и, наконец, зарегистрированное на трассе радиосвязи усиление флуктуаций 10.II.2011 г.

Анализ был проведен для всех выбросов интенсивности флуктуаций частоты сигналов КА *Rosetta и Mars Express* в 2010/2011 гг. В табл. 3 представлены циклы наблюдений повышенной активности областей на Солнце и продемонстрирована взаимосвязь между событиями каждого цикла наблюдений.

Для цикла № 1 отсутствуют данные измерений флуктуаций частоты на восточном лимбе, при этом 11.Х.2010 г. зафиксирован самый высокий уровень значений протонной концентрации и магнитного поля за месяц. На восточном лимбе фиксируется высокая активность спустя 8 дней.

Рис. 8. Временная зависимость характеристик солнечного ветра в околоземном пространстве по данным ИСЗ *Wind* с 25.XII.2010 г. по 28.II.2011 г. (а) протонная концентрация; (б) магнитное поле; (в) скорость солнечного ветра.

Детально цикл № 2 описан выше. Отличительной его особенностью является то, что рост значений характеристик околоземной плазмы зарегистрирован 15.Х и 22.Х.2010 г. Это объясняется тем, что после первого СМЕ область повышенной активности довернулась на четверть периода вращения Солнца (около 7 сут), и после этого произошел еще один выброс корональной массы

окрестности Земли в 2010/2011 гг.						
	Восточный лимб:	Околоземное пространство:	Западный лимб:			
№ цикла	регистрация повышенных	регистрация повышенных значений	регистрация повышенных			
наблюдений	значений характеристик	протонной концентрации	значений характеристик			
	околосолнечной плазмы	и напряженности магнитного поля	околосолнечной плазмы			
1	Нет измерений	11.Х.2010 г.	19.Х.2010 г.			
		(DOY 284)	(DOY 292)			
2	11.Х.2010 г.	15.Х.2010 г./22.Х.2010 г.	24.Х.2010 г.			
	(DOY 284)	(DOY 288/295)	(DOY 297)			
3	15.Х.2010 г.	19.Х.2010 г.	31.Х.2010 г.			
	(DOY 288)	(DOY 292)	(DOY 304)			
4	26.ХІІ.2010 г.	28.ХІІ.2010 г./6.І.2011 г.	Нет измерений			
	(DOY 360)	(DOY 362/006)				
5	28.І.2011 г.	31.І.2011 г.	10.11.2011 г.			
	(DOY 028)	(DOY 031)	(DOY 041)			
6	Нет измерений	5.VI.2011 г.	13.VI.2011 г.			
		(DOY 156)	(DOY 164)			

Таблица 3. Циклы наблюдений повышенной активности различных областей солнечной короны по данным экспериментов радиозондирования околосолнечной плазмы и измерений значений характеристик плазмы в окрестности Земли в 2010/2011 гг.

Рис. 9. СМЕ 10.II.2011 г.: (а) регистрация вспышки на Солнце в рентгеновском диапазоне по данным спутника Земли *GOES*-15; (б) данные коронографа *SOHO* LASCO C2 15.12 UT; (в) временная зависимость радиального расстояния центральной части СМЕ; (г) радиальная зависимость скорости движения.

(17.Х.2010 г.), который был зарегистрирован в околоземном пространстве спустя еще пять сут (22.Х.2010 г.).

Такая же особенность и для наблюдений цикла № 4 – рост значений характеристик околоземной плазмы зарегистрирован и 28.ХП.2010 г., и 6.І.2011 г. Второй выброс корональной массы 2.І.2011 г. привел к возрастанию значений характеристик плазмы в околоземном пространстве спустя еще четверо сут (6.І.2011 г.).

Цикл № 3 может быть описан, как и более детально рассмотренный цикл № 2, с той разницей, что радиолиния на западном лимбе находилась на большом гелиоцентрическом расстоянии (41.5 R_s), и выброс в западную сторону был довольно медленным по скорости, поэтому между измерениями на восточном лимбе и западном прошло около 16 сут.

Цикл № 5 детально описан выше.

Цикл № 6 получен по материалам радиозондирования солнечного ветра японским КА *Akatsuki* [11]. В околоземном пространстве 5.VI.2011 г. регистрируются повышенные значения концентрации протонов (до 80 n/cm^3) и индукции магнитного поля (до 19 нТл), а спустя 8 сут на трассе радиосвязи регистрируется возрастание более чем на порядок интегральной электронной концентрации (от 0.2 · 10¹³ см⁻² до 5 · 10¹³ см⁻²).

450

ЗАКЛЮЧЕНИЕ

1. Анализ одновременных исследований процессов, происходящих в околосолнечном пространстве методом радиозондирования, и событий на орбите Земли приборами искусственных спутников позволил выделить события, связанные со вспышечными процессами в одних и тех же активных областях.

2. Наблюдение сильных возрастаний флуктуаций частоты радиоволн при зондировании области, расположенной к востоку от центра Солнца, в большинстве случаев связано с выбросами корональной плазмы, в которых уровень турбулентности существенно повышен по сравнению с фоновыми значениями. В случаях, если интенсивность флуктуаций зондирующих радиоволн превышает фоновый уровень в 5 и более раз, на орбите Земли регистрируется возрастание среднего уровня значений характеристик околоземной плазмы и их флуктуаций. Время запаздывания флуктуационных явлений в окрестности Земли по отношению к Солнцу может составлять до 12 дней.

3. В случаях, когда производится радиозондирование области, расположенной к западу от Солнца, усиление флуктуаций зондирующих радиоволн может произойти приблизительно через четверть периода обращения Солнца (около 8 сут) после регистрации резкого увеличения концентрации протонов у Земли.

Работа выполнена в рамках Государственного задания и частично поддержана Программой Президиума РАН № 12.

СПИСОК ЛИТЕРАТУРЫ

- Wohlmuth R., Plettemeier D., Edenhofer P. et al. Analysis of Galileo Doppler measurements during the solar occultations in 1994 and 1995 // Proceedings Paper. Three Galileos: The man, The spacecraft, The telescope. 1997. P. 421–428.
- Woo R., Gazis P. Large-scale solar-wind structure near the Sun detected by Doppler scintillation // Nature. 1993. V. 366. № 6455. P. 543–545.
- 3. *Woo R., Goldstein R.M.* Latitudinal variation of speed and mass flux in the acceleration region of the solar-wind inferred from spectral broadening measurements // Geophys. Research Letters. 1994. V. 21. № 2. P. 85–88.
- Woo R., Armstrong J.W., Bird M.K., Pätzold M. Variation of fractional electron-density fluctuations inside 40 R_o observed by Ulysses ranging measurements // Geophys. Research Letters. 1995. V. 22. P. 329–332.
- Bird M.K., Edenhofer P. Remote sensing observations of the solar corona // Physics of the inner heliosphere. I / Eds. Schwenn R., Marsch E. Springer-Verlag. Berlin. 1990. P. 13–97.
- 6. *Efimov A.I., Lukanina L.A., Samoznaev L.N. et al.* Frequency fluctuations in the solar corona investigated with radio sounding experiments on the spacecraft *Rosetta* and *Mars Express* in 2010/2011 // Advances in Space Research. 2017. V. 59. № 6. P. 1652–1662.
- 7. *Efimov A.I., Samoznaev L.N., Bird M.K. et al.* Solar wind turbulence during the solar cycle deduced from GALILEO coronal radio sounding experiments // Advances in Space Research. 2008. V. 42. № 1. P. 117–123.
- 8. Ефимов А.И., Луканина Л.А., Чашей И.В. и др. Квазипериодические осцилляции субмиллигерцового диапазона в околосолнечной плазме по данным когерентного радиопросвечивания // Космич. исслед. 2018. Т. 56. № 1. С. 48–58. (Cosmic Research. P. 1.)
- 9. Ефимов А.И., Луканина Л.А., Самознаев Л.Н., Чашей И.В., Бёрд М.К., Петцольд М. Наблюдения коротирующих структур солнечного ветра при радиозондировании сигналами космических аппаратов Rosetta и Mars Express // Космич. исслед. 2016. Т. 54. № 3. С. 195–203. (Cosmic Research. P.185.)
- SOHO LASCO CME CATALOG [Электронный ресурс]: Режим доступа: https://cdaw.gsfc.nasa.gov/ CME_list/UNIVERSAL/2010_10/univ2010_10.html
- Ando H., Shiota D., Imamura T. et al. Internal structure of a coronal mass ejection revealed by Akatsuki radio occultation observations // J. Geophys. Research. 2015. V. 120. P. 5318–5328.