УДК 629.78

ВЛИЯНИЕ ВОЗМУЩЕНИЙ ПРИ МНОГОВИТКОВЫХ ПЕРЕЛЕТАХ НА ГЕОСТАЦИОНАРНУЮ ОРБИТУ

© 2021 г. Р. З. Ахметшин*

Институт прикладной математики им. М.В. Келдыша РАН, Москва, Россия *axmetro@yandex.ru Поступила в редакцию 23.12.2020 г. После доработки 18.01.2021 г. Принята к публикации 22.01.2021 г.

Рассматриваются перелеты на геостационарную орбиту (ГСО) КА с электроракетными двигателями (ЭРД) малой тяги и энергетикой от солнечных батарей. Исследуется влияние таких возмущающих факторов, как гравитационное воздействие Солнца и Луны, вариации геопотенциала и выключение тяги ЭРД при попадании КА в тень Земли. Анализируется как влияние всех факторов вместе, так и каждого из них в отдельности. В каждом случае, с целью минимизации затрат рабочего вещества на перелет, на основе принципа максимума Понтрягина формируется и решается двухточечная краевая задача. Только в случае с выключением тяги в области тени решается т. н. "неполная" краевая задача, в которой не учитываются условия оптимального пересечения границ тени. Хотя при этом перелеты получаются неоптимальными, за счет выбора параметров задачи удается получать хорошие (по затратам) решения. Критерием служит сравнение с номинальными траекториями – оптимальными перелетами в центральном ньютоновском поле Земли без выключения тяги и без учета гравитационного воздействия Солнца и Луны. Приведены результаты расчетов для нескольких номинальных траекторий, различающихся по продолжительности перелета, количеству витков и другим параметрам.

DOI: 10.31857/S0023420621050010

Данная работа является продолжением работы [1], в которой на примере одной т. н. "номинальной" траектории исследовалось влияние одного возмущающего фактора — выключения тяги ЭРД при попадании КА в тень Земли. В данной работе на примере пяти различных номинальных траекторий анализируется влияние четырех возмущающих факторов — выключения тяги в области тени, гравитационного воздействия Солнца и Луны и вариаций геопотенциала. Под номинальной траекторией понимается оптимальная траектория перелета в центральном ньютоновском поле Земли КА с постоянно работающей и постоянной по величине малой тягой в отсутствие вышеназванных возмущений.

НАЧАЛЬНЫЕ ОРБИТЫ

В общем случае перелет на геостационарную орбиту с использованием малой тяги представляет собой второй этап комбинированного маневра, в котором задействованы и большая, и малая тяга. На его первом этапе с помощью большой тяги космический аппарат выводится на промежуточную орбиту, с которой затем он перелетает по многовитковой траектории на ГСО с помощью ЭРД малой тяги. Промежуточная орбита, которая является начальной для перелета с малой тягой, есть результат компромиссного выбора в пользу большего использования в комбинированном маневре большой тяги, либо малой тяги [2]. Чем больше вклад малой тяги (в т. ч. в поворот плоскости орбиты) — тем больше полезная нагрузка, выводимая на ГСО, но и больше продолжительность перелета (и наоборот).

Варианты такого компромисса приведены в табл. 1, где даны характеристики начальных (для перелета с малой тягой) орбит (орбиты 1–4). Несколько особняком стоит последний вариант, который выделяется тем, что масса КА заметно меньше, чем в других случаях, а тяговооруженность существенно больше. Наиболее выразительный параметр, по которому различаются эти орбиты – наклонение, возрастающее от 4° для 1-й орбиты до 46.5° для 5-й. Также показателен радиус перигея, уменьшающийся с ≈29 тыс. км для 1-й орбиты до ≈7 тыс. км для двух последних орбит. Отметим также, что для первых двух орбит радиусы перигея >15 тыс. км, то есть выше основного радиационного пояса.

Отметим еще, что начальные орбиты имеют большой эксцентриситет. Это связано, в частно-

АХМЕТШИН

	<i>H</i> _π , тыс. км	<i>H</i> _α , тыс. км	<i>R</i> _π , тыс. км	<i>R</i> _α , тыс. км	е	<i>і</i> , град	ω, град	<i>Т</i> , сут
1	23	55.6	29.371	61.971	0.3569	4°	0°	1.124
2	9.2	76.8	15.571	83.171	0.6846	13°	0°	1.264
3	2.793	78.8	9.164	85.171	0.8057	26°	0°	1.180
4	0.793	79.8	7.164	86.171	0.8465	41°	0°	1.161
5	0.793	68.94	7.164	75.311	0.8263	46.5°	0°	0.965

Таблица 1. Примеры начальных орбит, с которых осуществляется перелет на ГСО с помощью малой тяги

 H_{π} , R_{π} – высота и радиус перигея, H_{α} , R_{α} – высота и радиус апогея, e – эксцентриситет, i – наклонение, ω – угловое расстояние перицентра от узла, T – период.

Таблица 2. Номинальные траектории перелета на ГСО (в отсутствие возмущений)

	1 "короткая"	2 "средняя"	3 "длинная"	4 "очень длинная"	5 "легкий" КА
Δi , град	4°	13°	26°	41°	46.5°
<i>N</i> , витки	65	157	232	281	103
Т, сут	69.1	180	269.7	343.9	120.3
$M_{ m KA}$, кг	4287	5548	6397	7074	2325
<i>М</i> _{РВ} , кг	186.3	485.3	727.2	927.3	324.2
<i>a</i> ₀ , мм/с ²	0.128	0.099	0.086	0.077	0.236

 Δi – изменение наклонения, N – количество витков, T – продолжительность перелета, $M_{\rm KA}$ – начальная масса KA, $M_{\rm PB}$ – затраты рабочего вещества, a_0 – начальное ускорение малой тяги.

сти, с тем, что при комбинированном маневре необходимо повернуть плоскость орбиты на большой угол, что эффективней осуществлять на большом удалении от Земли, в окрестности апогея.

НОМИНАЛЬНЫЕ ТРАЕКТОРИИ

Для получения номинальных траекторий решается двухточечная краевая задача. Предполагается, что тяга работает постоянно (2 ЭРД СПД-140 с удельной тягой 1790 с и суммарной тягой 0.548 Н). В таком случае получаем задачу на минимум времени перелета, т.е. задачу быстродействия. На направление тяги не накладывается никаких ограничений, оно выбирается оптимальным на основе принципа максимума. Как и в работе [1], будем использовать равноденственные переменные φ , *h*, *y*, *z*, *v*, *w*, которые определяются через гравитационную постоянную Земли μ_E и оскулирующие переменные *p*, *e*, θ , ω , Ω , *i* формулами:

 $h = (\mu_{\rm E}/p)^{1/2}, \quad y = e\cos(\omega + \Omega), \quad v = \cos\Omega \operatorname{tg}(i/2),$ $\varphi = \theta + \omega + \Omega, \quad z = e\sin(\omega + \Omega), \quad w = \sin\Omega \operatorname{tg}(i/2).$

Два параметра в табл. 1: высота перигея H_{π} и апогея H_{α} – задают конфигурацию орбиты (значения *p* и *e*). А ее положение в пространстве определяют параметры i_0 , ω_0 , Ω_0 . Как и в [1], зафиксируем $\omega_0 = 0^\circ$. Дополнительно предполагается, что КА стартует из перигея начальной орбиты, т.е. $\theta_0 = 0^\circ$ (следовательно, $\phi_0 = \Omega_0$), а конечный момент времени определяется заданной угловой дальностью перелета, а именно, целым количеством витков N в переменной φ ($\varphi_{\kappa} = \varphi_0 + 2\pi N$). Как правило, значение N подбирается оптимальным, для чего приходится решать несколько краевых задач.

В результате у нас остается два свободных параметра: долгота восходящего узла Ω₀ и время (дата) старта t₀ (измеряется в сутках от 00.00 1.I.2018). В силу того, что ГСО – круговая, ньютоновское поле – центральное, и отсутствуют возмущения, имеется симметрия по отношению к параметру Ω_0 : изменение Ω_0 приводит к повороту начальной орбиты и траектории перелета как целого вокруг оси вращения Земли. Параметр t_0 также не влияет на траекторию перелета, поскольку от него не зависят ни положение начальной орбиты в пространстве, ни положение КА на орбите в начальный момент времени (в силу принятых выше допущений). Поэтому характеристики номинальных траекторий (условно названных как "короткая", "средняя", "длинная", "очень длинная" и траектория "легкого" КА) одинаковы для всех значений параметров Ω_0 , t_0 . Они приведены в табл. 2.

УЧЕТ ВОЗМУЩЕНИЙ В УРАВНЕНИЯХ ДВИЖЕНИЯ КА

Изменение оскулирующей орбиты происходит под воздействием ускорения **a**, которое равно ВЛИЯНИЕ ВОЗМУЩЕНИЙ ПРИ МНОГОВИТКОВЫХ ПЕРЕЛЕТАХ

сумме ускорений от малой тяги **а**_{мт}, притяжения Луны **а**_п, Солнца **а**_с и вариаций геопотенциала $\mathbf{a}_{\text{вгп}}$: $\mathbf{a} = \mathbf{a}_{\text{мт}} + \mathbf{a}_{\text{л}} + \mathbf{a}_{\text{c}} + \mathbf{a}_{\text{вгп}}$. Тень влияет через обнуление ускорения а_{мт}. В результате все возмущения входят в vpавнения движения КА, и в т. ч. в vpавнения оптимального движения в равноденственных переменных, линейно [3], поэтому есть возможность исследовать их воздействие и совместно, и по отдельности.

Для возмущений **а**_л, **а**_с и **а**_{вгп} краевая задача формируется стандартным образом, а в случае учета возмущений от тени решается т. н. "неполная" краевая задача, в которой не учитываются условия оптимального пересечения границ тени [1].

В расчетах используется цилиндрическая модель тени, эфемериды DE405 [4] для расчета координат Луны и Солнца, матрица 12 × 12 разложения геопотенциала в ряд по сферическим функциям [5] и программное обеспечение SOFA [6] для учета вращения Земли.

ГРАВИТАЦИОННОЕ ВЛИЯНИЕ ЛУНЫ

На рис. 1а для $t_0 = 0$ показаны зависимости дополнительных затрат рабочего вещества $\Delta M_{\rm PB}$ от параметра Ω_0 для всех пяти траекторий. Для коротких траекторий 1 и 5 графики почти совпадают. Для остальных они качественно похожи, различаясь диапазоном изменения $\Delta M_{
m PB}$. В процентах от *М*_{РВ} это [-0.44...0.38%] (тр. 1), [-0.78...0.69%] (тр. 2), [-1.09...1.02%] (тр. 3), [-1.33...1.33%] (тр. 4), [-0.49...0.41%] (тр. 5).

Зависимость дополнительных затрат $\Delta M_{\rm PB}$ от параметра t_0 на интервале в 28 сут для различных значений Ω_0 показана на рис. 16 для средней траектории (тр. 2 на рис. 1а). Для графиков на рис. 1б максимальный диапазон изменения ΔM_{PB} (разность между максимальным и минимальным значениями) равен 0.21 (для $\Omega_0 = 260^\circ$), минимальный -0.14 (для $\Omega_0 = 0^\circ$), что в 7-10 раз меньше диапазона изменения $\Delta M_{\rm PB}$ для траектории 2 на рис. 1а.

Из этих данных следует, что наилучшие (наименьшие) $\Delta M_{\rm PB}$ достигаются примерно в диапазоне значений $\Omega_0 \in [280^\circ ... 320^\circ];$ приемлемые (отрицательные или близкие к нулевым) — для $\Omega_0 \in$ ∈ [210°...360°]. Причем для всех пяти траекторий затраты $\Delta M_{\rm PB}$ не превышают 1.5%.

ГРАВИТАЦИОННОЕ ВЛИЯНИЕ СОЛНЦА

Аналогичные графики в случае возмущений от Солнца представлены на рис. 2. В отличие от рис. 1а, где на интервале [0°...360°] один минимум, на рис. 2а графики $\Delta M_{\rm PB}$ имеют по два локальных минимума, причем меньший — в диапазоне [180°...360°].

Рис. 1. Гравитационное влияние Луны в зависимости от (а) параметра Ω_0 (при $t_0 = 0$) для пяти номинальных траекторий и (б) от t_0 (при заданных Ω_0) для средней траектории (тр. 2). Дополнительные затраты ΔM_{PB} в процентах от $M_{\rm PB}$.

А из графиков для средней траектории, представленных на рис. 26, видно, что диапазоны изменения $\Delta M_{\rm PB}$ довольно большие: 1.04% для $\Omega_0 =$ = 230°, 0.94% для 290°, 0.79% для 340°, что сравнимо с диапазоном 1.38% изменения $\Delta M_{\rm PB}$ для траектории 2 на рис. 2а. Поэтому для других значений t_0 графики, приведенные на рис. 2а, будут заметно отличаться, что видно из рис. 2в, где для средней траектории даны графики для to с интервалом в 1.5 мес. (0, 46, 91, 137). Для второго полугодия (183, 228, 274, 320), как следует из рис. 26,

Рис. 2. Гравитационное влияние Солнца в зависимости от (а) параметра Ω_0 – на пяти номинальных траекториях при $t_0 = 0$, (б) от t_0 – на средней траектории (тр. 2) для трех значений Ω_0 , и (в) от Ω_0 – также на средней траектории для четырех значений t_0 .

графики почти не будут отличаться от представленных.

Из рис. 2в видно, хотя и не так явно, как в случае с Луной, что диапазон углов Ω_0 [180°...360°] предпочтительней, чем диапазон [0°...180°]. А если учитывать совместное влияние Солнца и Луны, то

понятно, что диапазон углов Ω_0 [180°...360°] явно лучше. Отметим еще, что для всех пяти траекторий затраты $\Delta M_{\rm PB} < 1\%$.

ВЛИЯНИЕ ВЫКЛЮЧЕНИЯ ТЯГИ ЭРД ПРИ ПОПАДАНИИ КА В ТЕНЬ ЗЕМЛИ

Сначала рассмотрим среднюю номинальную траекторию, поскольку для нее задача с выключением тяги в области тени уже была подробно исследована в работе [1], в которой результаты расчетов дополнительных затрат $\Delta M_{\rm PB}$ были приведены в таблице с шагом по времени t₀ в 1.5 мес. и шагом по Ω_0 в 10°. Здесь они представлены более наглядно на рис. За, где изолинии отображают затраты $\Delta M_{\rm PB}$ как функции двух параметров (t_0, Ω_0). Они построены на основе расчетов с шагом по t_0 в 5 сут и шагом по Ω_0 в 10°. В [1] отмечалось, что решения неполной краевой задачи, которые не являются оптимальными, могут превышать номинальные затраты на десятки процентов. Для средней траектории max $\Delta M_{\rm PB} > 37\%$. Но при этом есть много "хороших" решений, с $\Delta M_{\rm PB} \le 2\%$. Таковых примерно 64%. Более того, поскольку за счет выбора времени старта в интервале одних суток можно получить весь спектр значений Ω_0 , то допустимо решать задачу минимизации $\Delta M_{\rm PB}$ по параметру Ω_0 . В результате были получены наилуч-

шие, с точностью до 1°, значения $\Omega_0^{\text{т}}$ (на рис. За они отмечены значками "х") такие, что для всех t_0 дополнительные затраты оказались отрицательными (отмечены белыми квадратами на рис. 36). Минимальное $\Delta M_{\text{PB}} = -0.5\%$.

Для короткой номинальной траектории результаты влияния тени представлены на рис. 4. Т. к. продолжительность перелета всего 69.1 сут, существуют такие значения параметров (t_0 , Ω_0), при которых КА вообще не попадает в тень Земли. Они отмечены значками "0". В остальной области параметров, за небольшим исключением, $\Delta M_{\rm PB} \leq 2\%$. Количество вариантов с $\Delta M_{\rm PB} > 2\%$ примерно 6%. Максимальное $\Delta M_{\rm PB} = 9.4\%$, минимальное $\Delta M_{\rm PB} = -0.9\%$. Наилучшие значения

 $\Omega_0^{\rm T}$ также отмечены значками "х" на рис. 4а, а соответствующие значения $\Delta M_{\rm PB}$ — черными квадратами на рис. 4б.

Для длинной номинальной траектории результаты влияния тени приведены на рис. 5. Максимальное $\Delta M_{\rm PB} = 31.7\%$, минимальное $\Delta M_{\rm PB} = -0.5\%$. В отличие от короткой и средней траекторий, вариантов с $\Delta M_{\rm PB} \le 2\%$ значительно меньше — примерно 40%, и не для всех t_0 на рис. 56 минимальное (по параметру Ω_0) значение $\Delta M_{\rm PB} \le 0$.

На траектории легкого КА ускорение малой тяги в 2–3 раза больше, чем в других случаях. По-

Рис. 3. Влияние возмущений на средней траектории: (а) изолинии уровней дополнительных затрат $\Delta M_{\rm PB}$ (t_0, Ω_0) из-за выключения тяги в области тени; значком "х" отмечены наилучшие (для данного t_0) значения Ω_0 ; (б) затраты $\Delta M_{\rm PB}$ (при наилучших Ω_0 , либо при $\Omega_0 = 180^\circ$) в случае влияния только тени (Т) либо совместного влияния тени, Солнца (С) и Луны (Л).

этому продолжительность перелета всего 4 мес., и есть немало вариантов (~10%), когда на траектории вообще нет участков с тенью (рис. 6а), а минимальные по параметру Ω_0 затраты $\Delta M_{
m PB}$ для всех t_0 меньше 0 (рис. 6б). И это при том, что раскрутка идет с начальной орбиты с высотой перигея <800 км, и оскулирующая орбита поворачивается на самый большой угол – 46.5°. По этим показателям номинальная траектория сравнима с очень длинной траекторией. По количеству вариантов с $\Delta M_{\rm PB}$ > 2% (~40%), максимальному и минимальному значениям $\Delta M_{\rm PB}$ (32.5%, -0.56%) она сравнима со средней траекторией, а по продолжительности перелета и количеству витков занимает промежуточное положение между короткой и средней траекториями.

Рис. 4. Влияние возмущений на короткой траектории. Значком "0" отмечены области параметров, для которых на траектории вообще нет участков с тенью.

В [1] отмечалось, что существует особое положение начальной орбиты относительно орбиты Солнца – при $\Omega_0 = 180^{\circ}$, при котором для всех значений t_0 величины $\Delta M_{\rm PB}$ "хорошие". Для рассмотренных траекторий это также имеет место (отмечено белыми кружками на рис. 26–66): $\Delta M_{\rm PB} < 0.6\%$ (тр. 2), <1.5% (тр. 1), <0.7% (тр. 3), <1.7% (тр. 5).

Отметим, что траектории 1–4 из табл. 2 можно рассматривать как траектории "одного ряда реше-

Рис. 5. Влияние возмущений на длинной траектории; "+Г" означает, что совместно с другими возмущениями учитывается влияние вариаций геопотенциала.

ний" комбинированного выведения КА на ГСО (с постепенным уменьшением вклада большой тяги и увеличением вклада малой тяги). И потому допустимо на основе решений рассмотренных задач (для короткой, средней и длинной траекторий) делать оценочные прогнозы для четвертой задачи — для очень длинной траектории. Сравнение рис. За, 4а, 5а показывает, что с увеличением количества витков и продолжительности номинальной траектории быстро уменьшается количество хороших вариантов (с $\Delta M_{\rm PB} \le 2\%$): 94, 64, 40%. Из этих данных следует, что хороших вари-

Рис. 6. Влияние возмущений на траектории легкого КА.

антов для очень длинной траектории скорее всего мало, да и расположены они большей частью в области $\Omega_0 \sim 180^\circ$.

Поскольку с увеличением количества витков и продолжительности перелета трудоемкость решения краевой задачи также быстро возрастает, было решено ограничиться расчетами в основном для $\Omega_0 = 180^\circ$ (белые кружки на рис. 7а) и близких к 180° значений (черные квадраты). Для $\Omega_0 = 180^\circ$ для всех значений t_0 имеем $\Delta M_{\rm PB} < 0.7\%$. Опираясь на результаты для длинной траектории, были

первых двух траекторий большая, дополнительные затраты из-за вариаций геопотенциала невелики (поэтому на графиках они не показаны). На короткой траектории для всех t₀ они не превышают 0.015% (и для наилучших Ω_0 , и для $\Omega_0 = 180^\circ$). На средней траектории для наилучших Ω_0 имеем $\Delta M_{\rm PB} < 0.05\%$, для $\Omega_0 = 180^\circ \Delta M_{\rm PB} < 0.16\%$.

ВЛИЯНИЕ ВАРИАЦИЙ ГЕОПОТЕНЦИАЛА

 $\Delta M_{\rm PB}, \%$

сделаны попытки поиска и для некоторых других значений Ω₀. Удалось найти ветвь решений, которая дает лучшие $\Delta M_{\rm PB}$ в интервале $t_0 \in [85...115]$ $(\Omega_0 \in [253^\circ...264^\circ])$. На рисунке она отмечена белыми треугольниками.

СОВМЕСТНОЕ ВЛИЯНИЕ ТЕНИ, ЛУНЫ И СОЛНЦА

Отметим, что половина наилучших Ω_0^{T} для короткой траектории расположена в диапазоне [180°...360°], для остальных трех траекторий в диапазоне [180°...360°] расположена большая часть наилучших Ω_0^{T} . Причем и для остальных значений t_0 есть "хорошие" Ω_0 из диапазона [180°...360°], для которых $\Delta M_{\rm PB}$ лишь незначительно больше минимальных значений из [0°...180°]. Т. к. диапазон [180°...360°] предпочтительней и в случае гравитационного воздействия Луны и Солнца, то при учете влияния трех возмущающих факторов (тени, Солнца, Луны) $\Delta M_{\rm PB}$ как правило меньше, чем при учете только тени. При этом наилучшие $\Omega_0^{\text{тсл}}$ оказываются вблизи значений $\Omega_0^{\text{т}}$, отмеченных значком "х" на рис. 3а—6а, для тех t_0 , для которых Ω_0^{T} находятся в диапазоне [180°...360°]. Разница не превышает 7°. А для перелетов с $\Omega_0 = 180^\circ$, наоборот, $\Delta M_{\rm PB}$ в большинстве случаев больше, чем при учете только тени – в основном из-за влияния Солнца. Это хорошо видно на рис. 36, где светлыми значками отмечены $\Delta M_{\rm PB}$ при возмущениях только от тени, темными значками – при возмушениях от тени. Солнца и Луны. Во втором

При сравнении двух графиков на рис. 36, прорисованных светлыми и темными кружками, хорошо видно долго-периодичное влияние Солнца и коротко-периодичное влияние Луны. Отметим, что хаотичность расположения черных квадратов на самом нижнем графике обусловлена не только влиянием Луны, но и возможным изменением количества витков при переходе к "соседней"

траектории, и дискретным изменением $\Omega_0^{\text{тсл}}$.

случае разница между двумя графиками (для наилучших Ω_0 и $\Omega_0 = 180^\circ$) может достигать 4% (рис. 6в).

1 0 min Δ0 60 120 180 0 240

Рис. 7. Влияние возмущений на очень длинной траектории.

На длинной траектории и траектории легкого KA дополнительные затраты для наилучших Ω_0 не превышают трети процента от номинальных, а для $\Omega_0 = 180^\circ$ они могут превышать 1.1% на длинной траектории и 1.6% на траектории легкого КА (рис. 5в и 6в).

Наконец, на очень длинной траектории (рис. 7б) для $\Omega_0 = 180^\circ$ вклад вариаций геопотенциала в $\Delta M_{
m PB}$ может превышать 2.1%, а общие затраты от возмущений могут быть более 2.7% (для $t_0 = 260$). На рисунке также показаны результаты локальной минимизации затрат по параметру Ω_0 вдоль основной ветви – черными квадратами, и вдоль второй ветви – черными треугольниками.

Отметим, что графики $\Delta M_{\rm PB}$ (t_0) с $\Omega_0 = 180^\circ$ имеют минимумы по t_0 обычно в окрестности $t_0 \sim$ ~ 90-100, иногда в окрестности t₀ ~ 270-280, причем для очень длинной траектории он равен $\sim 1\%$. для других траекторий — меньше 0. Для наилучших значений (t₀, Ω₀), затраты могут составить $\Delta M_{\rm PB} \simeq -1.5...-2\%$.

Итак, решая для многовитковых перелетов с высокоэллиптических орбит на ГСО неполную краевую задачу (не учитывающую оптимальные условия пересечения границ тени), с выключением тяги в области тени и возмущениями от Солнца, Луны и вариаций геопотенциала, для рассмотренных траекторий (продолжительностью от 2.3 до 11.5 мес., с количеством витков от 65 до 281 и начальными ускорениями от малой тяги $0.077...0.236 \text{ мм/c}^2$) для $\Omega_0 = 180^\circ$ в худшем случае (по дате старта t_0) получаем дополнительные затраты $\Delta M_{\rm PB} \sim 2-3\%$, в лучшем — от -0.5 до 1%. За

(a)

счет выбора хороших значений Ω_0 можно иногда получить выигрыш в несколько (3–4) процентов, и в лучших случаях иметь $\Delta M_{\rm PB} \sim -1...-2\%$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ахметиин Р.З. Многовитковые перелеты на геостационарную орбиту с обнулением малой тяги в области тени // Космич. исслед. 2020. Т. 58. № 4. С. 321–330.
- 2. *Petukhov V.G., Konstantinov M.S.* Easy Engineering Technique of Optimal Electric Propulsion Trajectory Estimation. IAC-06-C4.4.06, 2006.
- 3. *Ахметшин Р.3.* Возмущения от Солнца при многовитковых перелетах на геостационарную орбиту космического аппарата с малой тягой. Препринты ИПМ им. М.В. Келдыша. 2016. № 77.
- 4. JPL Planetary and Lunar Ephemerides. https://ssd. jpl.nasa.gov/?planet_eph_export
- 5. Прогноз орбитального движения космического аппарата. Численная модель. Научно-технический отчет. http://www.vadimchazov.narod.ru/text_ pdf/comalg.pdf
- 6. The International Astronomical union, Standarts Of Fundamental Astronomy (SOFA). http://www.iausofa.org.