УДК 521.1+629.78

ПОСТРОЕНИЕ ОПТИМАЛЬНЫХ ТРАЕКТОРИЙ ДЛЯ ЭКСПЕДИЦИИ ЗЕМЛЯ–АСТЕРОИД–ЗЕМЛЯ ПРИ ПОЛЕТЕ С БОЛЬШОЙ ТЯГОЙ

© 2020 г. В. В. Ивашкин^{1, 2, *}, Аньци Лан^{3, **}

¹Институт прикладной математики им. М.В. Келдыша РАН, г. Москва, Россия ²Московский государственный технический университет им. Н.Э. Баумана, г. Москва, Россия ³Xi'an Jiaotong University, Xi'an, Shaanxi, China, KHP

> **Ivashkin@keldysh.ru* ***langanqi@xjtu.edu.cn* Поступила в редакцию 01.10.2018 г. После доработки 29.01.2019 г. Принята к публикации 25.04.2019 г.

В работе построены и проанализированы оптимальные траектории экспедиции к "опасному" астероиду Апофис, предназначенной для изучения астероида, взятия образцов его грунта и возвращения на Землю. Использована схема полета с применением химических двигательных установок "большой" тяги. Для полета к астероиду в 2019–2022 гг. с общей продолжительностью экспедиции до двух лет получены оптимальные по полезной массе трехимпульсные траектории КА. Показана принципиальная возможность осуществления космической экспедиции Земля–Апофис–Земля на основе ракет-носителей (PH) типа "*Союз*" и разгонного блока "*Фрегаm*" при полете в 2019–2022 гг.

DOI: 10.31857/S0023420620020065

введение

Исследование малых тел Солнечной системы (астероидов, комет) с помощью автоматических межпланетных станций, которые позволяют изучать эти тела на близком расстоянии, а также контактным методом, стало одним из главных направлений исследования дальнего космоса. Уже осуществлен ряд миссий для изучения малых тел Солнечной системы, например, "Bera", "Near", "Deep Space-1", "Stardust", "Rosetta", "Deep Impact", "Hayabusa" и др. К основным целям этих исследований можно отнести выявление механизма происхождения и эволюции Солнечной системы, поиск ценных ресурсов, изучение проблемы астероидно-кометной опасности, а также демонстрацию мер по предотвращению угрозы Земле.

Сейчас возрастает роль экспедиций к малым небесным телам с возвращением космического аппарата от этих тел к Земле. К данному моменту реально разработаны 4 космической миссии к малым небесным телам с возвращением к Земле. Из них две миссии ("Stardust", NASA, и "Hayabusa", Япония) уже совершили возврат спускаемого аппарата (СА) на Землю [1, 2]. И еще 2 миссии ("Hayabusa-2", Япония, и "OSIRIS-REx" [3], NASA) осуществляются сейчас.

Такие экспедиции позволяют доставить на Землю образцы вещества небесного тела и исследовать их в условиях Земных лабораторий. Необходимость обеспечения возврата КА к Земле повышает энергетические затраты проекта, тем самым усложняет и удорожает его. Стремление к уменьшению стоимости космических исследовательских миссий, упрощению и повышению надежности их осуществления определяет важность использования отработанных и надежных ракетносителей среднего класса и обычных химических двигательных установок (ДУ) большой тяги (БТ). Однако эти ДУ приводят к большому расходу топлива, что делает особенно актуальной оптимизацию межпланетных траекторий экспедиции.

Астероид Апофис представляет потенциально серьезную угрозу для безопасности Земли [4, 5]. В России НПО Лавочкина разрабатывает проект полета к этому "опасному" астероиду Апофис [6]. Настоящая работа посвящена разработке алгоритма построения оптимальных орбит КА для экспедиции Земля—астероид—Земля, главными целями которой являются исследование астероида, взятие и доставка образцов его грунта обратно на Землю. В работе сначала рассматривается задача оптимизации траекторий полета к произвольному астероиду с возвратом к Земле, затем результаты анализа будут применены для экспедиции к астероиду Апофис. Данная работа является развитием [7, 8].

Рассмотрена следующая схема экспедиции Земля-астероид-Земля. Ракета-носитель (РН)

139

выводит КА с разгонным блоком (РБ) большой тяги на опорную орбиту искусственного спутника Земли. После пассивного движения по ней в некоторый оптимальный момент t₀ двигательная установка РБ со скоростью истечения c₁ сообщает КА импульс скорости ΔV_1 , производится разгон КА, и КА переводится на орбиту полета к астероиду. Затем РБ отделяется от КА, и дальнейшие маневры осуществляются с помощью второй двигательной установки большой тяги, ДУ2, со скоростью истечения газов c_2 . В момент $t_{1c_{\pi}}$ аппарат выходит из сферы действия Земли. Далее, в момент t₂ КА подлетает к астероиду. С помощью ДУ2 сообщается импульс скорости ΔV_2 , осуществляется торможение КА, и КА переходит на круговую орбиту искусственного спутника астероида (ИСА) радиусом r_2 . В окрестности астероида КА пребывает некоторое время Δt_{23} , это — "время ожидания" [9]. В течение этого времени возможны посадка на поверхность астероида, взятие образцов его грунта и другие исследования. Затем, в момент t_3 основному КА сообщается импульс скорости ΔV_3 , КА разгоняется и переходит на траекторию возвращения к Земле. В момент t_{4ca} КА подлетает к сфере действия Земли. При подлете к Земле от КА отделяется спускаемый аппарат, и в момент t_f происходит его гиперболический вход в атмосферу Земли, затем – торможение, посадка. Для уменьшения энергетических затрат в качестве основной принята схема полета, когда тормозной импульс скорости двигателем не сообщается при подлете к Земле, как предлагал К.Э. Циолковский [10] и как сделано в проектах "Stardust", "Hayabusa". В этом случае энергетические затраты на экспедицию в номинале определяются тремя величинами импульсов скорости ΔV_1 , ΔV_2 , ΔV_3 .

1. ПОСТРОЕНИЕ ОПТИМАЛЬНЫХ ПО ПОЛЕЗНОЙ МАССЕ ТРАЕКТОРИЙ КА ДЛЯ ЭКСПЕДИЦИИ ЗЕМЛЯ-АСТЕРОИД-ЗЕМЛЯ

Разработана и использовалась двухэтапная методика определения оптимальных межпланетных траекторий полета КА от Земли к астероиду и возврата от астероида к Земле в классе трехимпульсных перелетов. На первом этапе оптимальные гелиоцентрические траектории перелета КА Земля-астероид и астероид-Земля определяются в модели точечных сфер действия Земли и астероида, в импульсной постановке. В основном варианте оптимизации максимизируем полезную массу экспедиции m_p , определяемую как конечная масса КА при возвращении к Земле *m*_f минус масса ДУ2 вместе с ее топливными баками, масса которых зависит от массы топлива, т.е. импульсов $\Delta V_1, \Delta V_2, \Delta V_3$. На втором этапе анализа уточняются характеристики полученных оптимальных межпланетных траекторий в более точной модели с учетом параметров траекторий на геоцентрических и астероидоцентрических участках, возмущений, эфемерид небесных тел и гравитационных потерь на участках маневров.

1.1. ПЕРВЫЙ ЭТАП – ПОСТРОЕНИЕ ОПТИМАЛЬНЫХ ТРАЕКТОРИЙ КА В ПРИБЛИЖЕННОЙ МОДЕЛИ

На первом этапе гелиоцентрические траектории перелета КА Земля-астероид и астероид-Земля определяются в модели точечных сфер действия Земли и астероида, поэтому орбиты этих перелетов строятся в центральном ньютоновском поле притяжения Солнца. Схема решения задачи будет следующей. При задании граничных времен экспедиции t_1 (отлет с орбиты Земли), t_2 (подлет к орбите астероида), t_3 (отлет с орбиты астероида), t_4 (подлет к орбите Земли) гелиоцентрические орбиты перелета между небесными телами определяются путем двукратного решения задачи Эйлера-Ламберта (с учетом возможности совершения одного пассивного витка хотя бы по одной орбите). Это позволяет найти скорости "на бесконечности" $V_{\infty 1}, V_{\infty 2}, V_{\infty 3}, V_{\infty 4}$ в граничные времена t_i и требуемые импульсы скорости для перелета ΔV_1 , ΔV_2 , ΔV_3 . По этим скоростям можно определить конечную массу m_f и полезную *m_p* массу КА [11], с учетом отделяемых масс РБ и ДУ2:

$$m_f = m_1 \mu_2 \mu_3, \quad m_1 = m_0 \mu_1 - \Delta m_1, \quad \mu_1 = e^{-\Delta V_1/c_1},$$

 $\mu_2 = e^{-\Delta V_2/c_2}, \quad \mu_3 = e^{-\Delta V_3/c_2},$ (1)

$$\Delta m_2 = m_{20} + a_{T2}m_T, \quad m_T = m_1 - m_f, \quad (1a)$$

$$m_p = m_f - \Delta m_2, \tag{2}$$

где m_0 — начальная масса КА на опорной орбите ИСЗ, Δm_1 — отделяемая после разгона у Земли масса РБ, m_{20} — постоянная часть массы ДУ2, a_{T2} — коэффициент пропорциональности массы топливных баков ДУ2 массе топлива.

При этом скорости истечения газов c_1 , c_2 из двигательных установок РБ и ДУ2, вообще говоря, различны.

Обычно при оптимизации траекторий рассматривают минимизацию характеристической скорости V_{xap} , равной сумме величин импульсов скорости (см., например, [12, 13]):

$$F_1 = V_{xap}(t_1, t_2, t_3, t_4) = \sum_{i=1}^n \Delta V_i \to \min,$$
 (3)

или максимизацию конечной массы:

$$F_2 = -m_f(t_1, t_2, t_3, t_4) \to \min.$$
 (4)

Нами при построении оптимальных межпланетных траекторий перелета в основном варианте

анализа максимизируется полезная масса экспедиции *m_p*:

$$F_3 = -m_p(t_1, t_2, t_3, t_4) \to \min.$$
 (5)

Этот функционал, вообще говоря, лучше отражает требование энергетической эффективности траектории, чем характеристическая скорость V_{xap} и конечная масса m_f .

Тогда задача заключается в выборе времен t_1 , t_2 , t_3 , t_4 (при заданных областях для этих времен) для нахождения оптимальных траекторий с максимальной полезной массой.

Классическим способом поиска окна запуска для полета КА к другим планетам является построение графика изолиний функционала с помощью метода прямого перебора (см., например, [14]). При этом время вычисления быстро увеличивается с ростом размерности пространства поиска. Поэтому для уменьшения времени расчета и применения в более сложных задачах разработан комплексный метод, сочетающий несколько методов: метод И.М. Соболя [15–17], генетический алгоритм (ГА) [18] и квазиньютоновский BFGS (Broyden-Fletcher-Goldfarb-Shanno) метод [19].

Сначала для глобальной оптимизации применяется метод И.М. Соболя. В рамках этого метода используется детерминированный подход для построения точек ЛП_т – последовательностей, которые очень равномерно расположены в области поиска. Используя сетку, построенную точками ЛП_т – последовательностей, можно получить много различных решений и одновременно оценить максимумы и (или) минимумы функционала. В итоге, точки ЛП_т – последовательностей позволяют дать хорошее представление о поведении функционала со сравнительно меньшим количеством вычислений, чем в случае прямого перебора. Детальное описание метода построения и свойств точек ЛП_т – последовательностей дано в работах [15-17]. В частности, метод Соболя позволяет быстро найти области, где расположены локальные оптимумы и глобальный оптимум.

Последующий запуск генетического алгоритма (ГА) в этих областях позволяет определить глобальный оптимум с точностью до суток по граничным временам экспедиции. ГА использует принципы и терминологию, заимствованные у биологической науки – генетики. В ГА каждая особь представляет потенциальное решение некоторой задачи. Каждой особи предоставляется определенная пригодность путем вычисления значения фитнесс-функции. Множество этих особей называется популяцией. В процессе эволюции популяции с помощью генетических операторов - репродукции, кроссинговера и мутации, генерируют новые популяции. При этом особи с лучшими значениями целевой функции (пригодности) с большей вероятностью переходят в следующее

поколение, т.е. в следующую итерацию. Таким образом, после нескольких поколений (итераций) решения сходятся к оптимальному. Детальное описание метода ГА дано, например, в работе [18]. Для реализации простого ГА использованы следующие основные операторы: репродукция с помощью рулеточного отбора для выбора "родителей", одноточечный кроссинговер с вероятностью $P_c = 0.8$, одноточечная мутация с вероятностью $P_m = 0.01$ и элитарный отбор "особей" в следующее поколение. Метод Соболя и ГА удобны также при решении задач оптимизации с ограничениями, в частности, при ограничениях на граничные времена экспедиции, на скорость входа в атмосферу Земли при возвращении.

В случае внутреннего, по ограничениям, оптимума при необходимости более точного (в пределах суток) его определения, используется квазиньютоновский BFGS метод [19]. В этом методе, как и в других квазиньютоновских методах, матрица Гессе G_k целевой функции *f* заменяется на ее аппроксимацию A_k с учетом информации о градиенте функции f(x): $g_k = \text{grad}f(x_k)$. При этом производные $\frac{\partial f}{\partial x}$ определяются численно. Применение BFGS метода позволяет быстро (за 2–8 итераций) уточнить оптимум. Применение этого метода также позволяет снизить требования к точности

Использование данного комплексного метода позволило быстро и точно проводить оптимизацию траекторий для экспедиции Земля—астероид—Земля. При этом рассмотрено 5 задач:

оптимизации в ГА.

1) Основная задача оптимизации: при заданной общей продолжительности экспедиции $\Delta t_{\Sigma} = t_4 - t_1$ и заданном времени пребывания КА (времени ожидания) у астероида $\Delta t_{23} = t_3 - t_2$ оптимизируются время старта t_1 и время перелета от Земли до астероида $\Delta t_{12} = t_2 - t_1$, чтобы выполнялось (5). Это близко к постановке, данной в работе [13]. В этой задаче, таким образом, есть два параметра оптимизации.

2) При заданном времени ожидания Δt_{23} и при ограничении на общую продолжительность экспедиции Δt_{Σ} (например, $\Delta t_{\Sigma} \leq 2$ года), оптимизируются времена t_1 , Δt_{12} и Δt_{Σ} . Здесь три параметра оптимизации.

3) При заданном суммарном времени экспедиции Δt_{Σ} оптимизируются времена t_1 , Δt_{12} , и Δt_{23} . Здесь также три параметра оптимизации.

4) Оптимизируются все времена Δt_{Σ} , t_1 , Δt_{12} и Δt_{23} . Здесь четыре параметра оптимизации.

5) Полная четырехпараметрическая оптимизация времен Δt_{Σ} , t_1 , Δt_{12} и Δt_{23} с учетом ограничения на скорость входа КА в атмосферу Земли при возврате от астероида $V_{\text{вх}}$: $V_{\text{вх}} \leq V_{\text{вх mах}}$.

1.2. ПРОВЕРКА ОПТИМАЛЬНОСТИ ПОЛУЧЕННЫХ ТРАЕКТОРИЙ КА В КЛАССЕ МНОГОИМПУЛЬСНЫХ ПЕРЕЛЕТОВ

После построения на первом этапе оптимальных гелиоцентрических траекторий перелета КА эти траектории проверяем на выполнение необходимых условий оптимальности в классе многоимпульсных перелетов с помощью сопряженных функций. Получены выражения для базис-вектора Лоудена **р** (вектора λ_v , сопряженного к гелиоцентрической скорости КА V) в граничные времена t_1 , t_2, t_3, t_4 для всех трех указанных выше (3-5) функционалов — как для минимума скорости V_{xap} , так и для максимума конечной массы *m_f*, и для максимума полезной массы КА *m_p* [20]. При этом было учтено наличие двух двигательных установок с разными скоростями истечения c₁, c₂ продуктов сгорания, а также наличие отделения массы Δm_1 между сообщением импульсов скорости ΔV_1 , ΔV_2 . При минимизации характеристической скорости $V_{\text{хар}}$ (3) граничные значения базис-вектора $\mathbf{p}_i = \mathbf{p}(t_i)$ определяются выражениями:

$$\mathbf{p}_{1} = \boldsymbol{\lambda}_{v} (t_{1}) = \frac{\mathbf{V}_{\infty 1}}{V_{p1}}, \quad \mathbf{p}_{2} = \boldsymbol{\lambda}_{v} (t_{2}) = -\frac{\mathbf{V}_{\infty 2}}{V_{p2}},$$

$$\mathbf{p}_{3} = \boldsymbol{\lambda}_{v} (t_{3}) = \frac{\mathbf{V}_{\infty 3}}{V_{p3}}, \quad \mathbf{p}_{4} = \boldsymbol{\lambda}_{v} (t_{4}) = 0.$$
(6)

$$V_{p1} = \sqrt{V_{\infty 1}^2 + 2\mu_E/r_0}, \quad V_{p2} = \sqrt{V_{\infty 2}^2 + 2\mu_A/r_2}, \quad (6a)$$
$$V_{p3} = \sqrt{V_{\infty 3}^2 + 2\mu_A/r_3}.$$

Здесь V_{p1} – с корость в перигее орбиты отлета от Земли; V_{p2} , V_{p3} – скорости в перицентрах астероидоцентрических орбит подлета к астероиду и отлета от астероида. Радиусы r_2 , r_3 соответствуют круговым орбитам спутника астероида после подлета к астероиду и при отлете от него. Отметим, что притяжение астероида часто очень мало. Так для астероида Апофис $\mu_A \sim 2 \text{ м}^3/\text{c}^2$. В то же время скорости на бесконечность $V_{\infty 2}$, $V_{\infty 3}$ велики (километры в секунду – сотни метров в секунду). Поэтому вторые слагаемые под знаком радикала для V_{p2} , V_{p3} (4а) малы по сравнению с первыми слагаемыми. Если мы этими вторыми слагаемыми пренебрегаем, т.е. притяжение астероида не учитывается, то в (6) $V_{p2} \approx V_{\infty 2}$, $V_{p3} \approx V_{\infty 3}$. Для случая максимизации конечной массы (4):

$$\mathbf{p}_{1} = \frac{c_{2}m_{0}\mu_{1}\mu_{2}\mu_{3}}{c_{1}m_{f}} \cdot \frac{\mathbf{V}_{\infty 1}}{V_{p1}}, \quad \mathbf{p}_{2} = -\frac{\mathbf{V}_{\infty 2}}{V_{p2}},$$

$$\mathbf{p}_{3} = \frac{\mathbf{V}_{\infty 3}}{V_{p3}}, \quad \mathbf{p}_{4} = 0.$$
(7)

КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ том 58 № 2 2020

При максимизации полезной массы КА $m_p(5)$:

$$\mathbf{p}_{1} = \frac{c_{2}m_{0}\mu_{1}}{c_{1}m_{f}} \left(\mu_{2}\mu_{3} - \frac{a_{T2}}{1 + a_{T2}} \right) \frac{\mathbf{V}_{\infty 1}}{V_{p1}}, \quad \mathbf{p}_{2} = -\frac{\mathbf{V}_{\infty 2}}{V_{p2}}, \quad (8)$$
$$\mathbf{p}_{3} = \frac{\mathbf{V}_{\infty 3}}{V_{p3}}, \quad \mathbf{p}_{4} = 0.$$

Зная эти граничные сопряженные переменные, можно определить текущие сопряженные переменные по переходной матрице Ф, удовлетворяющей уравнениям:

$$\begin{bmatrix} \delta \mathbf{r}_f \\ \delta \mathbf{V}_f \end{bmatrix} = \begin{bmatrix} \Phi_1 & \Phi_2 \\ \Phi_3 & \Phi_4 \end{bmatrix} \begin{bmatrix} \delta \mathbf{r}_0 \\ \delta \mathbf{V}_0 \end{bmatrix}, \tag{9}$$

где **r**, **V** — гелиоцентрические радиус-вектор и вектор скорости KA, индексы "0" и "f" соответствуют началу и концу каждой дуги перелета,

$$\Phi_1 = \frac{\partial \mathbf{r}_f}{\partial \mathbf{r}_0}, \quad \Phi_2 = \frac{\partial \mathbf{r}_f}{\partial \mathbf{V}_0}, \quad \Phi_3 = \frac{\partial \mathbf{V}_f}{\partial \mathbf{r}_0}, \quad \Phi_4 = \frac{\partial \mathbf{V}_f}{\partial \mathbf{V}_0}.$$
 (9a)

Эти матрицы задаются, например, формулами для изохронных производных [12, 13, 21–23 и др.]. Поскольку переходная матрица для (**p**, **p**') идентична матрице для вариаций ($\delta \mathbf{r}$, $\delta \mathbf{V}$), производная базис-вектора **p**' = **dp**/*dt* в начальный момент:

$$\mathbf{p}'_0 = \mathbf{\Phi}_2^{-1} \cdot \left(\mathbf{p}_f - \mathbf{\Phi}_1 \cdot \mathbf{p}_0 \right).$$
(10)

Тогда можно определить базис-вектор на всей траектории:

$$\mathbf{p}(t) = \mathbf{\Phi}_1(t, t_0)\mathbf{p}_0 + \mathbf{\Phi}_2(t, t_0)\mathbf{p}_0', \qquad (11)$$

при этом Φ_1 , Φ_2 пересчитываются по (9а) в каждый момент *t*. Можно также определить базис-вектор **p**(*t*) интегрированием системы уравнений [13]:

$$\frac{d\mathbf{r}}{dt} = \mathbf{V}; \quad \frac{d\mathbf{V}}{dt} = -\mu_{\rm S} \frac{\mathbf{r}}{r^3}, \quad \frac{d\mathbf{p}}{dt} = \mathbf{p}';$$

$$\frac{d\mathbf{p}'}{dt} = -\mu_{\rm S} \frac{\mathbf{p}}{r^3} + (\mathbf{p}, \mathbf{r}) \cdot \frac{3\mu_{\rm S}\mathbf{r}}{r^5},$$
(11a)

где μ_{s} — гравитационный параметр Солнца. Для оптимальности траекторий в классе многоимпульсных перелетов необходимо выполнение условия [20]:

$$p(t) = \left| \mathbf{p}(t) \right| \le 1. \tag{12}$$

Если это условие, играющее здесь роль "принципа максимума", нарушается на некотором участке, то траекторию можно улучшить введением дополнительных импульсов или вариацией граничных времен [20, 24, 25].

Также получены производные от функционалов (3–5) по граничным временам траектории [20], они могут быть использованы для проверки выполнения условий трансверсальности и для улучшения траектории по функционалу, например, градиентным или квазиньютоновским методом. Для функционала $F_3 = -m_p$ (5) имеем [20]:

$$\frac{\partial F_3}{\partial t_1} = -d_3 p'_1 V_{\infty 1}, \quad \frac{\partial F_3}{\partial t_2} = d_3 p'_2 V_{\infty 2}, \quad \frac{\partial F_3}{\partial t_3} = -d_3 p'_3 V_{\infty 3},$$
$$\frac{\partial F_3}{\partial t_4} = d_3 \left(\mathbf{p}'_4, \mathbf{V}_{\infty 4} \right), \quad d_3 = m_f \left(1 + a_{T2} \right) / c_2, \quad (13)$$

$$\mathbf{p}'_i = \frac{d|\mathbf{p}_i|}{dt} = \frac{d}{dt} \left[(\mathbf{p}_i \cdot \mathbf{p}_i)^{\frac{1}{2}} \right] = \frac{\mathbf{p}'_i \cdot \mathbf{p}_i}{|\mathbf{p}_i|}, \quad i = 1, 2, 3.$$

Если времена t_i (i = 1, 2, 3, 4) не зависят друг от друга и лежат внутри допустимых областей, то для оптимальной траектории должно быть $\partial F_3/\partial t_i = 0$. Если между временами t_i есть связи, то переходим к независимым переменным x_i .

1.3. ВТОРОЙ ЭТАП – УТОЧНЕНИЕ ХАРАКТЕРИСТИК ПОЛУЧЕННЫХ ТРАЕКТОРИЙ КА

На втором этапе анализа с учетом более точной модели движения КА, гравитационных потерь и ряда технических характеристик проводится корректирование траектории. При этом траектория КА определяется численным интегрированием системы дифференциальных уравнений движения КА

$$\frac{d^2\mathbf{r}}{dt^2} = -\frac{\mu_{\odot}}{|\mathbf{r}|^3}\mathbf{r} - \sum_i \mu_{Gi} \left(\frac{\mathbf{r}_i}{|\mathbf{r}_i|^3} + \frac{\mathbf{r} - \mathbf{r}_i}{|\mathbf{r} - \mathbf{r}_i|^3}\right) + \mathbf{\Delta}_1 + \mathbf{\Delta}_2, \quad (14)$$

где $\mathbf{r}(x, y, z)$ – радиус-вектор КА в прямоугольной невращающейся системе координат; \mathbf{r}_i – радиусвектор *i*-го небесного тела (из эфемериды DE421); μ_{\odot} , μ_{Gi} – гравитационные параметры центрального и *i*-го небесных тел соответственно; Δ_1, Δ_2 – ускорения за счет сжатия Земли (J_2) и давления солнечного света. Данная система (14) рассматривается на двух отрезках $t \in [t_0, t_2], t \in [t_3, t_f]$. Здесь t_0 – момент отлета с опорной орбиты спутника Земли, t_2 – момент перехода КА на орбиту спутника астероида, t_3 – момент отлета КА с орбиты спутника астероида для полета к Земле, t_f – момент вход в атмосферу Земли при возврате с астероида.

Траектория перелета КА уточняется решением двух задач. Внутренняя задача — решение краевых задач. Для перелета от Земли до астероида варьируем три параметра в начальной точке траектории отлета от Земли, например Ω , ω и $|V_{\infty 1}|$, с которыми одновременно варьируются и t_0 , \mathbf{r}_0 , \mathbf{V}_0 . Первоначальные приближения t_0 , \mathbf{r}_0 , \mathbf{V}_0 определяются с помощью $t_{1CД3}$ (= t_1 из первого этапа) и $\mathbf{V}_{\infty 1}$. Добиваемся выполнения условия, что в момент t_2 прицельная дальность в картинной плоскости равняется 1 км. Для перелета от астероида до Земли задача решается в два этапа. Сначала варьируется вектор скорости $\mathbf{V}_{\infty 3}$, чтобы обеспечить в момент $t_{4CД3}$ (в

качестве начального приближения *t*_{4СЛ3}, взято оптимальное время t₄ из первого этапа) вход КА в сферу действия Земли с вектором прицельной лальности. соответствующим входу в атмосферу Земли с необходимой высотой условного перигея. Через эту высоту условного перигея орбиты подлета к Земле также обеспечим угол входа в атмосферу Земли. Для численного анализа полагаем, что эта высота равна 50 км. Затем учитываются возмущения до входа в атмосферу, и получается момент t_f. Первые решения внутренней задачи называем "квазиоптимальными" траекториями. Внешняя задача – оптимизация возмущенных траекторий по граничным временам t_0, t_2, t_3, t_f . В связи с переходом от упрошенной модели к полной модели, оптимальные решения будут слегка отличаться от решений, полученных на первом этапе. Поэтому на втором этапе также выполняется оптимизация - методом покоординатного спуска [30] при малых вариациях. Таким образом, на каждой итерации решаются краевые задачи. После этого уже получаются оптимальные траектории в полной модели.

При коррекции массо-энергетических характеристик экспедиции, прежде всего, был учтен неимпульсный характер разгона КА возле Земли. В этом случае при расчете характеристической скорости отлета КА от Земли ΔV_1^* принимаются во внимание "гравитационные потери" δV_{1gr} . Они оценивались численно и аналитически, на основе формулы [26–29]:

$$\delta V_{gr} \approx k(\mu/r^3)t_e^2\Delta V_1,$$
 (15)

где t_e — время работы двигателя для создания импульса скорости ΔV_1 за счет конечной тяги на расстоянии *r* от центра с гравитационным параметром µ, $k \approx 0.019$ [28]. Эта константа немного уточнялась на основе численных расчетов. Для уменьшения этих потерь рассматривается режим разгона с двумя-тремя включениями двигателя. Для коррекции массо-энергетических характеристик также предусмотрены дополнительные импульсы скорости на коррекцию траекторий и т.д.

2. ИССЛЕДОВАНИЕ ОПТИМАЛЬНЫХ ПО ПОЛЕЗНОЙ МАССЕ ТРАЕКТОРИЙ КА ДЛЯ ЭКСПЕДИЦИИ ЗЕМЛЯ–АПОФИС–ЗЕМЛЯ

С помощью разработанного метода, для экспедиции "Земля—Апофис—Земля" построены и исследованы энергетически оптимальные, по максимуму полезной массы КА, межпланетные траектории при полете в течение 2019—2022 гг. Исследованы варианты с использованием РН "Союз-2.1а", "Союз-2.16", "Зенит" и РБ "Фрегат". Для двигательной установки ДУ2 удельная тяга 304 с; в (1а) постоянная составляющая массы

Рис. 1. Зависимость полезной массы от времен t_1 и Δt_{12} для варианта $\Delta t_{\Sigma} = 690$ сут, $\Delta t_{23} = 7$ сут: (а) глобальный и локальный оптимумы; (б) изолинии полезной массы в окрестности глобального максимума.

 $m_{20} = 100$ кг; коэффициент массы топливных баков $a_{T2} = 0.15$. Начальная опорная орбита пребывания основного КА у Апофиса взята круговой с радиусом 500 м.

При коррекции массовых характеристик гравитационные потери импульсов скорости ΔV_2 , ΔV_3 не учитываются, т.к. гравитация Апофиса мала ($\mu_A \sim 2-3 \text{ м}^3/\text{c}^2$). Для надежности анализа при уточнении траектории предусмотрены дополнительные импульсы скорости на коррекцию: до подлета к астероиду — 50 м/с, возле астероида — 10 м/с и после отлета КА от астероида — 25 м/с. По рекомендации НПО им. С.А. Лавочкина были скорректированы некоторые параметры РБ "Фрегат" и КА, в частности уточнены массовые характеристики отделяемых частей блока; предложены га-

КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ том 58 № 2 2020

рантийные запасы топлива; введены отделяемые массы — для небольшого спутника астероида и посадочного устройства — 10 и 20 кг.

Сначала приведем данные в случае использования РН "Союз-2.1а". Для задачи оптимизации 1) фиксировано время ожидания $\Delta t_{23} = t_3 - t_2 = 7$ сут. При этом суммарное время Δt_{Σ} выбиралось из множества $T_S = [390; 420; 450; 510; 540; 570; 600; 630; 660; 690; 730]$ сут. Решение этой задачи на первом этапе анализа дало оптимальные траектории для разных времен Δt_{Σ} . Среди них максимальная полезная масса КА $m_p = 272$ кг получена для траектории № 1, для которой: $\Delta t_{\Sigma} = 690$ сут, $t_1 = 24.V.2019$, $\Delta t_{12} = t_2 - t_1 = 335$ сут, $t_4 = 13.IV.2021$, $V_{xap} = 6.618$ км/с, $m_f = 527$ кг, см. рис. 1, где пред-

Рис. 2. Межпланетные перелеты КА для оптимальной траектории № 1: (а) перелет от Земли (P_1) до Апофиса (P_2); (б) перелет от Апофиса (P_3) до Земли (P_4).

ставлены зависимость полезной массы от времен t_1 и Δt_{12} для варианта $\Delta t_{\Sigma} = 690$ сут, а также изолинии полезной массы в окрестности глобального оптимума. На рис. 2 приведены картины перелета по траектории \mathbb{N} 1: здесь рис. 2а – для полета от Земли (P_1) до Апофиса (P_2); рис. 26 – для полета от Апофиса (P_3) до Земли (P_4). На второй дуге полета делается пассивный виток, прилет к Земле – у восходящего узла орбиты Апофиса.

Решена задача 2) трехмерной оптимизации при заданном времени ожидания $\Delta t_{23} \in [7; 30; 60;$

90; 120; 130] сут, при $\Delta t_{\Sigma} \leq 2$ года. Получено, что оптимальное время ожидания КА у Апофиса $\Delta t_{23 \text{ орt}}$ достигается на интервале 90–120 сут, см. рис. 3. Так, для траектории с $\Delta t_{23} = 120$ сут: $t_1 = 6.V.2020$, $\Delta t_{12} = 297$ сут, $\Delta t_{\Sigma} = 716$ сут, $V_{xap} = 6.35$ км/с, $m_p = = 328$ кг.

В задаче (3) трехмерной оптимизации при задании $\Delta t_{\Sigma} = 690$ сут, для оптимального решения (траектория № 3): $t_1 = 23.V.2019$, $\Delta t_{12} = 336$ сут, $\Delta t_{23opt} = 93$ сут, $V_{xap} = 6.519$ км/с, $m_f = 544$ кг, $m_p =$ = 293 кг. Картинки траектории № 3 в плоскости эклиптики показаны на рис. 4.

Решена также задача 4) полной четырехмерной оптимизации при условиях $\Delta t_{\Sigma} \le 2$ года; $\Delta t_{23} \ge 7$ сут. Для нее получена траектория № 4 с характеристиками: $\Delta t_{\Sigma} = 716$ сут, $t_1 = 05.V.2020$, $\Delta t_{12} = 300$ сут, $\Delta t_{23opt} = 112$ сут, $V_{xap} = 6.343$ км/с, $m_f = 545$ кг, $m_p = 329$ кг. Картинки траектории перелетов № 4 в плоскости эклиптики показаны на рис. 5. Возврат к Земле происходит также вблизи восходящего узла орбиты Апофиса, как и для траекторий № 1 и 3.

Для полученных траекторий построены сопряженные функции, в частности, модуль базисвектора. На рис. 6 дано изменение модуля базисвектора p(t) для основной траектории № 1. Здесь p(t) > 1 на некотором начальном отрезке второй дуги, после приложения импульса ΔV_3 , условие (12) не выполняется, поэтому траекторию можно улучшить. Поскольку $p'_3 = dp_3/dt > 0$, из выражений (13) для частных производных от функционала видно, что если $dt_3 > 0$, то уменьшим функционал, $dF_3 < 0$. Это подтверждает улучшение характеристик траектории № 3, у которой большее время t₃. И время ожидания у нее, $\Delta t_{23} = 93$ сут, как раз соответствует интервалу оптимального времени ожидания 90—120 сут. На рис. 7 представлено изменение p(t)для этой траектории. Здесь $p \le 1$, условие оптимальности выполняется. Для траектории № 4 условие $p(t) \leq 1$ также выполняется.

Далее, на втором этапе анализа, выполнено уточнение полученных на первом этапе характеристик оптимальных траекторий. Проводится интегрирование уравнений движения КА на участках перелета от Земли к Апофису и от Апофиса к Земле, и решаются соответствующие краевые задачи. Система уравнений движения КА (14) интегрируется методом Рунге-Кутта-Фельберга 7-го порядка с контролем ошибки 8 порядка. Затем в окрестности граничных времен полученных траекторий выполнена оптимизация задачи на множестве уточненных траекторий - методом покоординатного спуска. Также сделана коррекция массово-энергетических характеристик экспедиции. Полученные характеристики оптимальных траекторий № 1а, 3а, 4а приведены в табл. 1, где $\Delta t_s = t_f - t_0$. Уточнение на втором этапе привело к некоторому уменьшению полезной массы. При

Рис. 3. Зависимости скорости V_{xap} и масс m_f , m_p от времени Δt_{23} .

численном анализе получено также, что если оптимальное время t_0 варьировать в окрестности $[t_0 - 3 \text{ сут}, t_0 + 3 \text{ сут}]$, то полезная масса экспедиции меняется мало, в пределах 1 кг. Это, с одной стороны, обеспечивает большое значение полезной массы КА, и с другой стороны, позволяет при необходимости (плохой погоде, отказе в работе бортовой системы и т.д.) переносить дату запуска в небольшом диапазоне.

Кроме РН "Союз-2.1а", рассмотрено использование РН "Союз-2.16" и "Зенит" с РБ "Фрегат". При этом для РН "Союз" при разгоне у Земли РБ делается два включения, для РН "Зенит" три включения РБ, с целью уменьшения гравитационных потерь. В табл. 2 приведены значения

масс m_f и m_p для траекторий № 1а, 3а, 4а при использовании этих РН.

В основном варианте анализа полагали, что при подлете к Земле тормозной импульс скорости двигателем не сообщается, аналогично [1, 2]. КА в момент t_{4CD} подлетит к сфере действия Земли, и дальше входит в сферу действия Земли со скоростью V_{CD3} по гиперболической орбите с некоторым расстоянием условного перигея r_{p4} . Затем КА входит в атмосферу Земли. Для оценки скорости входа V_{BX} в качестве границы атмосферы Земли берем $h_a = 125$ км [1, 2]. Определена скорость V_{BX} для полученных оптимальных траекторий. Получается, что $V_{BX} = 12.74$, 12.32, 13.26 км/с, для траекторий № 1а, За, 4а, соответственно. Для оценки их технологической реализуемости сравниваются

Таблица 1. Характеристики траекторий № 1а, 3а, 4а

Номер	Δt_s , сут	t_0	<i>t</i> ₂	<i>t</i> ₃	t_f	<i>V</i> _{хар} , км/с	<i>т</i> _f , кг	<i>т</i> _p , кг
1a	692	21.V.2019	24.IV.2020	1.V.2020	12.IV.2021	6.721	492	226
3a	691	21.V.2019	24.IV.2020	22.VII.2020	11.IV.2021	6.624	509	245
4a	715	6.V.2020	2.III.2021	23.VI.2021	21.IV.2022	6.447	517	290

Таблица 2. Конечная и полезная масса КА для траекторий № 1а, 3а, 4а с использованием разных РН

	<u>№</u> 1a				№ 3a		Nº 4a		
	"Союз-2.1а"	"Союз-2.1б"	"Зенит"	"Союз-2.1а"	"Союз-2.1б"	"Зенит"	"Союз-2.1а"	"Союз-2.1б"	"Зенит"
<i>т</i> ₀ , кг	7130	8250	14000	7130	8250	14000	7130	8250	14000
Вариант "Фрегата"	"Фрегат-1"	"Фрегат-2"	"Фрегат-СБ"	"Фрегат-1"	"Фрегат-2"	"Фрегат-СБ"	"Фрегат-1"	"Фрегат-3"	"Фрегат-СБ"
<i>т</i> _f , кг	492	604	1193	509	624	1233	517	611	1287
<i>т</i> _p , кг	226	301	700	245	325	748	290	362	877

Рис. 4. Межпланетные перелеты КА для варианта № 3: (а) перелет от Земли (P_1) до Апофиса (P_2); (б) перелет от Апофиса (P_3) до Земли (P_4).

их характеристики с теми для миссий "Stardust", "Hayabusa" и "OSIRIS-REx", табл. 3. Опыт этих миссий показывает, что современные технологии позволяют успешно приземляться КА, который входит в атмосферу Земли с гиперболической скоростью до 12.9 км/с [1, 2]. Но самая лучшая

Рис. 5. Межпланетные перелеты КА для траектории № 4: (а) перелет от Земли (P_1) до Апофиса (P_2); (б) перелет от Апофиса (P_3) до Земли (P_4).

траектория, полученная нами, № 4а не удовлетворяет этому условию. Поэтому рассмотрена еще одна задача — полная четырехпараметрическая оптимизация с ограничением на скорость входа в атмосферу Земли, $V_{\text{вх}} \leq V_{\text{вх mах}}$. В табл. 4 приведены результаты анализа зависимости по-

Таблица 3. Характеристики миссий "Stardust", "Hayabusa" и "OSIRIS-REx"

Миссия	"Stardust"	"Hayabusa"	"OSIRIS-REx"	
Сухая масса КА, кг	300	415	880	
Скорость входа в атмосферу Земли $V_{\rm BX}$, км/с	12.9	12.5	12.2	

Рис. 6. Изменение модуля базис-вектора для траектории № 1: (а) на траектории перелета от Земли до Апофиса; (б) на траектории перелета от Апофиса до Земли.

лезной массы от $V_{\rm BX}$ (12.8—13.26 км/с). Отметим, что при этом при использовании РН "Союз-2.16" и РН "Зенит" полезная масса остается большей, чем сухая масса KA "Stardust" (300 кг).

Таким образом, выполненный анализ показывает, что существует принципиальная возможность осуществить экспедицию к астероиду Апофис в течение 2019—2022 гг. на основе существующих ракет типа "Союз", "Зенит".

ЗАКЛЮЧЕНИЕ

Разработана методика построения энергетически оптимальных, с максимальной полезной массой КА, траекторий для экспедиции Земля—астероид— Земля при использовании обычных двигательных установок большой тяги. Разработанная методика

Рис. 7. Изменение модуля базис-вектора на траектории № 3: (а) перелет от Земли до Апофиса; (б) перелет от Апофиса до Земли.

применена к построению оптимальных траекторий космической экспедиции Земля-Апофис-Земля, предназначенной для изучения этого опасного астероида. Получены оптимальные траектории данной экспедиции при запуске КА в течение 2019—2022 гг. с общей продолжительностью полета до двух лет. Для анализа оптимальности полученных межпланетных траекторий в классе многоимпульсных перелетов разработан алгоритм построения базис-вектора, т.е. вектора, сопряженного к вектору скорости. Построен базисвектор для ряда решений. Выявлены качественные характеристики оптимальных траекторий: (1) возврат к Земле происходит вблизи восходящего узла орбиты Апофиса; (2) на номинальной траектории нужно не более трех импульсов скорости; (3) получен оптимальный диапазон време-

Таблица 4. Изменение полезной массы со скоростью V_{вх}

<i>V</i> _{вх max} , км/с	12.8	12.9	13	13.1	13.2	13.26
<i>m_p</i> (кг) "Союз-2.1а"	275.3	280	284	287.5	289	290
<i>m_p</i> (кг) "Союз-2.1б"	343.6	349	354	358	361	362
<i>m_p</i> (кг) "Зенит"	839.6	852	861	869.8	876	877

КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ том 58 № 2 2020

ни ожидания у Апофиса — в пределах 3—4 мес. Результаты исследования показывают, что существует принципиальная возможность реализации космической экспедиции Земля—Апофис—Земля с использованием обычных двигателей большой тяги и РН типа "Союз", "Зенит".

В заключение авторы выражают искреннюю признательность сотрудникам "НПО им. С.А. Лавочкина" к. т. н. В.Г. Полю и к. т. н. А.В. Симонову, а также к.т.н. И.В. Крылову за поддержку и полезные обсуждения работы, а также участникам семинара им. В.А. Егорова в МГУ им. М.В. Ломоносова за очень полезные обсуждения проблемы и настоящей работы. Авторы признательны аспиранту Гуо Пэн за помощь в совершенствовании вычислительной программы и проведении расчетов. В.В. Ивашкин признателен проф. J. Martinez-Garcia, д-ру М. Bello-Mora, д-ру Е. Revilla-Pedreira, проф. Р. Sanz-Arangues и проф. Т. Elices (GMV, Madrid Polytechnic University) за их поддержку исследований проблемы полета к малым небесным телам.

СПИСОК ЛИТЕРАТУРЫ

- 1. Atkins K.L., Brownlee D.E., Duxbury T. et al. STAR-DUST: Discovery's InterStellar dust and cometary sample return mission // Aerospace Conference, 1997. Proceedings, IEEE. № 4. P. 229–245.
- Sandford S.A. The Power of Sample Return Missions-Stardust and Hayabusa // Proceedings of the International Astronomical Union, 2011. № 7(S280). P. 275–287.
- Ajluni T., Everett D., Linn T. et al. OSIRIS-REx, returning the asteroid sample // Aerospace Conference, 2015 IEEE. IEEE, 2015. P. 1–15.
- Астероидо-кометная опасность: вчера, сегодня, завтра / Под ред. Шустова Б.М., Рыхловой Л.В. М.: ФИЗМАТЛИТ, 2010.
- 5. Соколов Л.Л., Башаков А.А., Борисова Т.П. и др. Траектории соударения астероида Апофис с Землей в XXI веке // Астрономический вестник. 2012. Т. 46. № 4. С. 311–320.
- Автоматические космические аппараты для фундаментальных и прикладных научных исследований / Ред. Полищука Г.М. и Пичхадзе К.М. М.: Изд-во МАИ-ПРИНТ, 2010.
- Ивашкин В.В., Лан А. Определение и анализ оптимальных космических траекторий для организации экспедиции Земля–Апофис–Земля с применением двигательных установок большой тяги // Космонавтика и ракетостроение. 2017. Вып 5(98). С. 63–71.
- Ивашкин В.В., Лан А. Оптимальные траектории для экспедиции Земля–астероид–Земля при полете с большой тягой // Доклады Академии Наук. Т. 484. № 2. С. 161–166.
- Hohmann W. Die Erreichbarkeit der Himmelskörper. München und Berlin. Druck und Verlag R.Oldenbourg. 1926.
- Циолковский К.Э. Исследование мировых пространств реактивными приборами [1911–1912 гг.] //

Пионеры ракетной техники. Кибальчич. Циолковский. Цандер. Кондратюк. Избранные труды. М.: Наука, 1964.

- Лан Аньци. Анализ космических траекторий для экспедиции Земля—Апофис—Земля и движения космического аппарата вокруг астероида Апофис // Инженерный журн.: наука и инновации. 2017. Вып. 7.
- Ивашкин В.В. Оптимизация космических маневров при ограничениях на расстояния до планет. М.: Наука, 1975.
- 13. Ильин В.А., Кузмак Г.Е. Оптимальные перелеты космических аппаратов с двигателями большой тяги. М.: Наука, 1976.
- 14. *Кубасов В.Н., Дашков А.А.* Межпланетные полеты. М.: Машиностроение, 1979.
- 15. Соболь И.М., Статинков Р.Б. Выбор оптимальных параметров в задачах со многим критериями. М.: Наука, 1981.
- Numerical recipes in C: The art of Scientific computing / Press W.H., Teukolsky S.A., Vetterling W.T. et al. 2nd ed. Cambridge University Press, 1992.
- Sobol' I.M., Asotsky D., Kreinin A. et al. Construction and Comparison of High-Dimensional Sobol' Generators // Wilmott J. 2012. V. 2011. Is.56. P. 64–79.
- Панченко Т.В. Генетические алгоритмы: учебнометодическое пособие / Под ред. Тарасевича Ю.Ю. Астрахань: Издательский дом "Астраханский университет", 2007.
- 19. *Nocedal J., Wright S.J.* Numerical Optimization. USA: Springer, 2006.
- 20. Ивашкин В.В., Лан А. Анализ оптимальности траекторий экспедиции Земля–астероид–Земля. Препринты ИПМ им. М.В. Келдыша. 2017. № 113. https://doi.org/10.20948/prepr-2017-113
- 21. *Lawden D.F.* Optimal trajectories for space navigation. London, Butterworths. 1963.
- 22. *Чарный В.И*. Об изохронных производных // Искусственные спутники Земли. 1963. Вып. 16.
- 23. *Pines S.* Constants of the Motion for Optimum Thrust Trajectories in a Central Force Field // AIAA. 1964. V. 2. № 11. P. 2010–2014.
- Lion P.M., Handelsman M. Primer Vector on Fixed-Time Impulsive Trajectories // AIAA. 1968. V. 6. № 1. P. 127–132.
- 25. Jezewski D.J., Rozendaal H.L. An Efficient Method for Calculating Optimal Free-Space N-Impulse Trajectories // AIAA. 1968. V. 6. № 11. P. 2160–2165.
- 26. *Robbins H.M.* An Analytical Study of the Impulsive Approximation // AIAA. 1966. V. 4. № 8. P. 1417–1423.
- 27. Захаров Ю.А. Проектирование межорбитальных космических аппаратов. М.: Машиностроение, 1984.
- 28. Хохулин В.С., Чумаков В.А. Проектирование космических разгонных блоков с ЖРД. М.: Изд-во МАИ, 2000.
- 29. Бычков А.Д., Ивашкин В.В. Проектно-баллистический анализ создания многоразовой транспортной системы Земля–Луна–Земля на основе ядерного ракетного двигателя // Космонавтика и ракетостроение. 2014. № 1. С. 68–76.
- Аббасов М.Э. Методы оптимизации. СПб.: Издательство "BBM", 2014.