_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ __ СОЕДИНЕНИЙ

УДК 548.736

СИНТЕЗ МОНОКРИСТАЛЛОВ И СТРУКТУРЫ Rb-БОРОЛЕЙЦИТА Rb(BSi₂)O₆ И БОРОПОЛЛУЦИТА Cs(BSi₂)O₆ ПРИ 293 И 120 К

© 2019 г. Т. А. Еремина¹, Е. Л. Белоконева^{1,*}, О. В. Димитрова¹, А. С. Волков¹

¹Московский государственный университет им. М.В. Ломоносова, Москва, Россия *E-mail: elbel@geol.msu.ru Поступила в редакцию 29.03.2018 г. После доработки 25.06.2018 г.

Принята к публикации 24.07.2018 г.

Исследованы структуры Rb-боролейцита $Rb_{1.0}(B_{0.333}Si_{0.667})_3O_6$ и борополлуцита $Cs_{0.87}(B_{0.290}Si_{0.710})_3O_6$ с использованием монокристаллов, полученных в гидротермальных условиях. В каркасных структурах типа цеолита в крупных окнах-полостях, образованных четырьмя, шестью и восемью тетраэдрами, находятся атомы Rb и Cs. Атомы B и Si статистически заселяют общие позиции. Установлено, что при комнатной температуре и вплоть до 120 K для обеих фаз сохраняются кубические пространственные группы: ацентричная пр. гр. $I\overline{43d}$ для Rb и центросимметричная голоэдрическая пр. гр. $Ia\overline{3d}$ для Cs. Формула Rb-боролейцита стехиометрическая, в то время как для борополлуцита обнаружено отклонение от стехиометрии — преобладание атомов Si в тетраэдрах и соответствующая дефектность заполнения позиции атомами Cs. Размерность катионов щелочных металлов оказывает решающее влияние на существование модификаций, что согласуется с полученными ранее результатами.

DOI: 10.1134/S0023476119010077

введение

Каркасные алюмосиликаты с крупными полостями и сквозными каналами, относящиеся к цеолитам, привлекают интерес в силу их своеобразного строения и как материалы, находящие применение в технологиях. Такие кристаллы могут быть катализаторами, ионообменниками или ионными проводниками. Они применяются как катодолюминесцентные кристаллы (вариации состава позволяют менять оптоэлектронные свойства), как красящие вещества (ультрамарин), как полупроводники нового типа [1, 2]. Для цеолитов разработана систематика и создана обширная база данных [3]. Большинство из них получено в условиях гидротермального синтеза, т.е. при достаточно низких температурах. К цеолитным минералам относятся лейцит KAlSi₂O₆ и поллуцит CsAlSi₂O₆. Для природного лейцита $K_{0.97}Fe_{0.01}Al_{1.01}Si_{1.99}O_6$ был исследован [4] фазовый переход из тетрагональной (пр. гр. $I4_1/a$) в кубическую (пр. гр. $Ia\overline{3}d$) модификацию методом высокоразрешающей нейтронографии, были установлены температурные области существования фаз. Помимо этих двух фаз зафиксирована переходная фаза с симметрией I4₁/acd [4, 5]. Кроме лейцита исследовали Rb- и Cs-лейциты $Rb_{0.99}Cs_{0.01}Al_{0.99}Si_{1.99}O_6$ и $Cs_{0.06}K_{0.01}Ca_{0.01}Al_{1.00}Si_{1.99}O_6$ (фактически поллуцит), полученные в результате изоморфных замещений [4]. Структурные превращения поллуцита в диапазоне от комнатной

до низких температур описаны в [6], а поллуцитов с дефектными составами $Cs_{0.8}Al_{0.8}Si_{2.2}O_6$ и $Cs_{0.75}Al_{0.75}Si_{2.25}O_6 - в$ [7].

Боролейцит KBSi₂O₆, как указано в [8], является производным лейцита, в состав которого кроме калия и кремния вошел бор вместо алюминия. Существуют две полиморфные модификации лейцита – тетрагональная низкотемпературная и кубическая высокотемпературная. Для боролейцита характерна кубическая симметрия. Его структурная модель была установлена в [8] и vточнена в [9]. В ацентричной пр. гр. $I\overline{4}3d$ атомы бора и кремния статистически заселяют одну независимую тетраэдрическую позицию в структуре, как это имело место для Al и Si. Установлена формула $K_{0.981}B_{1.041}Si_{1.959}O_6$. Наблюдается небольшой дефицит положительного заряда, а также дефектность заполнения позиции К при изменении соотношения В : Si = 1.04 : 1.96 с небольшим избытком бора. В гидротермальных условиях также получена и исследована центросимметричная моноклинная разновидность боролейцита [10].

Исследованы Rb-боролейциты $Rb_{0.96}B_{0.77}Si_{2.18}O_6$ и $Rb_{0.92}B_{0.46}Si_{2.42}O_6$ методом Ритвельда на поликристаллических образцах, приготовленных в процессе кристаллизации стекла. Оба имеют дефектную структуру, уже с недостатком бора, и ту же пр. гр. $I\overline{4}3d$ [11]. Кристаллическая структура борополлуцита $Cs_{0.82}B_{1.09}Si_{1.98}O_6$ (пр. гр. $Ia\overline{3}d$) исследована на монокристалле [12]. Согласно уточнению в случае электронейтральной формулы заселенность тетраэдрической позиции превышает возможную при одновременном статистическом заполнении позиции Cs.

В настоящей работе приведены результаты синтеза монокристаллов Rb-боролейцита и борополлуцита, определения структур при комнатной температуре и 120 К и анализа влияния температуры и размерности катионов на существование тех или иных модификаций, включая полученные ранее результаты.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез и свойства кристаллов. Монокристаллы Rb_{1.0}(B_{0.333}Si_{0.667})₃O₆ (I) и Cs_{0.87}(B_{0.290}Si_{0.710})₃O₆ (II) получены в гидротермальных условиях в системе A_2O -SiO₂-B₂O₃-H₂O, где A = Rb, Cs, при давлении $p \sim 80-90$ атм. В качестве минерализаторов присутствовали ионы CO₃²⁻ при их концентрации 15 мас. %. Синтез проводили в стандартных автоклавах, футерованных фторопластом при $T = 280^{\circ}$ C. Кристаллизация фазы I и II проходила при соотношении компонентов A_2O : SiO₂ : B₂O₃ = 2 :1 : 2. Время взаимодействия между ингредиентами составляло 18–20 сут, что было необходимо для полного завершения реакции.

Кристаллы I бесцветные, прозрачные, блестящие, изометричные, ограненные, с габитусом, близким к кубическому, размер кристаллов до 0.275 мм при среднем ~0.1–0.2 мм. Большинство представляет сростки в виде "виноградных гроздьев". Состав кристаллов I был определен методом рентгеноспектрального анализа, выполненного в лаборатории локальных методов исследования вещества МГУ на микрозондовом комплексе на базе растрового электронного микроскопа Jeol JSM-6480LV. Он показал присутствие лишь атомов Rb и Si.

Кристаллы II по внешнему виду аналогичны кристаллам I и также представляют собой сростки в виде "виноградных гроздьев". Размер кристаллов был несколько меньше, однако сростки крупнее размером — до 0.5 мм. Состав кристаллов был определен тем же методом, показавшим присутствие атомов Cs и Si.

Тест на нелинейно-оптическую активность синтезированных силикатов (генерацию второй оптической гармоники (**ГВГ**)) проводили методом [13]. Использовался импульсный Nd : YAGлазер ($\lambda_{\omega} = 1.064$ мкм). Измерения выполнены по схеме "на отражение" на порошкообразных образцах путем сравнения интенсивности возбуждаемого в порошке излучения на частоте второй гармоники ($I_{2\omega}$) с излучением эталонного порошкового препарата α -кварца ($I_{2\omega}$ SiO₂) [14]. Обе фазы заметного эффекта ГВГ не проявляли.

КРИСТАЛЛОГРАФИЯ том 64 № 1 2019

Рентгеноструктурное исследование. Параметры обеих фаз определены на дифрактометре Xcalibur S с CCD-детектором с использованием небольших зерен изометричной формы, ограненных и блестящих, отличавшихся высоким качеством. Выявлена кубическая симметрия для обоих образцов с небольшим различием в величинах параметров. Трехмерные экспериментальные наборы интенсивностей получены при 293 и 120 К. Для Rb-боролейцита был использован дифрактометр Bruker SMART APEX II, оснащенный координатным CCD-детектором и низкотемпературной приставкой. Получены данные в полной сфере обратного пространства, они обработаны по программе АРЕХ2 [15]. Три других эксперимента были выполнены на том же дифрактометре в полной сфере обратного пространства и обработаны по той же программе.

Экспериментальные данные свидетельствовали о том, что все рефлексы индицируются в кубических ячейках и зерна являются монокристаллами. Поглощение для кристаллов I и II не учитывали, поскольку величины μr_{max} малы (табл. 1). Рефлексы были усреднены в соответствующих дифракционных классах для I и II, причем для I без учета фриделевых пар. Уточнение параметров структур выполнено по комплексу программ SHELX [16].

Rb-боролейцит. Для Rb-боролейцита известна работа [11], в которой методом Ритвельда в рамках пр. гр. $I\overline{4}\,3d$ получены структурные формулы двух образцов Rb_{0.96}(B_{0.77}Si_{2.18})O₆ и Rb_{0.92}(B_{0.46}Si_{2.42})O₆, отражающие дефектность кристаллов, включая каркасные тетраэдры, заселенные изоморфно атомами бора и кремния, и вакансии в позициях. По степени дефектности Rb-боролейцит отличался от монокристалла боролейцита K_{0.981}(B_{1.041}Si_{1.959})O₆, параметры которого были уточнены с низким фактором расходимости [9]. Они были взяты за исходные координаты атомов соединения **I**.

Уточнение по массиву данных, полученных при комнатной температуре, выполнено в ацентричной кубической группе $I\overline{4}3d$. Фактор расходимости составил R = ~0.04 и подтвердил структурную модель, однако параметр Флэка x = -0.5[17] говорил о том, что в кристалле возможно двойникование, наиболее вероятное - по рацемическому мероэдрическому закону (не было обнаружено расщепление рефлексов), которое и было введено в уточнение. Это позволило существенно понизить фактор расходимости до R == 0.0225 (табл. 1). Соотношение компонентов составляло 0.49: 0.51, т.е. их объемы были практически равны друг другу. Кубический боролейцит $K_{0.981}(B_{0.347}Si_{0.653})_{3}O_{6}$ [9] характеризуется некоторым дефицитом положительного заряда ($\Delta = 0.24$) по сравнению с первоначально установленной

	I		П		
Химическая формула	$Rb_{1.0}(B_{0.333}Si_{0.667})_3O_6$		$Cs_{0.87}(B_{0.290}Si_{0.710})_3O_6$		
Температура, К	293	120	293	120	
М	248	3.46	280.87		
Пр. гр., Z	<i>I</i> 43 <i>d</i> , 16		$Ia\overline{3}d$, 16		
<i>a</i> , Å	12.7868(7)	12.7571(7)	12.9992(7)	13.0029(8)	
<i>V</i> , Å ³	2090.7(2)	2076.1(2)	2196.6(2)	2198.5(2)	
D_x , г/см ³	3.157	3.180	3.397	3.394	
Излучение; λ, Å		Mo <i>K</i>	MoK_{α} ; 0.71073		
μ, мм ⁻¹	9.889 6.316			316	
Размер образца, мм	0.22×0.22	$0.22 \times 0.22 \times 0.22$ $0.11 \times 0.11 \times 0.11$			
Дифрактометр	Bruker SMART APEX II				
Тип сканирования			ω		
θ_{max}	29.19	30.60	29.28	28.97	
Пределы h, k, l	$-16 \le h \le 17,$	$-18 \le h \le 18,$	$-17 \le h \le 17,$	$-17 \le h \le 17,$	
	$-16 \le k \le 17,$	$-18 \le k \le 18,$	$-17 \le k \le 17,$	$-17 \le k \le 17,$	
Varuusarna nahrausan	$-1/ \le l \le 1/$	$-10 \le l \le 10$	$-1/ \le l \le 1/$	$-1/ \le l \le 1/$	
измеренных/независи-	11989/4/2/403/0.023/	12807/338/308/0.0011	11833/234/244/0.0223	10823/237/232/0.0330	
мых/с $I \ge 1.96\sigma(I)/R_{int}$					
Метод уточнения	$F^{2}(hkl)$				
Весовая схема	$1/[\sigma^2(F_o)^2 +$	$1/[\sigma^2(F_o)^2 +$	$1/[\sigma^2(F_o)^2 +$	$1/[\sigma^2(F_o)^2 +$	
	$+(0.0381P)^{2}],$	$+(0.0306P)^{2}],$	$+(0.0188P)^{2}]+7.7408P,$	$+(0.000P)^{2}]+35.8740P,$	
	$P = [\max(F_o)^2 + 2(F)^2]/3$	$P = [\max(F_0)^2 + 2(F_0)^2]/3$	$P = [\max(F_o)^2 + 2(F_o)^2]/3$	$P = [\max(F_o)^2 + 2(F_o)^2]/3$	
Число параметров	$\begin{array}{c} 1 & 2 \langle I_{c} \rangle \\ 1 & 3 \rangle \end{array}$		17		
R_{all}	0.0232	0.0241	0.0217	0.0290	
R_{at}, R_{wat}	0.0226, 0.0535	0.0214, 0.0517	0.0204, 0.0493	0.0278, 0.0608	
S S	1.273	1.168	1.341	1.356	
$\Delta \rho_{\rm min} / \Delta \rho_{\rm max}$, $\Im / Å^3$	-1.90/0.577	-1.067/0.302	-0.649/0.127	-0.879/0.160	
Программы	SHELX [16]				

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения моделей структур I и II

идеально сбалансированной моделью $K(BSi_2)O_6$ [8]. Варьирование соотношения бор—кремний в случае I давало чуть меньшие факторы расходимости, однако не позволяло достоверно доказать отклонение от соотношения B : Si = 1 : 2, которое и было признано правильным для данного Rb-боролейцита. Для I опробована центросимметричная надгруппа Ia3d с учетом обнаруженного закона двойникования как, возможно, истинная. Для уточнения в качестве исходных были взяты известные координаты атомов поллуцита в данной группе. Полученный результат с R = ~0.15 говорил о том, что голоэдрическая надгруппа для Rbборолейцита I неверна. Было выявлено расщеп-

ление позиции теперь уже единственного атома О на две, однако введение расщепления не улучшало результат. Таким образом, для соединения I при комнатной температуре установлена пр. гр. *I*43*d* при отсутствии отклонения от стандартных заселенностей позиций всех атомов Rb_{1,0}(B_{0,333}Si_{0,667})₃O₆.

Уточнение по массиву данных, полученных при 120 К, было также выполнено в ацентричной кубической группе $I\overline{4}3d$. Расчет подтвердил существование данной модификации вплоть до 120 К. Принципиальных отличий по сравнению с результатами при комнатной температуре выявлено не было, а проверка центросимметричной надгруппы $Ia\overline{3}d$ также дала отрицательный ре-

64

СИНТЕЗ МОНОКРИСТАЛЛОВ И СТРУКТУРЫ

I, 293 K							
Атом	Позиция	x/a	y/b	<i>z,</i> / <i>c</i>	$U_{_{ m ЭKB}},{ m \AA}^2$		
Rb	16 <i>c</i>	0.36797(3)	0. 36797	0.36797	0.03034(2)		
Si*	48 <i>e</i>	0.37620(8)	0.34215(6)	0.08367(6)	0.0112(2)		
O 1	48 <i>e</i>	0.2883(1)	0.4169(1)	0.1244(2)	0.0184(3)		
O2	48 <i>e</i>	0.4808(1)	0.3922(1)	0.1203(2)	0.0268(4)		
I, 120 K							
Атом	Позиция	x/a	y/b	<i>z,</i> / <i>c</i>	$U_{_{ m ЭKB}}, { m \AA}^2$		
Rb	16 <i>c</i>	0.36587(2)	0.36587	0.36587	0.0212(1)		
Si*	48 <i>e</i>	0.37615(10)	0.34275(7)	0.08287(7)	0.0102(2)		
O 1	48 <i>e</i>	0.2893(1)	0.4202(1)	0.1229(2)	0.0136(4)		
O2	48 <i>e</i>	0.4820(2)	0.3921(2)	0.1160(2)	0.0190(4)		
II, 293 К							
Атом	Позиция	x/a	y/b	<i>z/c</i>	$U_{_{ m ЭKB}}, { m \AA}^2$		
Cs	16 <i>b</i>	0.125	0.125	0.125	0.0250(2)		
Si**	48g	0.125	0.16168(7)	0.41168(7)	0.0149(2)		
O(1)	96 <i>h</i>	0.1046(2)	0.1347(2)	0.7195(2)	0.0334(5)		
II, 120 K							
Атом	Позиция	x/a	y/b	<i>z./c</i>	$U_{_{ m ЭKB}},{ m \AA}^2$		
Cs	16 <i>b</i>	0.125	0.125	0.125	0.0169(2)		
Si**	48g	0.125	0.1616(1)	0.4116(1)	0.0131(4)		
O(1)	96 <i>h</i>	0.1046(3)	0.1345(3)	0.7197(3)	0.0327(8)		

Таблица 2. Координаты базисных атомов и их тепловые эквивалентные параметры в структурах I и II

* Позиция заселена в соотношении В : Si = 0.333 : 0.667.

** Позиция заселена в соотношении B : Si = 0.290 : 0.710.

зультат при факторе расходимости R = ~0.19. Параметр Флэка вновь свидетельствовал о существовании двойника, и учет того же рацемического закона дал удовлетворительный фактор расходимости R = 0.0214, однако с существенной погрешностью x = 0.000(652). Это может свидетельствовать о более сложном законе двойникования и существовании дополнительных "двойникующих" элементов симметрии, так что кристалл представляет собой полидоменный объект.

Структура борополлуцита исследована на монокристалле. Пр. гр. $Ia\overline{3}d$, как у поллуцита. Получена заключительная формула $Cs_{0.82}(B_{0.364}Si_{0.659})_3O_6$. Установлено отклонение от соотношения B : Si = = 1 : 2, структура дефектна. Однако сумма заселенностей, полученных при уточнении, превышала единицу [12].

Уточнение в центросимметричной надгруппе $Ia\overline{3}d$ структурных параметров соединения II выполнено до R = 0.0204 (табл. 1). Оно показало, что именно эта группа является истинной, что совпа-

КРИСТАЛЛОГРАФИЯ том 64 № 1 2019

дает с [12]. При уточнении в изотропном приближении тепловых смещений обнаружено, что атом в тетраэдрической позиции имеет заниженные тепловые поправки, что требует увеличения в ней содержания более тяжелого Si. Соотношение B : Si в смешанной позиции варьировалось в ходе уточнения при сохранении суммарной заселенности, равной единице. Для обеспечения электронейтральности формулы рассчитывали соответственно заселенности позиции атомов Cs. Найденный оптимальный результат отвечал формуле Cs_{0.87}(B_{0.290}Si_{0.710})₃O₆ при заметном избытке атомов Si. Уточнение по массиву данных, полученных при комнатной температуре, было выполнено и в ацентричной кубической группе $I\overline{4}3d$. Как и в случае Rb-боролейцита, параметр Флэка указывал на необходимость учета двойникования, введение которого дало очень низкий фактор расходимости R = 0.0175. Однако параметр Флэка определялся с высокой погрешностью: x = 0.000(880), и не было оснований для занижения симметрии.

Низкотемпературный эксперимент показал те же соотношения. Предпочтение было отдано центросимметричной группе, несмотря на низкий фактор расходимости R = 0.0189 в ацентричной группе, поскольку параметр Флэка при задании того же закона двойникования, как и при комнатной температуре, определялся с высокой погрешностью: x = -0.003(5.210).

Окончательное уточнение параметров моделей выполнено методом наименьших квадратов в соответствующих группах в анизотропном приближении тепловых смещений атомов с использованием комплекса SHELXL при варьировании весовой схемы. Это было важно для данных кристаллов, в дифракционной картине которых присутствовали отдельные особо яркие рефлексы. Несколько слабых некачественных отражений было отбраковано в обоих экспериментах. Кристаллографические данные, характеристики эксперимента и результаты уточнения структур приведены в табл. 1, координаты и тепловые параметры атомов – в табл. 2, основные межатомные расстояния — в табл. 3. Информация о структурах имеется в банке данных ICSD, депозиты № 434311 и 434312 (Rb при 120 и 293 K) и 434313 и 434314 (Сѕ при 120 и 293 К).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Структуры I и II обладают идентичными каркасами. Диагональные алмазные клиноплоскости размножают тетраэдры в перекрестные кристобалитовые цепочки, формирующие каркас. Выделяются кольца из четырех, шести и восьми тетраэдров, так что каркас обладает достаточно крупными полостями, и структура относится к типу цеолита (рисунок 1). Тетраэдры статистически заселены атомами двух сортов В и Si в соотношении 1:2 при небольшом отклонении от данного соотношения в пользу кремния в случае борополлуцита. Атомы щелочных элементов находятся в пустотах каркаса и характеризуются высокими координационными числами (табл. 3). Структуры практически идентичны, несмотря на то, что описываются различными группами, свясоотношением группа-подгруппа. занными Сходство топологии каркасов обусловливает отсутствие значимого сигнала ГВГ, несмотря на ацентричность структуры Rb-боролейцита. Вероятно, его псевдосимметрия, отвечающая надгруппе, определяет склонность к столь явно выраженному двойникованию. Немалую роль играет размер шелочного иона: в случае крупного Cs реализуется центросимметричный вариант, в случае меньшего по размеру Rb – ацентричный (при склонности к псевдоцентру инверсии). Несколько завышенные факторы расходимости в расчетах по экспериментальным данным при 120 К можно связать с возможными предпосылками фазовых превращений, которые, однако, не выявлены.

Таблица 3. Межатомные расстояния в тетраэдрах структур I и II

Атом	Расстояние	Атомы	Расстояние				
I, 293 K							
Rb–O1 \times 3	2.936(2)	Si*-O2	1.555(2)				
$-O1' \times 3$	3.336(2)	-O2'	1.559(2)				
$-O2 \times 3$	3.392(2)	-O1	1.554(2)				
-O2' × 3	3.494(2)	-O1'	1.565(2)				
Среднее	3.290	Среднее	1.558				
I, 120 K							
$Rb-O1 \times 3$	2.903(2)	Si*-O2	1.560(2)				
$-01' \times 3$	3.323(2)	-O2'	1.562(2)				
$-O2 \times 3$	3.411(2)	-O1	1.568(2)				
$-O2' \times 3$	3.438(2)	-O1'	1.570(2)				
Среднее	3.269	Среднее	1.565				
II , 293 К							
$Cs-O \times 6$	3.230(2)	Si**-O	1.556(2)				
$-0' \times 6$	3.367(2)	-O'	1.565(2)				
Среднее	3.298	Среднее	1.560				
II , 120 K							
$Cs-O \times 6$	3.232(4)	Si**-O	1.557(4)				
-O' × 6	3.372(4)	-0'	1.563(4)				
Среднее	3.302	Среднее	1.560				

* Позиция заселена в соотношении B : Si = 0.333 : 0.667.

** Позиция заселена в соотношении В : Si = 0.290 : 0.710.

В структурном типе лейцита-поллуцита и его производных боролейцитов и борополлуцита роль шелочных металлов весьма велика и напрямую определяет модификации и пространственные группы, которые различаются для соединений с различными катионами. Для лейцита (К) наиболее характерна тетрагональная модификация (пр. гр. $I4_1/a$), а кубическая (пр. гр. $Ia\overline{3}d$) известна лишь выше 983 К [5]. Для поллуцита (Cs) кубическая модификация стабильна при охлаждении вплоть до температуры 248 К, ниже которой наблюдается переход в тетрагональную фазу $I4_1/acd$ [6]. Для лейцитов $Rb_{0.99}Cs_{0.01}Al_{0.99}Si_{1.99}O_6$ и Cs_{0.96}K_{0.01}Ca_{0.01}Al_{1.00}Si_{1.99}O₆ (фактически поллуцита), полученных ионным замещением, установлено, что точка фазового превращения смещается в зависимости от размера крупного катиона. Область существования кубической фазы расширяется, сдвигается в область низких температур при переходе от атомов К к Rb и Cs от 948 до ~760 и ~400 К соответственно [4]. По-видимому, на фазовые переходы влияют также качество и способы получения образцов.

Для К-боролейцита, в котором атомы Al заменены атомами B, установлена структура с кубиче-

Рис. 1. Каркас структуры кубических боролейцитов (борополлуцита) в проекции вдоль оси 3: показаны тетраэдры каркаса, шариками обозначены атомы щелочных металлов, тонкими линиями – стороны кубической ячейки.

ской пр. гр. $I\overline{4}3d$, которая не была характерна ни для одного представителя семейства лейцитов (они преимущественно описывались тетрагональной пр. гр. $I4_1/a$). Для фазы I (Rb-боролейцита) также не наблюдается тетрагональной модификации ни в обычных условиях, ни при низких температурах, и сохраняется та же пр. гр. $I\overline{4}3d$. Характерно проявление двойникования, которое, по-видимому, связано с тенденцией к "кубизации" структуры с увеличением ионного радиуса Rb по сравнению с К. Для борополлуцита [12] была установлена пр. гр. $Ia\overline{3}d$, характерная и для поллуцита. Исследование структуры II вплоть до низких температур показывает сохранение данной пространственной группы в отличие от поллуцита, для которого переход в тетрагональную фазу был обнаружен при 248 К [7]. В случае со- $Cs_{0.9}Al_{0.9}Si_{2.1}O_6$, $Cs_{0.8}Al_{0.8}Si_{2.2}O_6$ елинений И Cs0.75Al0.75Si2.25O6 с дефектными составами обнаружено подавление фазового превращения в тетрагональную модификацию вплоть до температур 123 К и ниже. Это подобно результату, полученному для борополлуцита II, в котором наблюдается дефектность заполнения позиции Cs.

выводы

Исследованы структуры боролейцита $Rb_{1.0}(B_{0.333}Si_{0.667})_3O_6$ и борополлуцита $Cs_{0.87}(B_{0.290}Si_{0.710})_3O_6$ на монокристаллах, полученных методом гидротермального синтеза. Показа-

КРИСТАЛЛОГРАФИЯ том 64 № 1 2019

но, что в широком интервале температур, вплоть до 120 К, для реализации и сохранения пр. гр. $I\overline{4}\,3d$ или $Ia\overline{3}d$ Rb-боролейцита и борополлуцита соответственно важна роль крупных щелочных катионов (Rb или Cs) при замещении Al на B в тетраэдрах. Роль крупных катионов для всех разновидностей лейцитов (поллуцитов) является первостепенной, и это согласуется со сделанными ранее выводами. Важна также роль более мелких катионов в тетраэдрах, а именно замена Al–B.

Авторы выражают благодарность С.М. Аксенову за помощь в получении экспериментальных данных для исследования, С.Ю. Стефановичу за определение сигнала ГВГ, а также лаборатории локальных методов исследования вещества кафедры петрографии геологического факультета МГУ за определение составов кристаллов.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 17-03-00886а).

СПИСОК ЛИТЕРАТУРЫ

- Fischer R.X., Baur W.H. // Z. Kristallogr. 2009. B. 224. S. 185.
- Morgan K.L., Gier T.E., Harrison T.A. et al. // J. Am. Chem. Soc. 1993. V. 115. P. 10553.
- 3. *Baerlocher C., McCusker L.B.* Database of Zeolite Structures: http://www.iza-structure.org/databases
- 4. Palmer D.C., Dove M.T., Iberrson R.M., Powell B.M. // Am. Mineral. 1997. V. 82. P. 16.
- Dove M.T., Coul T., Palmer D.C. et al. // Am. Mineral. 1993. V. 78. P. 486.
- Yanase I., Kobayashi H., Shibasaki Y., Mitamura T. // J. Am. Ceram. Soc. 1997. V. 80. P. 2693.
- Kobayashi H., Sumino S., Tamai S., Yanase I. // J. Am. Ceram. Soc. 2006. V. 89. P. 3157.
- Ihara M., Kamei F. // Ceram. Soc. Jpn. 1980. V. 88. P. 32.
- Miklos D., Smrcok L., Durovic S. et al. // Acta Cryst. C. 1992. V. 48. P. 1831.
- 10. Белоконева Е.Л., Димитова О.В., Стефанович С.Ю. // Кристаллография. 2010. Т. 55. № 4. С. 618.
- 11. Bubnova R.S., Polyakova I.G., Krzhizhanovskyja M.G. et al. // Phys. Chem. Glasses. 2000. V. 41. P. 389.
- 12. Bubnova R.S., Stepanov N.K., Levin A.A. et al. // Solid. State. Sci. 2004. V. 6. P. 629.
- 13. *Kurtz S.K., Perry T.T.* // J. Appl. Phys. 1968. V. 39. P. 3798.
- Stefanovich S.Yu. Abstr. Europ. Conf. on Lasers and Electro-Optics (CLEO-Europe'94). Amsterdam, 1994. P. 249.
- 15. APEX2. Bruker AXS Inc., Madison, Wiskonsin, USA. 2009.
- 16. *Sheldrick G.M.* SHELX-97. Program for Structure Refinement. University of Goettingen, Germany. 1997.
- 17. Flack H.D. // Acta Cryst. A. 2008. V. 39. P. 876.