УДК 629.7.036

СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ СОБСТВЕННОГО ИЗЛУЧЕНИЯ ЭЛЕКТРИЧЕСКИХ РАКЕТНЫХ ДВИГАТЕЛЕЙ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ В РАДИОДИАПАЗОНЕ ДЛЯ РАЗЛИЧНЫХ РАБОЧИХ ТЕЛ

© 2022 г. А. П. Плохих¹, Н. А. Важенин¹, Г. А. Попов^{1, *}, С. О. Шилов²

¹Научно-исследовательский институт прикладной механики и электродинамики Московского авиационного института, Москва, Россия ²Московский государственный технический университет им. Н.Э. Баумана, Москва, Россия *e-mail: riame@mai.ru Поступила в редакцию 07.03.2022 г.

После доработки 18.04.2022 г. Принята к публикации 04.05.2022 г.

Рассматриваются методика и результаты экспериментального исследования спектральных характеристик собственного излучения лабораторных моделей электрических ракетных двигателей с замкнутым дрейфом электронов на примерах двигателя с анодным слоем (ДАС) и стационарного плазменного двигателя (СПД) для мощностей разряда 600, 800 и 1000 Вт, вертикальной и горизонтальной поляризаций приема и различных используемых рабочих тел (криптон и ксенон). Проведенные исследования позволили выявить ряд особенностей радиоизлучения двигателей с замкнутым дрейфом электронов в спектральной области. Так, в частности, установлено, что ДАС имеет широкополосный спектр, зафиксированный в полосе частот от 1 до 4 ГГц. На исследуемых режимах доминирует вертикальная поляризация, при этом уровень радиоизлучения ДАС на криптоне на 5–10 дБ выше, чем на ксеноне. В свою очередь СПД имеет широкополосный спектр, зафиксированных режимах незначительно доминирует горизонтальная поляризация, при этом уровень радиоизлучения ДАС на криптоне на 5–10 дБ выше, чем на ксеноне. В свою очередь СПД имеет широкополосный спектр, зафиксированных режимах незначительно доминирует горизонтальная поляризация. Максимальное превышение уровня излучения при работе на криптоне по сравнению с ксеноном для СПД составляет порядка 10 дБ в диапазоне частот от 1 до 2 ГГц для горизонтальной поляризации. Полученные результаты позволяют решать задачи количественной оценки влияния излучения двигателей с замкнутым дрейфом электронов на помехоустойчивость систем космической связи.

DOI: 10.31857/S0023420622050065

введение

В космической отрасли в настоящее время наблюдается бурное развитие направления малых космических аппаратов (МКА) и многоспутниковых группировок на их основе. Так появляются новые виды космических услуг, как, например, широкополосный доступ в Интернет и предоставление услуг связи 4G/5G. Одновременно с этим повышаются требования к новым разработкам МКА с целью обеспечения их коммерческого успеха. Одну из проблем по обеспечению срока активного существования (САС) МКА можно решить за счет использования электроракетных двигательных установок (ЭРДУ) в их составе [1]. В настоящее время наибольший опыт разработки накоплен в части электрических двигателей с замкнутым дрейфом электронов, подразделяющихся на стационарные плазменные двигатели и двигатели с анодным слоем [2]. Традиционным рабочим телом для этих двигателей является ксенон

особой чистоты, высокая стоимость которого и ограниченное годовое производство может стать серьезным препятствием на пути их внедрения на МКА. Данное обстоятельство побуждает производителей ЭРД по всему миру активировать поиски подходящей замены ксенону, и одним из основных вариантов для этого является криптон более легкий инертный газ, который по основным своим характеристикам близок к ксенону. То, что данное направление востребовано, подтверждается фактом использования американской компанией SpaceX стационарных плазменных двигателей на криптоне при реализации программы многоспутниковой группировки Starlink [3].

Следует учитывать, что простая замена ксенона на криптон для существующих двигателей с замкнутым дрейфом электронов приводит к значительному ухудшению их характеристик [4, 5], что требует дополнительной оптимизации двигателей, основным рабочим телом которых будет криптон.

Рис. 1. Размещение БЭК на стенде: 1 -БЭК; 2 -радиопрозрачный цилиндр; 3 -ЭРД; 4 -основная вакуумная камера; 5 -система откачки; 6 -подвижная платформа; 7 -рельсовый путь; 8 -дверь; 9 -радиопоглощающее покрытие; 10 -диэлектрический помост; 11 -сетевой удлинитель; 12 -проходной сетевой фильтр; 13 -панель с проходными разъемами; 14 -реверсивный вентилятор; 15 -пульт управления вентилятором; 16 -дополнительное окно вентиляции; 17 -измерительные антенны; 18 -стойка с измерительным оборудованием.

При интеграции двигателей с замкнутым дрейфом электронов с МКА необходимо знать их уровни собственного электромагнитного излучения, возникающего из-за различных неустойчивостей и собственных плазменных колебаний [6]. Данное излучение может нарушать работу бортовой аппаратуры космического аппарата. Для оценки уровня излучения электрических ракетных двигателей в наземных условиях проводятся соответствующие исследования в интересах задач электромагнитной совместимости (ЭМС) [7–10].

В данной работе представлены результаты исследования собственного излучения ДАС и СПД в радиодиапазоне при работе на ксеноне и криптоне.

ЭКСПЕРИМЕНТАЛЬНАЯ БАЗА

Исследовательские испытания по определению собственного электромагнитного излучения СПД и ДАС проводились на комбинированном электровакуумном стенде Московского авиационного института [10], который имел две

КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ том 60 № 5 2022

раздельные зоны: вакуумную и измерительную (рис. 1). Вакуумная зона представляла собой горизонтально расположенную цилиндрическую вакуумную камеру (ВК) (4) объемом около 18 м³, диаметром 2 м и длиной 5.5 м. Высоковакуумная откачка камеры осуществлялась криогенными насосами (5) с суммарной производительностью более 100000 л/с. Остаточное давление перед запуском двигателя было не выше $2 \cdot 10^{-6}$ Торр. При работе двигателя (3) давление в ВК обеспечивалось в диапазоне (2–4) $\cdot 10^{-5}$ Торр.

Измерительная часть представляет собой мобильную безэховую экранированную камеру (БЭК) (1) с интегрированной в нее "радиопрозрачной" ВК из стеклопластика (2).

БЭК смонтирована на платформе (6), которая может перемещаться относительно неподвижной вакуумной камеры по рельсовому пути (7). В рабочем положении "радиопрозрачная" вакуумная камера стыкуется с основной, образуя общий вакуумный объем. Внутреннее пространство БЭК облицовано абсорберами пирамидальной формы, выполненными из радиопоглощающего материа-

Рис. 2. Схема двигателя с анодным слоем.

Рис. 3. Фотография ДАС (МГТУ им. Н.Э. Баумана).

ла. Диапазон эффективной работы абсорберов составляет от 0.3 до 18 ГГц и выше при коэффициенте безэховости не хуже -20 дБ. Измерительные антенны (17) размещаются на диэлектрическом помосте (10), смонтированном внутри БЭК. Через панель с проходными разъемами они соединены с измерительной аппаратурой (18), расположенной снаружи БЭК.

Использовалась измерительная рупорная антенна с рабочим диапазоном частот от 0.9 до 12.4 ГГц и линейной поляризацией. Конструкция рупора в данном диапазоне частот обеспечивала малый коэффициент стоячей волны по напряжению (КСВН) и монотонную частотную зависимость коэффициента усиления. При проведении экспериментов было выбрано угловое положение антенны относительно геометрической оси двигателя: (90 ± 5)°. Угол отсчитывался от направления плазменной струи двигателя. Элементы крепления антенны позволяли менять ее поляризацию на 90°. Антенна подключалась ко входу спектроанализатора.

ЭКСПЕРИМЕНТАЛЬНЫЕ МОДЕЛИ

Для эксперимента использовались две модели двигателей ДАС и СПД при работе на одинаковых мощностях разряда (600, 800 и 1000 Вт) и напряжении разряда 300 В для двух рабочих тел (криптон и ксенон).

В качестве ДАС использовалась экспериментальная модель, созданная в НОЦ "Ионно-плазменные технологии" МГТУ им. Н.Э. Баумана [11]. Двигатель построен по схеме одноступенчатого ускорителя с азимутальным дрейфом электронов и электропроводящими стенками ускорительного канала. Особенностью конструкции двигателя является применение магнитного шунта для профилирования распределения магнитного поля в ускорительном канале. Данное решение позволило вынести максимум магнитного поля за срез двигателя, сократить глубину ускорительного канала и. следовательно, обеспечить высокий ресурс работы устройства. В качестве шунта в данном двигателе используется рабочая камера анода-газораспределителя.

Конструктивно двигатель (рис. 2) состоит из анодного блока и магнитной системы, одновременно выполняющей роль несущего корпуса. Двигатель оснащен одной центральной и четырьмя периферийными электромагнитными катушками. Средний диаметр ускорительного канала двигателя составляет 38 мм, ширина и глубина ускорительного канала — 13.5 и 6 мм соответственно. Геометрия ускорительного канала была предварительно оптимизирована для работы на криптоне. Полюса были прикрыты тонкими экранами из нержавеющей стали. Общий вид представлен на рис. 3.

В качестве СПД использовалась созданная в НИИ ПМЭ МАИ экспериментальная модель с внешним диаметром ускорительного канала 70 мм, имеющая следующие особенности конструкции:

 Вынесение слоя ионизации и ускорения в расширенную часть ускорительного канала, за плоскость полюсов магнитной системы.

 Расширение выходной части ускорительного канала для снижения потерь ускоряющихся ионов и энергии на стенках разрядной камеры.

Классическая схема СПД (рис. 4) содержит анодный блок, состоящий из керамической разрядной камеры 3, анода, с газораспределителем 1 и магнитопровода, состоящего из фланца 7, внутреннего и внешнего полюсов (4, 6) и внутренней и внешней катушек 5. Средний диаметр ускорительного канала составлял 70 мм. Геометрия ускорительного канала и топология магнитного поля на выходном срезе оптимизированы для работы на режимах с большей плотностью расхода, что необходимо при использовании криптона [5]. Общий вид представлен на рис. 5.

Для проведения испытаний оба двигателя были укомплектованы катодами-нейтрализаторами производства ОКБ "Факел".

Исследуемые режимы работы ДАС и СПД приведены в табл. 1 и 2.

РЕЗУЛЬТАТЫ

Обработка экспериментальных данных осуществлялась путем пересчета показаний спектроанализатора в значение напряженности электрического поля в апертуре измерительной антенны. Результаты расчетов приведены в виде графиков спектральных характеристик (рис. 6–11), где по горизонтальной оси отложена частота от 1000 до 12000 МГц. По вертикальной оси – рассчитанное значение напряженности электрического поля в размерности: дБмкВ/м/МГц.

На всех графиках присутствует фоновый уровень излучения, соответствующий выключенному двигателю. При исследовании фонового излучения обнаружено около 4 групп дискретных частот, на которых зафиксированы доминирующие узкополосные внешние помехи. Их источником являются базовые станции сотовых операторов: GSM-900 (925–960) МГц; GSM-1800 (1805–1880) МГц; UMTS (3G): (2110–2170) МГц; LTE (4G): (2600–2700) МГн. Указанные помехи попалают в вакуумную камеру по каналам откачных систем и без внедрения в их тракты специальных заградительных систем борьба с их проникновением затруднительна. Поэтому измерения на этих частотах были исключены, что проявляется в виде наличия пропусков на графиках.

Характеристики излучения ДАС для 3-х режимов, двух рабочих тел и двух поляризаций представлены на рис. 6–7.

Рис. 4. Схема стационарного плазменного двигателя.

Рис. 5. Фотография экспериментального образца стационарного плазменного двигателя СПД-70.

Анализ экспериментальных результатов помехоэмиссии ДАС в диапазоне частот 1000– 2000 МГц для режимов разряда 600, 800 и 1000 Вт показал, что ДАС имеет широкополосный спектр излучения, зафиксированный в полосе частот от 1 до 4 ГГц для двух рабочих тел. При работе на ксеноне изменение мощности разряда ДАС в пределах 600–1000 Вт не приводит к существен-

Рабочее тело	Анодный расход, мг/с	Напряжение разряда, В	Ток разряда, А	Мощность разряда, Вт	Динамическое давление, ×10 ⁻⁵ Торр
Xe	2.0	300	2.05	600	3.0
Xe	2.5	300	2.66	800	3.7
Xe	3.1	300	3.33	1000	4.4
Kr	1.47	300	1.99	600	2.0
Kr	1.92	300	2.66	800	2.4
Kr	2.33	300	3.33	1000	2.9

Таблица 1. Параметры работы ДАС на ксеноне и криптоне

Рис. 6. Спектр излучения ДАС при работе на ксеноне: а) Вертикальная поляризация, б) Горизонтальная поляризация.

Рис. 7. Спектр излучения ДАС при работе на криптоне: а) Вертикальная поляризация, б) Горизонтальная поляризация.

Рабочее тело	Анодный расход, мг/с	Напряжение разряда, В	Ток разряда, А	Мощность разряда, Вт	Динамическое давление, ×10 ⁻⁵ Торр
Xe	2.09	300	1.81	600	2.9
Xe	2.72	300	2.66	800	3.9
Xe	3.37	300	3.3	1000	4.6
Xe	4.25	300	4.52	1350	
Kr	1,95	300	1.99	600	
Kr	2,35	300	2.66	800	4.4
Kr	2,89	300	3.33	1000	1.9
Kr	4.16	300	4.47	1350	3.9

Таблица 2. Параметры работы СПД-70 на ксеноне и криптоне

КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ том 60 № 5 2022

Рис. 8. Спектр излучения СПД-70 при работе на ксеноне: а) Вертикальная поляризация, б) Горизонтальная поляризация.

Рис. 9. Спектр излучения СПД-70 при работе на криптоне: а) Вертикальная поляризация, б) Горизонтальная поляризация.

Рис. 10. Сравнение спектров излучения СПД-70 и ДАС при работе на ксеноне. 1000 Вт: а) Вертикальная поляризация, б) Горизонтальная поляризация.

КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ том 60 № 5 2022

Рис. 11. Сравнение спектров излучения СПД-70 и ДАС при работе на криптоне. 1000 Вт: а) Вертикальная поляризация, б) Горизонтальная поляризация.

ному увеличению уровня излучения в диапазоне частот 1–3 ГГц. При этом уровень излучения с горизонтальной поляризацией на 2–5 дБ меньше, чем с вертикальной.

При переходе на криптон изменение мощности ДАС в пределах 600–1000 Вт приводит к более существенному изменению уровня излучения в диапазоне частот 1–3 ГГц: до 7 дБ для горизонтальной поляризации и до 10 дБ для вертикальной. При этом уровень излучения с горизонтальной поляризацией также оказывается на 2–3 дБ ниже, чем с вертикальной.

Характеристики излучения СПД для 4-х режимов, двух рабочих тел и двух поляризаций представлены на рис. 8–9.

Анализ экспериментальных результатов оценки помехоэмиссии СПД-70 в диапазоне частот 1000-12000 МГц показал, что двигатель имеет широкополосный спектр, зафиксированный в полосе частот от 1 до 3 ГГц. При работе на ксеноне уровень излучения слабо зависит от режима с тенденцией уменьшения с ростом мощности разряда. Однако для горизонтальной поляризации на режиме максимальной мощности (1350 Вт) фиксируется дополнительное превышение фона на частотах 6-11 ГГц. При переходе на криптон уровень излучения резко возрастает с тенденцией монотонного уменьшения с ростом мощности разряда. На режиме 600 Вт зафиксировано возникновение дополнительных всплесков излучения в диапазоне 2–7 ГГц и в окрестности частоты 10 ГГц. На основных режимах незначительно доминирует горизонтальная поляризация. Максимальное превышение уровня излучения при работе на криптоне по сравнению с ксеноном для СПД составляет порядка 10 дБ в диапазоне частот от 1 до 2 ГГц для горизонтальной поляризации.

С целью сравнительной оценки уровней излучения ДАС и СПД на рис. 10—11 приведены спектры излучения этих двигателей для одного режима 1000 Вт и двух рабочих тел и двух поляризаций.

Сравнительный анализ показывает, что при работе на ксеноне и мощности разряда 1000 Вт излучение ДАС превышает излучение СПД-70 на 5–7 дБ для вертикальной поляризации и 2–5 дБ для горизонтальной поляризации в диапазоне частот 1–2 ГГц.

Переход на криптон сохраняет превышение излучения ДАС на 5–7 дБ в диапазоне частот 1–2 ГГц для вертикальной поляризации, но дополнительно возникает превышение 5–8 дБ в диапазоне частот 2–3 ГГц. Для горизонтальной поляризации максимальное превышение порядка 5 дБ смещается в частотный диапазон 1–1.5 ГГц.

ЗАКЛЮЧЕНИЕ

По итогам измерений собственного излучения двигателей с замкнутым дрейфом электронов в диапазоне мощностей разряда 600—1000 Вт можно сделать следующие выводы:

1. ДАС имеет широкополосный спектр излучения, зафиксированный в полосе частот от 1 до 4 ГГц для двух рабочих тел. Спектры излучения, полученные при работе на ксеноне и криптоне, качественно совпадают, имея больший уровень для криптона. На исследованных режимах для двух рабочих тел доминирует вертикальная поляризация. Максимальное превышение уровня излучения при работе на криптоне по сравнению с ксеноном составляет порядка 10 дБ в диапазоне частот от 1 до 2 ГГц для вертикальной поляризации.

2. СПД 70 имеет широкополосный спектр, зафиксированный в полосе частот от 1 до 3 ГГц. При работе на ксеноне уровень излучения слабо зависит от режима, с тенденцией уменьшения с ростом мощности разряда. При переходе на криптон уровень излучения резко возрастает с тенденцией монотонного уменьшения с ростом мощности разряда. При этом, на режиме 600 Вт зафиксировано возникновение дополнительных всплесков излучения в диапазоне 2–7 ГГц и в окрестности частоты 10 ГГц. На исследованных режимах для двух рабочих тел незначительно доминирует горизонтальная поляризация.

3. Сравнительный анализ уровней излучения ДАС и СПД показывает, что при мощности разряда 1000 Вт ДАС имеет более высокий уровень излучения, превышающий уровень излучения СПД-70 на 5–7 дБ для вертикальной и на 2–5 дБ для горизонтальной поляризаций в диапазоне частот 1–2 ГГц, как при работе на ксеноне, так и на криптоне. При переходе на криптон дополнительно возникает превышение 5–8 дБ в диапазоне частот 2–3 ГГц. Для горизонтальной поляризации максимальное превышение порядка 5 дБ смещается в частотный диапазон 1–1.5 ГГц.

Исследование спектральных характеристик собственного излучения электрических ракетных двигателей с замкнутым дрейфом электронов в радиодиапазоне для различных рабочих тел были проведены коллективами Научно-исследовательского института прикладной механики и элек-тродинамики Московского авиационного института и МГТУ им. Баумана при финансовой поддержке Министерства науки и высшего образования РФ в рамках Федеральной целевой программы "Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014—2020 годы", соглашение № 075-15-2019-1686 от 26.11.2019 г. (УИП RFMEFI60419X0212).

СПИСОК ЛИТЕРАТУРЫ

1. Ахметжанов Р.В., Богатый А.В., Дьяконов Г.А. и др. Электрические ракетные двигатели нового поколения для малых космических аппаратов // Известия РАН. Энергетика. 2019. № 3. С. 3–13.

- 2. Zakharenkov L.E., Kim V., Lovtsov A.S. et al. Modern trends and development prospects of thrusters with closed electron drift. Seville, Spain. 2018. P. 00195.
- Henri Y. The OneWeb Satellite System // Handbook of Small Satellites. 2020. P. 1–10. https://doi.org/10.1007/978-3-030-20707-6 67-1
- 4. *Kim V., Zakharchenko V., Merkurev D. et al.* Influence of Xenon and Krypton Flow Rates through the Acceleration Channel of Morozov's Stationary Plasma Thruster on the Thrust Efficiency // Plasma Phys. 2019. V. 45. № 1. P. 11–20.
- Kim V., Merkurev D., Shilov E. et al. Study of the lowpower krypton-operated stationary plasma thruster plume // IOP Conf. Series: Materials Science and Engineering. 2020. V. 927. P. 012053. https://doi.org/10.1088/1757-899X/927/1/012053
- Kirdyashev K. The electromagnetic problems of interplanetary spacecraft communication // J. Phys.: Conf. Ser. 2020. V. 1560. P. 012077. https://doi.org/10.1088/1742-6596/1560/1/012077
- Beiting E., Pollard J., Khayms V., Werthman L. Electromagnetic Emissions to 60 GHz from a BPT4000 EDM Hall Thruster. IEPC-03-129 International Electric Propulsion Conference. Toulouse France. 2003. P. 17–21.
- Beiting E., Eapen X., Pollard J. et al. Electromagnetic Emissions from PPS®1350 Hall Thruster. IEPC-2009-071 International Electric Propulsion Conference. 2009.
- Baranov S., Vazhenin N., Plokhikh A., Popov G. Electromagnetic Emission from Electric Propulsions under Ground Conditions // Thermal Engineering. 2017. V. 64. № 13. P. 959–970. https://doi.org/10.1134/s0040601517130043
- 10. Plokhikh A., Vazhenin N., Popov G. Analysis of the influence of electromagnetic radiation from stationary plasma engines on the noise immunity of the Earthspacecraft communication channel // Cosmic Research. 2019. V. 57. № 5. P. 339–346. https://doi.org/10.1134/S0023420619050078
- Shilov S., Ivakhnenko S., Vorob'ev E. et al. Self-electromagnetic emission from a thruster with anode layer operating with krypton and xenon // J. Physics: Conference Series. 2021. V. 1925. P. 012081. https://doi.org/10.1088/1742-6596/1925/1/012081