УДК 523.9

ИСПОЛЬЗОВАНИЕ DBM МОДЕЛИ ДЛЯ ПРОГНОЗА ПРИХОДА КОРОНАЛЬНЫХ ВЫБРОСОВ МАССЫ К ЗЕМЛЕ

© 2021 г. К. Б. Капорцева^{1, 2, *}, Ю. С. Шугай²

¹Физический факультет МГУ им. М.В. Ломоносова, Москва, Россия ²Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына, МГУ им. М.В. Ломоносова, Москва, Россия *kb.kaportceva@physics.msu.ru

Поступила в редакцию 16.06.2019 г. После доработки 09.11.2020 г. Принята к публикации 10.12.2020 г.

В работе анализируются результаты моделирования распространения корональных выбросов массы (КВМ) за период 2010–2011 гг., полученные с использованием входных данных из разных источников: каталогов КВМ SEEDS и CACTus, и прогнозов скорости квазистационарных потоков солнечного ветра, в качестве среды, по которой распространяются КВМ. В качестве модели квазистационарных потоков солнечного ветра используется модель прогноза скорости солнечного ветра Центра прогноза космической погоды НИИЯФ МГУ, работающая в режиме реального времени. Прогноз КВМ осуществляется с помощью Simple Drag-Based Model. Было проведено сравнение, полученных в ходе моделирования времени прихода МКВМ и их скоростей с данными из открытых каталогов МКВМ: каталога МКВМ Ричардсона и Кейн и GMU CME List. На основе сравнения сделан вывод, что более точный прогноз на фазе роста 24-го цикла солнечной активности получен на данных о параметрах КВМ из базы САСТиs. Полученные ошибки прогнозирования параметров МКВМ сравнимы с ошибками других существующих моделей.

DOI: 10.31857/S0023420621040026

введение

Корональные выбросы масс (КВМ) — это выбросы солнечной плазмы, которые характеризуются большими скоростями и плотностями и являются основными источниками сильных геомагнитных возмущений [1–3].

Для обеспечения радиационной безопасности полетов и прогнозирования магнитных бурь необходимо уметь точно прогнозировать время прихода коронального выброса массы на Землю. Эта задача нетривиальна из-за сложностей с определением начальных условий и зависимости эволюции КВМ в гелиосфере от большого количества факторов. Прогнозируемые параметры – скорость и время прихода межпланетных КВМ – зависят от выбора модели и начальных условий: времени выброса КВМ, его скорости и направления распространения в этот момент времени, а также общего состояния гелиосферы (параметров окружающего солнечного ветра, наличия высокоскоростных потоков и других КВМ, которые могут повлиять на динамику распространения выброса в гелиосфере) [4].

Для описания KBM в гелиосфере используется термин межпланетные KBM (MKBM). Прогнозированием времени прихода и параметров МКВМ занимаются уже несколько десятилетий. В работе [5] авторы производят сопоставление КВМ, наблюдаемых с помощью коронографа с МКВМ, зарегистрированными у Земли, и отмечают несоответствие начальной скорости выброса и скорости его прихода к Земле. Они предлагают эмпирическую модель, учитывающую воздействие скорости окружающего ветра на скорость выброса. Влияние параметров среды, по которой распространяется КВМ на режим его распространения (замедление/ускорение) отмечается также в работах [6, 7]: скорость выбросов на 1 а. е. близка к скорости солнечного ветра, в то время как разброс изначальных скоростей по данным коронографов достигает больших значений. При этом в последнее время востребованными оказываются также и модели прогнозирования, которые могут работать в режиме реального времени и используют оперативные данные наблюдений Солнца с космических и наземных обсерваторий.

Например, в работе [8] были использованы модель WSA-ENLIL+Сопе для моделирования распространения КВМ в гелиосфере. Магнитогид-родинамическая 3D WSA-ENLIL модель предоставляет собой описание плазменных параметров

окружающего солнечного ветра и межпланетного магнитного поля (ММП) в зависимости от времени [9]. Для моделирования распространения КВМ в гелиосфере используется модель конуса (Cone), предложенная в [10]. Авторы предлагают аппроксимировать форму КВМ сферическим сектором и считать расширение КВМ изотропным и самоподобным, а распространение КВМ радиальным.

В модели ElEvoHI, предложенной в работе [11], форма KBM считается эллиптичной, а распространение KBM рассчитывается с помощью DBM модели. В качестве входных данных в ElEvoHI используется изображения с коронографа Heliospheric Imager миссии *STEREO*, полученные в период с 2008 по 2012 гг.

Европейская система EUHFORIA [12] также позволяет прогнозировать время и скорость прихода КВМ на Землю. Большой инструментарий системы дает возможность моделировать взаимодействие разных потоков солнечного ветра и комбинировать различные модели. В этой системе гелиосфера разбивается на две области: корональную (от Солнца до 0.1 а. е.) и внутреннюю гелиосферу (от 0.1 до 2 а. е.). В каждой области применяются свои данные и методы, например, входными параметрами для корональной модели является топология коронального магнитного поля, а ее решения служат входными значениями для модели внутренней гелиосферы. Магнитное поле также рассчитывается последовательно: сначала для корональной области и затем для области внутренней гелиосферы. Входными данными для моделирования магнитного поля являются солнечные магнитограммы. Для моделирования распространения КВМ используются предложенные в [13] алгоритмы, которые основаны на численном решении гидродинамических уравнений.

В настоящее время существует несколько систем прогнозирований KBM, работающих в режиме онлайн: например, Solar Wind Prediction Center (https://www.swpc.noaa.gov/products/wsa-enlil-solarwind-prediction), Integrate Space Weather Analysis system (https://ccmc.gsfc.nasa.gov/iswa/). Обе эти системы прогнозируют KBM, комбинируя модель гелиосферы WSA-ENLIL и модель конуса (Cone) для распространения KBM.

Синтез нескольких моделей позволяет учитывать множество факторов, включая взаимодействие потоков в гелиосфере, моделировать не только КВМ конической формы, но и сферической и эллиптической. Однако использование такой системы для прогноза в режиме реального времени требует больших вычислительных ресурсов.

В настоящей работе приведены результаты анализа прогноза МКВМ с использованием различных баз данных параметров КВМ, которые обновляются в режиме реального времени. Исследование проводилось для дальнейшего использования баз данных для создания системы онлайн-прогнозирования времени и скорости прихода КВМ к Земле для Центра прогноза космической погоды НИИЯФ МГУ (http://swx.sinp.msu.ru/models/solar_ wind.php?gcm=1). Для решения этой задачи совместно используются две модели: DBM модель [14] для моделирования распространения КВМ в гелиосфере и модель квазистационарных потоков солнечного ветра [15] для моделирования скорости окружающего солнечного ветра. Выбор DBM модели обусловлен тем, что согласно [16], DBM модель показывает результаты прогноза сравнимые по качеству с WSA-ENLIL+Cone, а вычислительно она является более простой по сравнению с WSA-ENLIL.

В этой работе представлены предварительные результаты тестирования DBM модели на исторической базе данных межпланетных корональных выбросах масс, зафиксированных на околоземной орбите за период 2010–2011 гг., с целью изучения зависимости качества прогноза от выбора начальных параметров KBM, предоставляемых каталогами KBM SEEDS и CACTus.

1. ДАННЫЕ И МОДЕЛИ

КВМ в солнечной короне наблюдаются при помощи коронографов. На изображениях, получаемых с коронографов LASCO C1, C2 и C3 на борту КА SOHO, находящегося в точке Лагранжа L1 (на линии Солнце-Земля, примерно в 1.5 млн км от Земли), хорошо видны "боковые" КВМ (направленные на запад и на восток от Солнца), а также КВМ типа гало. Миссия STEREO была запущена с целью стереоскопических наблюдения КВМ. Аппараты Stereo A и Stereo B (на каждом – пара коронографов Cor 1 и Cor 2) движутся по орбитам близким к Земной. При этом периоды обрашения Stereo A и Stereo B соответственно равны 346 и 388 дней. Такое движение спутников обеспечивает возможность стереоскопического наблюдения за Солнцем: в рассматриваемый нами период времени коронографы на *Stereo A* были обращены на западный лимб Солнца, а коронографы на *Stereo B* – на восточный. Таким образом, в 2010– 2012 гг. с помощью коронографов на KA STEREO можно было наблюдать КВМ, направленные к Земле. К сожалению, так как КА STEREO со временем меняют свое положение, то в другой период времени КВМ, направленные на Землю, определить с их помощью сложно, а в 2016 г. был потерян контакт со спутником Stereo B.

При проведении исследования мы использовали данные с коронографа LASCO космического аппарата *SOHO*, из баз CACTus (http://sidc.oma.be/ cactus/catalog.php) и SEEDS (http://spaceweather. gmu.edu/seeds/lasco.php). База данных CACTus (Computer Aided CME Tracking) пополняется с помощью автоматической программы, детектирующей КВМ по снимкам коронографов LASCO C2/C3 и определяющей дату и время детектирования, длительность события в часах, направление распространения и угол раствора конуса в картинной плоскости, скорость фронта, усредненную по всем направлениям, ее разброс, максимальное и минимальное значения, а также каждому событию присваивается индекс Гало: II, III или IV степень в зависимости от угла раствора конуса [17]. База обновляется в реальном времени каждые 6 часов.

База данных SEEDS включает в себя два каталога: список КВМ, зарегистрированных в коронографе LASCO C2 и два каталога КВМ, зарегистрированных в коронографах SECCHI COR2, расположенных на аппаратах STEREO A и B. Нас будет интересовать первый каталог. База данных SEEDS также пополняется за счет программы автоматической обработки снимков коронографов, которая определяет параметры КВМ. В числе определяемых параметров: время детектирования, направление распространение и угол раствора конуса КВМ в картинной плоскости, скорость КВМ, полученная с помощью линейной аппроксимации движения фронта КВМ, и ускорение, полученное с помощью аппроксимации движения фронта квадратичной функцией, при достаточном количестве кадров наблюдения события в коронографе (три и больше) [18].

При определении начальной скорости выброса и его ускорения с помощью обработки снимков коронографов неизбежны ошибки из-за того, что мы видим выброс в картинной плоскости, то есть можем рассчитать только проекцию скорости выброса, причем угол между направлением КВМ и картинной плоскостью тоже неизвестен. Эту проблему может решить наблюдение КВМ из нескольких точек (миссия STEREO), но в настоящий момент, в виду неисправности Stereo B, таких измерений не существует, поэтому для онлайн прогноза мы используем только данные с КА SOHO/LASCO. Существуют также 3D модели распространения КВМ, но для их точности важно знать местоположение источника в короне, что возможно не всегда. Например, модель SUSA-NOO [19] основана на расчете структуры межпланетного магнитного поля (ММП), а распространение КВМ в ней представляется как распространение магнитной петли в гелиосфере. Для этой модели требуются магнитограммы Солнца и точное положение источника. Мы же на данном этапе ограничиваемся данными, полученными в картинной плоскости и простой моделью, не учитывающей геометрию КВМ.

Для тестирования модели был выбран промежуток времени с V.2010 по XII.2011 гг., так как с V.2010 года начали поступать данные с обсерватории SDO, которые мы используем для прогноза скорости квазистационарных потоков солнечного ветра.

В настоящей работе мы используем каталоги MKBM Richardson&Cane [20] и GMU CME List [21]. В этих каталогах MKBM определяются по основным плазменным характеристикам солнечного ветра — плотность, скорость, температура протонов, ионные соотношения, измеренным в точке L1. Подробнее о составлении такого рода каталогов написано в работе Ричардсона с соавторами [22]. В указанных каталогах MKBM можно найти информацию о начале события (в каталоге Richardson&Cane время прихода ударной волны и время прихода тела MKBM фиксируется отдельно, и мы брали второе), его длительности, средней и максимальной скоростях. Эти данные мы использовали при тестировании модели.

В качестве тестового набора событий, были использованы те МКВМ из указанных каталогов, которые уже были сопоставлены с соответствующими им КВМ, а МКВМ с неопределенным источником отбрасывались. Таким образом за период с V.2010 по XII.2011 было выбрано 22 события из каталога Richardson&Cane и 15 событий из каталога GMU CME List. С учетом совпадающих событий, и без учета события в IX.2010, когда в данных LASCO был пропуск в измерениях. всего нами было проанализировано распространение 26 КВМ. Их параметры приведены в табл. 1. Среди них есть как события распространения одного КВМ, так и множественных КВМ, например, события № 1 и 2 имеют различные корональные источники, но выбросы от разных источников пришли на околоземную орбиту в одно и тоже время и зарегистрированы в каталогах как один МКВМ. Для каждого МКВМ в каталогах указывалось время наблюдения KBM в коронографах или LASCO или STEREO и для каждого случая мы искали соответствующий димминг в базе Solar Demon.

База Solar Demon предоставляет данные о вспышках и диммингах (резких уменьшениях плотности вещества на Солнце в следствие выброса вещества в процессе формирования КВМ, проявляющиеся как уменьшения яркости на длине волны 21.1 нм по данным SDO/AIA) в режиме реального времени. С помощью базы диммингов можно отсеять КВМ, направленные от Земли, в тех случаях, когда мы наблюдаем соответствующий димминг не на фоне солнечного диска, а за лимбом. Наличие димминга также может дать информацию о координатах коронального источника выброса. Мы планируем активно использовать данные этой базы в дальнейшем для построения будущей системы прогноза КВМ в режиме реального времени.

КАПОРЦЕВА, ШУГАЙ

Таолица І. Список исследуемых событии с V.2010 по XII.2011. События, взятые из GMU CME List, помечены *										
N⁰	Парамо	етры МКВМ		Параметры КВМ по CACTus		Параметры КВМ по SEEDS			Solar Demon	
	$T_{ m Havana}$	$T_{ m конца}$	$\langle V \rangle$	Т _{начала}	V _{квм} Т _{начала}		$V_{\rm kbm}$	$a_{\rm KBM}$	Т _{начала}	
	дд.мм.гггг чч.мм дд.мм.гггг чч.мм		км/с	дд.мм.гггг чч.мм	км/с	дд.мм.гггг чч.мм	км/с	м/с ²	дд.мм.гггг чч.мм	
1	28.V.2010 19.00	29.V.2010 17.00	360	23.V.2010 17.06	240	23.V.2010 18.30	229	33.5	23.V.2010 16.42	
2	28.V.2010 19.00	29.V.2010 17.00	360	24.V.2010 13.54	381	24.V.2010 14.30	309	2.7	24.V.2010 13.24	
3	21.VI.2010 06.00	22.VI.2010 14.00	360	16.VI.2010 04.06	339	16.VI.2010 04.06	287	5.2	16.VI.2010 03.00	
4	31.X.2010 05.00	1.XI.2010 21.00	350	26.X.2010 11.36	349	26.X.2010 00.36	38	7.0	—	
5	28.XII.2010 03.00	28.XII.2010 15.00	350	—	—	23.XII.2010 05.12	152	6.6	—	
6	18.II.2011 19.00	20.II.2011 08.00	470	15.II.2011 02.24	469	15.II.2011 02.36	505	70.8	15.II.2011 01.42	
7	6.III.2011 09.00	8.III.2011 06.00	430	3.III.2011 06.12	228	3.III.2011 06.36	188	-0.5	—	
8	29.III.2011 23.00	31.III.2011 04.00	360	25.III.2011 07.48	325	25.III.2011 05.36	123	4.3	—	
9	28.V.2011 05.00	28.V.2011 21.00	510	25.V.2011 05.48	134	25.V.2011 05.48	290	-14.9	25.V.2011 04.10	
10	5.VI.2011 02.00	5.VI.2011 19.00	510	2.VI.2011 08.12	422	2.VI.2011 09.00	91	127.3	2.VI.2011 07.46	
11	17.VI.2011 05.00	17.VI.2011 13.00	500	14.VI.2011 07.12	456	14.VI.2011 06.00	180	19.2	—	
12*	3.VII.2011 03.00	4.VII.2011 15.00	396	29.VI.2011 00.48	459	29.VI.2011 01.25	509	-48.1	29.VI.2011 00.22	
13	5.VIII.2011 05.00	5.VIII.2011 14.00	430	2.VIII.2011 06.36	508	2.VIII.2011 06.48	613	33.7	2.VIII.2011 05.36	
14	6.VIII.2011 22.00	7.VIII.2011 22.00	540	4.VIII.2011 04.12	868	4.VIII.2011 03.48	384	22.2	4.VIII.2011 03.52	
15	10.IX.2011 03.00	10.IX.2011 15.00	470	7.IX.2011 06.12	419	7.IX.2011 01.36	226	28.9	6.IX.2011 22.20	
16	17.IX.2011 14.00	18.IX.2011 06.00	430	14.IX.2011 00.36	663	14.IX.2011 00.00	295	-2.3	—	
17	22.IX.2011 15.00	23.IX.2011 03.00	390	19.IX.2011 09.12	358	19.IX.2011 09.12	366	6.0	18.IX.2011 23.50	
18	26.IX.2011 20.00	28.IX.2011 15.00	580	24.IX.2011 13.25	941	24.IX.2011 12.36	920	312.0	24.IX.2011 12.20	
19	6.X.2011 10.00	6.X.2011 22.00	450	2.X.2011 01.25	578	2.X.2011 05.00	193	25.6	2.X.2011 00.10	
20*	8.X.2011 14.00	9.X.2011 10.00	328	3.X.2011 01.36	428	3.X.2011 00.48	251	16.2	2.X.2011 21.44	
21	22.X.2011 21.00	23.X.2011 16.00	290	16.X.2011 14.24	216	16.X.2011 12.24	121	6.2	16.X.2011 11.12	
22	24.X.2011 22.00	25.X.2011 16.00	460	22.X.2011 11.00	694	22.X.2011 10.36	619	40.8	22.X.2011 10.02	
23	2.XI.2011 01.00	3.XI.2011 04.00	380	27.X.2011 11.48	522	27.X.2011 10.12	181	-5.9	—	
24	13.XI.2011 10.00	15.XI.2011 02.00	370	9.XI.2011 13.48	721	9.XI.2011 13.36	649	53.0	9.XI.2011 12.56	
25	29.XI.2011 00.00	29.XI.2011 08.00	450	26.XI.2011 07.12	672	26.XI.2011 07.00	623	16.6	26.XI.2011 06.32	
26	29 XII 2011 22 00	30 XII 2011 09 00	400	26 XII 2011 11 48	578	26 XII 2011 12 00	213	31.4	26 XII 2011 11 10	

Таблица 1. Список исследуемых событий с V.2010 по XII.2011. События, взятые из GMU CME List, помечены '

Ориентируясь на время наблюдения димминга, где это было возможно, или на время наблюдения КВМ в коронографе, мы нашли соответствующие КВМ по каталогам CACTus и SEEDS, так как в каталогах MKBM указано время начала KBM, которое не всегда совпадает с временем из используемых нами каталогов KBM.

1.1. Описание DBM Модели

Как было указано выше, для прогноза МКВМ мы выбрали Drag-Based Model [14], как достаточно простую вычислительно модель, но по результатам работы сравнимую с более сложными МГД моделями. В приближении DBM модели предполагается что, начиная с некоторого удаления от Солнца динамика распространения КВМ определяется только взаимодействием КВМ с окружаю-

щем солнечным ветром (F_d) , то есть силой Лоренца (F_L) и гравитационным притяжением (F_g) можно пренебречь. Таким образом, начиная с некоторого расстояния от солнца (более 15 солнечных радиусов по [23]), можно учитывать только силу вязкого трения F_d : $F = F_L - F_g + F_d \approx F_d$, при $r > 15R_{Sun}$.

Возникающее ускорение a_d может ускорять или замедлять выброс, в зависимости от соотношения скоростей выброса *v* и окружающего солнечного ветра *w*: $a_d = -\gamma (v - w)|v - w|$.

Параметр торможения (drag parameter) γ может считаться постоянным или зависеть от параметров KBM и вычисляться по формуле: $\gamma = \frac{c_d A \rho_{sw}}{M}$, где c_d – безразмерный коэффициент

Таблица 2. Описание входных параметров для простой DBM модели

Параметр	Описание
R_0	Расстояние, на котором начинают действовать приближения DBM модели
T_0	Момент времени, в который фронт КВМ находился на расстоянии <i>R</i> ₀
V ₀	Скорость фронта КВМ в момент времени T_0
γ	Параметр торможения (drag parameter)
W	Скорость окружающего солнечного ветра

торможения, A и M – соответственно поперечное сечение и масса KBM, а ρ_{sw} – функция плотности окружающего солнечного ветра.

Если окружающий солнечный ветер считается однородным и изотропным, то γ не зависит от расстояния, и эта задача решается аналитически и дает следующие функции скорости КВМ и пройденного расстояния от времени:

$$r(t) = \pm \frac{1}{\gamma} \ln \left(1 \pm \gamma (v_0 - w) t \right) + wt + r_0$$
$$v(t) = w + \frac{v_0 - w}{1 \pm \gamma (v_0 - w) t},$$

где \pm зависит от режима ускорения: "+" для замедления ($v_0 > w$), и "–" для ускорения ($v_0 < w$), а v_0 – скорость выброса на расстоянии от Солнца r_0 .

1.2. Выбор входных данных модели

Основные входные параметры модели представлены в табл. 2. Расстояние R₀ выбирается из соображений постоянства параметров ү и w в ходе распространения КВМ, что упрощает решение задачи. В работе [14] показано, что правомерно выбрать $R_0 = 20 R_{Sun}$, где R_{Sun} – радиус Солнца, хо-тя для очень быстрых KBM, возможно увеличение этого значения из-за действия силы Лоренца, которая прямо пропорциональна скорости плазмы. Еще одним упрощением является пренебрежение зависимости γ от параметров выброса А и М. В реализации DBM модели [14] предлагается считать үпостоянным для каждого события и выбирать его значение, в зависимости от начальной скорости выброса v_0 : для $v_0 < 500$ км/ч $\gamma = 0.5 \cdot 10^{-7}$ км⁻¹; для $500 < v_0 < 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $\gamma = 0.2 \cdot 10^{-7}$ км⁻¹; для $v_0 > 1000$ км/ч $v_0 > 10000$ км/ч $v_0 > 10000$ км/ч $v_0 > 10000$ км/ч v_0 > 1000 км/ч $\gamma = 0.1 \cdot 10^{-7}$ км⁻¹. Для нашего тестирования мы выбрали такие же значения для у. Скорость фонового солнечного вера и определялась по алгоритму прогноза скорости высокоскоростных потоков солнечного ветра на основе площадей корональных дыр, вычисляемых по изображениям Солнца SDO/AIA на длине волны 193 Å, описанному в статьях [15, 24]. Результаты прогноза скорости представлены на сайте (http:// swx.sinp.msu.ru/models/solar wind.php?gcm=1). Эта

модель позволяет вычислить скорость солнечного ветра на нужном расстоянии с помощью эмпири-

ческой зависимости $V(S_i, t) = V_{\min} + A_i S_i (t_{i0})^{\alpha_i}$, где $S_i(t_{i0})$ – относительная площадь корональных дыр (КД), попадающая в выделяемую по широте и долготе полосу, в момент t_{i0} , на длине волны λi $(193 \text{ Å}); V_{\min}$ – минимальная скорость CB, которой также заменяются периоды отсутствия потока солнечного ветра от КД (была взята равной 300 км/с); t – время прихода потока CB на заданное расстояние от Солнца по прогнозу скорости (рассчитывается по баллистической модели, в которой движение СВ полагается равномерным и радиальным). Коэффициенты были подобраны для длины волны 193 Å путем минимизации ошибок прогнозирования на данных за 2010-2011 гг.: $A_i = 210$ и $\alpha_i = 0.4$. Полученный прогноз ВСП СВ является фоновым солнечном ветром или средой, по которой распространяются КВМ.

Остальные входные параметры DBM модели: T_0 и v_0 можно получить из наблюдений коронографов. Для онлайн прогноза можно использовать только обновляемые в реальном времени базы данных KBM, такие как SEEDS и CACTus, однако интересующие нас параметры для одного и того же события в разных базах могут сильно отличаться, поэтому одной из анализируемых в настоящей работе задач стала проблема выбора базы данных, дающей наиболее качественный результат прогнозирования при использовании DBM модели на выбранном интервале времени. Для параметров T_0 и v_0 необходимо к тому же осуществить пересчет на расстояние $R_0 = 20R_{Sun}$, так как указанное в базах данных Т – это время детектирования КВМ в поле зрения коронографа LASCO C2. Этот пересчет проводился в предположении равномерного движения КВМ, что, строго говоря, не является верным, однако в базе данных SEEDS указывается рассчитанное по снимкам коронографа ускорение КВМ, что позволяет выполнить пересчет с учетом ускоренного движения. Таким образом, мы получили три различных набора входных параметров T_0 , v_0 и γ : 1 – по базе CACTus (пересчет на 20 R_{Sun} в приближении равномерного движения), 2 – по базе SEEDS (пересчет на 20 R_{Sun} в приближении равномерного

Рис. 1. Скорости КВМ, пересчитанные на расстояние R_0 , равное 20 солнечным радиусам, для событий из табл. 1, полученные по трем наборам из баз данных: САСТиѕ и SEEDS – пересчет без ускорения, SEEDS_acc – с ускорением.

Номер события

движения) и 3 – по базе SEEDS (SEEDS_acc; пересчет на 20 R_{Sun} в приближении равноускоренного движения, где это было возможно (23 события из 26; иначе – пересчет в приближении равномерного движения). Скорости КВМ на расстоянии $R_0 = 20R_{Sun}$ по наборам 1, 2, 3 представлены на рис. 1. Как видно из рисунка, скорости КВМ могут сильно отличаться в зависимости от базы данных и алгоритма пересчета на расстояние R_0 . Особенно отличия заметны между пересчетом на расстояние в 20 солнечных радиусов данных базы SEEDS с учетом ускорения и без (события \mathbb{N}_{2} 6. 10, 18 и др). В дальнейшем мы рассмотрим, использование входных параметров, основанных на данных какой базы, дает прогнозы, наиболее приближенные к данным каталога МКВМ для 2010-2011 гг.

Для сравнения результатов прогноза с наблюдениями использовались каталоги МКВМ [20, 21]. Всего было исследовано 26 событий (для набора 1–25 событий, так как в базе САСТиз отсутствовали данные за 23.XII.2010), для каждого из которых использовалось три набора входных данных, с различными T_0 , v_0 и γ и одинаковыми R_0 и w.

2. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

В ходе моделирования распространения КВМ для каждого события были получены зависимости R(t) и v(t), и вычислено время и скорость прихода МКВМ на расстояние 1 а. е. Эти значения сравнивались со значениями из каталогов Richardson&Cane и GMU CME List и вычислялась ошибка прогнозирования:

$$dt = T_{\text{прогноз}} - T_{\text{каталог}},$$
$$dv = V_{\text{прогноз}} - V_{\text{каталог}}.$$

На рис. 2 показаны зависимости R(t) и v(t), для события в XI.2011 г. (события № 25 в табл. 1). Из этих зависимостей можно найти время прихода МКВМ на расстояние в 1 а. е. и его скорость в этот момент. Это же событие проиллюстрировано на рис. 3, где изображены также наблюдаемая на КА АСЕ скорость солнечного ветра и прогнозируемая скорость квазистационарного ветра. По каталогу Richardson&Cane MKBM, соответствующий рассматриваемому нами КВМ, был зарегистрирован в точке L1 29.XI.2011 в 00.00. Таким образом, можно видеть, что прогнозируемое время прихода на основе наборов 1 (CACTus) и 2 (SEEDS) отстает, а на основе набора 3 (SEEDS acc) - опережает реальное время прихода МКВМ. Средняя и максимальная скорости MKBM по каталогу Richardson&Cane равнялись соответственно 450 и 510 км/с. Прогнозируемые значения скорости 519. 506 и 557 км/с для наборов 1, 2 и 3 соответственно, что достаточно хорошо совпадает с измеренным значением, особенно для наборов 1 и 2 Входные и выходные параметры модели для рассматриваемого случая приведены в табл. 3.

Рассмотрев все 26 событий, мы получили распределение ошибок прогноза по скорости dv и по времени dt для каждого набора входных данных. Это распределение приведено на рис. 4. Оценив распределения ошибок прогноза для трех наборов входных данных, можно сделать вывод, что набор 2 дает прогноз с заниженной скоростью и отставанием по времени, тогда как использова-

R, a. e.

1.2

1.0

0.8

0.6

0.4

0.2

26.XI.2011

Рис. 2. Зависимости расстояния, пройденного КВМ, и его скорости от времени в рамках DBM модели, посчитанные для трех наборов. Черным штрих-пунктиром отмечено расстояние 1 а. е., вертикальными пунктирами указано время прихода КВМ на 1 а. е. для каждого набора данных. Вертикальная черная линия указывает время прихода МКВМ по каталогу Richardson&Cane.

28.XI.2011

Рис. 3. Прогноз времени и скорости прихода КВМ в событии № 25 из табл. 1.

КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ том 59 <u>№</u> 4 2021

27.XI.2011

400

300 30.XI.2011

Время

Ŵ

29.XI.2011

Рис. 4. Разности между взятыми из каталогов МКВМ и спрогнозированными значениями времени прихода и скорости МКВМ (*dt* и *dv*), полученные при моделировании распространения КВМ для входных параметров модели из разных баз данных, для событий из табл. 1.

ние набора 3 напротив, приводит к сильному завышению скорости прихода МКВМ, что приводит к опережению по времени. Прогноз с наименьшим разбросом ошибок получается на основе набора входных данных 1. Такой результат можно объяснить различием методов определения скорости КВМ по снимкам коронографов в базах САСТиз и SEEDS. В то время как в базе CACTus (набор 1) вычисляется некоторая средняя по всем направлениям выброса скорость, в базе данных SEEDS (наборы 2 и 3) рассчитывается начальная скорость и ускорение переднего фронта выброса на основе аппроксимации его движения линейной и квадратичной функциями соответственно. Наше исследование показывает, что DBM модель, использующая в качестве входного параметра скорость КВМ на двадцати радиусах Солнца, пересчитанную из начальной скорости и ускорения фронта КВМ, полученных с помощью автоматической обработки снимков коронографа LASCO C2 в базе

N⁰	коронограф			DBM-входные параметры					DBM-выходные параметры	
набор	<i>Т</i> _{кор} , дд.чч.мм	<i>v</i> _{кор} , км∕с	а _{кор} , км/с²	R ₀ , R _{Sun}	<i>Т</i> ₀ , дд.чч.мм	<i>v</i> ₀ , км/с	γ·10 ⁷ , км ^{−1}	<i>w,</i> км/с	Т _{прогноз} , дд.чч.мм	<i>v_{прогноз},</i> км/с
1	26.07.12	672	—	20	26.11.30	672	-0.2	400	29.05.30	519
2	26.07.00	623	—		26.11.39	623	-0.2		29.08.39	506
3			16.6		26.10.54	857	-0.2		28.20.54	557
Время прихода МКВМ и его средняя скорость на орбите Земли по каталогу Ричардсона и Кейн:								29.00.00	450	

Таблица 3. Пример моделирования события № 25 из табл. 1

Рис. 5. Гистограммы распределения отклонения (*dt*), спрогнозированного времени прихода МКВМ на околоземную орбиту от времени прихода МКВМ согласно каталогам. Пунктирной линией показана аппроксимация распределений функцией Гаусса.

данных SEEDS, дает для рассматриваемого периода времени значительное количество событий с прогнозной скоростью, превышающей измеренную более чем на 200 км/с. В тоже время, отказ от учета ускорения приводит к ухудшению прогнозирования времени прихода КВМ (появление событий, отстающих более чем на 50 ч).

Таким образом, для моделирования распространения КВМ в рассматриваемый период времени наименьшие ошибки получены при использовании набора данных 1 — из базы данных CACTus.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Разброс ошибок прогнозирования времени прихода МКВМ, можно видеть на гистограммах на рис. 5. Результаты аппроксимации нормальным распределением разности между измеренными и спрогнозированными значениями времени прихода МКВМ представлены в табл. 4. Аппроксимация дает лучшие результаты для набора САСТиs, что видно по значению коэффициента детерминации R^2 , который ближе к единице для набора САСТиs: 0.99 для САСТиs, 0.96 для SEEDS, 0.95 для SEEDS_асс. Для данных из базы SEEDS. при использовании равноускоренного приближения для пересчета параметров КВМ, наблюдаемых в коронографе, на расстояние 20 солнечных радиусов, медиана распределения ошибок dt смещена относительно нуля на -9 ч, модуль средней ошибки $\langle dt \rangle$ в 1.1 раз меньше. а разброс ошибок dt в 1.3 раза больше, чем для прогноза по данным из базы CACTus. В то же время для данных из базы SEEDS без учета ускорения медиана распределения смещена на +37 ч, модуль средней ошибки $\langle dt \rangle$ в 4 раза больше, а разброс ошибок *dt* в 1.6 раза больше, чем для прогноза по ланным из базы CACTus. Мелиана распределения dt, полученного на основе данных CACTus, смещена относительно нуля на +14 ч, а средняя ошибка (*dt*) равняется +9.24 ч. Модуль средней ошибки определения скорости KBM $\langle dt \rangle$ для прогноза на основе данных CACTus составил 20 км/с: в 3 раза лучше, чем для прогноза на основе SEEDS, и в 4.3 раз лучше, чем для прогноза на основе SEEDS_acc.

Обнаруженная тенденция "запаздывания прогноза" (медиана распределения dt равняется +14 ч, а средняя ошибка $\langle dt \rangle$ + 9.24 ч) при использовании базы САСТиѕ может быть обусловлена большим

Таблица 4. Параметры аппроксимации гистограмм распределения ошибок определения времени прихода МКВМ функцией Гаусса

Параметры аппроксимации	Hafop 1 CACTus	Haбop 2 SEEDS	Hafop 3 SEEDS_acc
R^2	0.99	0.96	0.95
СКО	0.37	0.59	0.69
Медиана, ч	14.3	37.4	-9.2
Ширина на половине высоты, ч	58	91	72

	2 - C - C - C - C - C - C - C - C - C -			· •	1		, , ,	
	1	2	3	WSA-ENLIL + + Cone (GSFC) [16]	WSA-ENLIL + + Cone (NOAA) [16]	DBM [16]	DBEM [25]	DBM [26]
<i>dt</i> _{max} , ч	42.6	117	58.3	48	39.2	15.5	10.2	41.1
<i>Dt</i> _{min} , ч	-51.1	-17.4	-49.1	-41.2	-23.5	-20.9	-24.9	-29.5
<i>(dt),</i> ч	9.24	36.43	-8.15	4.89	1.27	-4.16	-9.7	-1.94
Стд. откл., ч	23.5	33.3	27.8	18	15.5	9.5	16.7	16.3
<i>МАЕ</i> , ч	18.5	26.6	22.3	14.5	13.1	8,3	14.3	12.5
<i>dv</i> _{max} , км/с	113	109	490	—	—	_	539	—
<i>dv</i> _{min} , км/с	-160	-228	-122	—	-	_	-150	—
$\langle dv \rangle$, км/с	-20	-57	87	_	—	_	84	_
Количество событий	25	26	26	114	78	13	16	27

Таблица 5. Сравнение качества полученных прогнозов, рассчитанных для разных наборов входных данных, с результатами прогнозов, сделанных с помощью различных моделей, описанных в работах [16, 25, 26]

Здесь dt_{max} (ч) — максимальная и dt_{min} (ч) — минимальная разность между наблюдением и прогнозом времени прихода МКВМ, $\langle dt \rangle$ (ч) — среднее отклонение, стд. откл. (ч) — стандартное отклонение и MAE (ч) — средняя абсолютная ошибка прогнозируемого времени прихода МКВМ от наблюдаемого, dv_{max} (км/с) — максимальная и dv_{min} (км/с) — минимальная разность между наблюдаемым значением скорости МКВМ и прогнозируемым, $\langle dv \rangle$ (км/с) — среднее отклонение наблюдаемой скорости МКВМ от прогнозируемых значений.

количеством факторов: особенности работы автоматической системы CACTus, возможные ошибки в прогнозировании скорости квазистационарных потоков, неучет взаимодействия потоков в гелиосфере (не учитывается взаимодействие KBM-KBM, взаимодействие KBM-BCП учитывается только на 20 солнечных радиусах), пренебрежение формой и направлением распространения KBM. Исследование и учет этих факторов является предметом дальнейших исследований. На основе сделанных выводов мы сосредоточили внимание на результатах моделирования, полученных с использованием данных из базы CACTus (набор 1).

В настоящей работе DBM модель дает среднюю по всем трем наборам ошибку прогнозирования времени прихода KBM равную 18 ч. Эта ошибка довольно велика, однако сравнима с ошибками, получаемыми при использовании других моделей, приведенными в табл. 5. Для сравнения результатов моделирования с результатами других моделей из работ [16, 25, 26] были рассчитаны следующие ошибки прогнозирования:

$$\langle dt
angle = \frac{1}{N} \sum_{i=1}^{N} dt_i,$$

стд. откл. = $\sqrt{\frac{1}{N} \sum_{i=1}^{N} |dt_i - \langle dt \rangle|^2},$
ср. абс. ошибка = $\frac{1}{N} \sum_{i=1}^{N} |dt_i - \langle dt \rangle|$

где t_i — это разность между прогнозным временем прихода МКВМ и значениями из каталогов МКВМ для *i*-го события, N — количество анализируемых событий.

В работе [16] приведен анализ прогнозов за 2013-2018 гг., сделанных различными группами ученых с использованием разных моделей в режиме онлайн. Сравнение результатов, полученных по моделям WSA-ENLIL+Cone и DBM, с нашими результатами, приведены в табл. 5. Так же в табл. 5 проведено сравнение полученных нами результатов с итогами работы [25], в которой рассматривались 25 событий, произошедших в 2013-2014 гг. Из этих 25 событий 9 КВМ, зарегистрированных в коронографе не достигли Земли, поэтому точность прогноза можно оценить только у 16 событий. Хотя в выбранных для сравнения работах исследуется другой временной интервал, однако для нас это представляет интерес, так как описываются или результаты прогнозирования в режиме реального времени [16], или с использованием DBM модели [25]. В последней работе также приведены ошибки прогноза скорости МКВМ: разброс ошибок в нашей модели получился меньше, средняя ошибка у нас равна 150 км/с, а в работе [25] – 160 км/с.

В работе [26] рассматривалось 27 событий, произошедших в 2010–2013 гг. События были отобраны по скорости КВМ и углу раствора конуса, в котором КВМ наблюдались в коронографе (исследовались события со скоростью более 400 км/с и с углом раствора конуса более 120 градусов), отбрасывались события множественных КВМ и события произошедшие в период отсутствия данных измерений параметров плазмы солнечного ветра с КА *АСЕ*. Из табл. 5 можно видеть, что результаты, полученные в нашей работе, несколько хуже, чем результаты из работы [26]. Однако, из-за небольшого количества анализируемых событий, значение dt_{min} (ч) хуже за счет про-

гноза более раннего прихода только одного МКВМ (рис. 5). Если не учитывать это событие (№ 23 в табл. 1) то dt_{\min} примет значение -22 ч, что лучше, чем в работе [26]. Другие ошибки, полученные в нашем прогнозе, сравнимы с ошибками из работы [26] с учетом того, что мы не проводили отбор событий по входным параметрам и не отбрасывали множественные КВМ, кинетические параметры которых и время распространения могут существенно измениться из-за взаимодействия [27]. Стандартное отклонение 22.5 и 16.3 ч, а средняя абсолютная ошибка 17.8 и 12.5 ч, соответственно в нашем исследовании и в работе [26]. Удаление только одного события № 23 приводит к результатам близким к приведенным в статье [27]: стандартное отклонение и средняя абсолютная ошибка уменьшатся и станут соответственно равны 20.2 и 16.5 ч, а средняя ошибка прогнозирования изменится с 9.24 до 11.8 ч. В дальнейшем мы планируем проводить отдельный анализ событий с большими ошибками прогнозирования, чтобы понять в каких случаях это происходит и как можно улучшить для таких событий нашу систему прогнозирования.

ЗАКЛЮЧЕНИЕ

В работе была проанализирована возможность совместного использования модели квазистационарных потоков солнечного ветра, существующей в Центре прогноза космической погоды НИИЯФ МГУ, с моделью прогноза скорости и времени прихода МКВМ на околоземную орбиту. В качестве модели распространения КВМ была выбрана простая DBM модель, основанная на взаимодействии выброса с окружающем солнечным ветром. Прогноз осуществлялся на основе параметров KBM из баз данных CACTus и SEEDS для событий MKBM из каталога Richardson&Cane и каталога GMU CME List за 2010-2011 гг., период роста 24-го солнечного цикла. Сравнение полученных результатов прогноза времени прихода и скорости МКВМ на околоземной орбите с базами данных МКВМ показало, что использование параметров КВМ из базы данных САСТиѕ в качестве входных параметров DBM модели среднем позволяет получить меньшие ошибки прогнозирования. Лучше всего нормальным распределением аппроксимируется гистограмма отклонений наблюдаемого времени прихода МКВМ от прогнозируемого для набора 1 (из базы данных CACTus): коэффициент детерминации R^2 в этом случае наибольший, а среднеквадратичная ошибка – наименьшая; медианное значение равняется 14.2 ч, а ширина распределения на половине высоты -58 ч. Для набора 3 (SEEDS acc) медианное значение ближе к нулю: -9 ч, но распределение более пологое: ширина на половине высоты составляет 73 ч. Распределение ошибок времени прихода

КВМ для набора 2 (пересчет из базы SEEDS без учета ускорения) показывает худшие параметры аппроксимации: медианное значение далеко от нуля, а ширина распределения на половине высоты в 1.6 раза больше, чем для набора 1.

Вычисленные ошибки прогнозирования, с использованием базы данных САСТиѕ, сравнимы с результатами, полученными другими моделями без использования данных с КА *STEREO*, данные которого позволяло получать более качественный прогноз МКВМ, из-за возможности стереонаблюдения КВМ в период 2010—2012 гг. В дальнейшем также планируется сравнить результаты прогноза для всего 24-го солнечного цикла для того, чтобы сделать вывод о качестве прогноза на разных фазах солнечного цикла и понять, какую пополняющуюся в режиме реального времени базу КВМ САСТиѕ или SEEDS лучше всего использовать для прогноза МКВМ Drag-Based моделью.

Авторы выражают благодарность научным коллективам проектов SDO/AIA, SDO/HMI и ACE за предоставление доступа к данным. Мы благодарим Ian Richardson and Hilary Cane за доступ к list of Near-Earth Interplanetary Coronal Mass Ejections, а также научным коллективам Seeds Data Centre и CACTus за доступ к базам данных корональных выбросов масс, которые мы использовали в своих исследованиях. Исследование проведено в НИИЯФ МГУ за счет гранта РНФ № 16-17-00098.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Gosling J.T.* The solar flare myth // J. Geophys. Res.: Space Physics. 1993. V. 98. P. 18937–18949.
- 2. *Richardson I.G., Cane H.V.* Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta // J. Geophys. Res.: Space Physics. 1995. V. 100. P. 23397–23412.
- Cane H.V., Richardson I.G. Coronal mass ejections, interplanetary ejecta and geomagnetic storms // Geophys. Res. Lett. 2000. V. 27. P. 3591–3594.
- 4. *Zhao X.H., Dryer M.Z.* Current status of CME/shock arrival time prediction // Space Weather. 2014. V. 12. P. 448–469.
- Gopalswamy N., Lara A., Lepping R.P. et al. Interplanetary acceleration of coronal mass ejections // Geophys. Res. Lett. 2000. V. 27. P. 145–148.
- Gosling J.T. Coronal mass ejections: An overview, in Coronal Mass Ejections // American Geophys. Union, Washington DC. 1997. V. 99. P. 9–16.
- Lindsay G.M., Luhmann J.G., Russell C.T. et al. Relationship between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections // J. Geophys. Res. 1999. V. 104. P. 12515–12523.
- 8. *Mays M.L., Taktakishvili A., Pulkkinen A.A. et al.* Ensemble modeling of CMEs using the WSA-ENLIL+Cone model // Solar physics. 2015. V. 290. P. 1775–1814.

- Odstrcil D., Smith Z.K., Dryer M.Z. Distortion of the heliospheric plasma sheet by interplanetary shocks // Geophys. Res. Lett. 1996. V. 23. P. 2521–2524.
- Zhao X.P., Plunkett S.P., Liu W. Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model // J. Geophys. Res.: Space Physics. 2002. V. 107. P. 1223–1232.
- Rollett T., Mostl C., Isavnin A. et al. ElEvoHI: a novel CME prediction tool for heliospheric imaging combining an elliptical front with drag-based model fitting // Astrophysical J. 2016. V. 824(A. 131). P. 1–11. https://doi.org/10.3847/0004-637X/824/2/131
- Pomoell J., Poedts S. EUPHORIA: European heliospheric forecasting information asset // Space Weather Space Clim. 2018. V. 8(A35). P. 1–14. https://doi.org/10.1051/swsc/2018020
- Odstrcil D., Pizzo V.J. Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt // J. Geophys. Res.: Space Physics. 1999. V. 104. P. 483–492.
- Vrsnak B., Zic. T., Vrbaneck D. et al. Propagation of interplanetary coronal mass ejections: The drag-based model // Solar Physics. 2013. V. 285. P. 295–315.
- 15. *Shugay Y.S., Veselovsky I.S., Seaton D.B. et al.* Hierarchical approach to forecasting recurrent solar wind streams // Solar System Research. 2011. V. 45. № 6. P. 546–556.
- Riley P., Mays M.L., Andries J. Forecasting the Arrival Time of Coronal Mass Ejections: Analysis of the CCMC CME Scoreboard // Space Weather. 2018. V. 16. P. 1245–1260.
- Robbrecht E., Berghmans D. Automated recognition of coronal mass ejections (CMEs) in near-real-time data // Astronomy and Astrophysics. 2004. V. 425. № 3. P. 1097–1106.
- 18. Olmedo O., Zhang J., Wechsler H. et al. Automatic Detection and Tracking of Coronal Mass Ejections in Co-

ronagraph Time Series // Solar Physics. 2008. V. 248. P. 485–499.

- 19. *Shiota D., Kataoka R., Miyoshi Y. et al.* Inner heliosphere MHD modeling system applicable to space weather forecasting for the other planets // Space Weather. 2014. V. 12. P. 187–204.
- Cane H.V., Richardson I.G. Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002 // J. Geophys. Res.: Space Physics. 2003. V. 108(A4). P. 1–13.
- Hess P., Zhang J. A Study of the Earth-Affecting CMEs of Solar Cycle 24 // Solar Physics. 2017. V. 292(A80). P. 1–20. https://doi.org/10.1007/s11207-017-1099-y
- 22. *Richardson I.G., Cane H.V.* Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011) // Space Weather Space Climate. 2012. V. 2(A02). P. 1–10.
- Žic T., Vršnak B., Temmer M. Heliospheric Propagation of Coronal Mass Ejections: Drag-Based Model Fitting // Astrophysical J. Supplement Series. 2015. V. 218. № 2. P. 32–39. https://doi.org/10.1088/0067-0049/218/2/32
- Shugay Yu., Slemzin V., Rodkin D. et al. Influence of coronal mass ejections on parameters of high-speed solar wind: a case study // Space Weather Space Climate. 2018. V. 8(A28). P. 1–13.
- Dumbovic M., Calogovic J., Vrsnak B. et al. The Dragbased Ensemble Model (DBEM) for Coronal Mass Ejection Propagation // Astrophysical J. 2018. V. 854(A180) P. 1–11.
- Suresh K., Prasanna Subramanian S., Shanmugaraju A. et al. Study of Interplanetary CMEs/Shocks During Solar Cycle 24 Using Drag-Based Model: The Role of Solar Wind // Solar Physics. 2019. V. 294(A47). P. 1–17.
- Rodkin D., Slemzin V., Zhukov A.N. et al. Single ICMEs and Complex Transient Structures in the Solar Wind in 2010–2011 // Solar Physics. 2018. V. 293(A78). P. 1–27.