_ СТРУКТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УЛК 548.737

СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА 3-МЕТОКСИ-5-БРОМСАЛИЦИЛИДЕН-2-ФУРФУРИЛИМИНА (HL^5) И 3-НИТРОСАЛИЦИЛИДЕН-2-ФУРФУРИЛИМИНА (HL^6)

© 2019 г. В. С. Сергиенко^{1,2,*}, В. Л. Абраменко³, Ю. Е. Горбунова¹

¹ Институт общей и неорганической химии РАН, Москва, Россия
 ² Всероссийский институт научной и технической информации РАН, Москва, Россия
 ³ Луганский национальный университет, Луганск, Украина

* E-mail: sergienko@igic.ras.ru
Поступила в редакцию 20.02.2017 г.
После доработки 08.05.2018 г.
Принята к публикации 08.05.2018 г.

Проведен синтез и рентгеноструктурный анализ 3-метокси-5-бромсалицилиден-2-фурфуриламина ($\mathbf{H}L^{5}$) и 3-нитросалицилиден-2-фурфуриламина ($\mathbf{H}L^{6}$). Обе структуры стабилизированы прочными внутримолекулярными водородными связями N1-H1 \cdots O2. Обе молекулы реализуются в цвиттерионной форме. В молекуле $\mathbf{H}L^{6}$ имеет место вклад таутомерной хиноидной формы.

DOI: 10.1134/S0023476119010247

ВВЕДЕНИЕ

Рентгеноструктурный анализ (PCA) строения салицилидениминов (*o*-оксиазометинов)

 (HL^n) показал, что при кристаллизации их из растворов возможна фиксация определенных таутомерных форм — бензоидной (a), хиноидной (δ) или цвиттер-ионной (s) [1]:

В ряде работ установлено, что в кристаллическом состоянии о-оксиазометины могут сосуществовать как в хиноидной, так и енольной форме, т.е. кристаллы представляют собой суперпозицию двух таутомерных форм. Так, по данным РСА в кристалле N-(2-гидрокси-5-хлорфенил) салицилиденимина хинонаминная форма δ составляет 68%, а енолиминная a - 32% [2]. Авторы [3], исследуя термохромизм 5-хлорсалицилиден-(4-гидроксифенил)имина при температурах от 375 до 90 К, пришли к выводу, что азометин кристаллизуется в виде находящихся в равновесии неразрешенных ОН- и цвиттер-ионной NHформ, причем содержание последней увеличивается при снижении температуры. Недавно была получена серия о-оксиазометинов, производных

замещенных салициловых альдегидов и 2-фурфуриламина HL^n ($R = -CH_2-C_4H_4O$; Z = H (n = 1), 3-ОMe (n = 2) [4], 5-Br (n = 3), 4-ОH (n = 4) [5], строение которых установлено методами UK-спектроскопии. Кристаллическая структура HL^n (n = 2 и 4) определена методом PCA [4, 5]. Молекула HL^2 по данным PCA кристаллизуется в бензоидной форме a, HL^4 — в цвиттер-ионной a.

В продолжение исследований строения o-оксиазометинов и комплексов на их основе синтезированы малоизученные Z-салицилиден-2-фурфурилимины: Z = 3-OMe, 5-Br (HL^5) и Z = 3-NO $_2$ (HL^6), кристаллическая структура которых определена методом PCA.

Таблица 1. Кристаллографические характеристики, данные эксперимента и уточнения структур HL^5 , $C_{13}H_{12}BrNO_3$ и HL^6 , $C_{12}H_{10}N_2O_4$

Структура	HL_5	$\mathrm{H}L_{6}$			
M	310.15	246.22			
Сингония, пр. гр., Z	Моноклинная, $P2_1$, 2	Ромбическая, <i>Рbcn</i> , 8			
$a,b,c, ext{Å}$	4.8841(10), 12.1156(10), 10.9194(10)	16562(3), 7.391(2), 18.177(4)			
β, град	96.214(10)	90			
V, Å ³	642.35(15)	2225.0(8)			
D_x , Γ/cm^3	1.604	1.470			
Излучение; λ, Å	CuK_{α} ; 1.54178				
μ , mm^{-1}	4.378	0.952			
<i>T</i> , K	293(2)				
Размер образца, мм	$0.30 \times 0.15 \times 0.05$	$0.23 \times 0.18 \times 0.13$			
Дифрактометр	Enraf-Nonius CAD-4				
Тип сканирования	ω				
Учет поглощения; T_{\min} , T_{\max}	Полуэмпирический; 0.3534, 0.8108	Полуэмпирический; 0.8110, 0.8862			
$\theta_{ m max}$, град	49.98	49.99			
Пределы h, k, l	$-3 \le h \le 4, -12 \le k \le 12, -10 \le l \le 10$	$-16 \le h \le 16, -7 \le k \le 1, -1 \le l \le 18$			
Число отражений: измеренных/независимых (N_1) , R_{int} /с $I > 2\sigma(I)$ (N_2)	2396/1300, 0.0325/1126	2842/1147, 0.0174/1002			
Метод уточнения	Полноматричный МНК по F^2				
Число параметров	159	168			
R 1, w R 2 по N_1	0.0651, 0.1460	0.0852, 0.2407			
R 1, w R 2 по N_2	0.0530, 0.1388	0.0778, 0.2306			
S	1.064	1.070			
$\Delta \rho_{\min} / \Delta \rho_{\max}$, $3/Å^3$	-0.392/0.575	-0.527/0.707			
Программы	APEX2, SAINT и SADABS [6], SIR-92 [7], SHELXL-2014 [8]				

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез HL^5 . К раствору 2.31 г (0.01 моль) 3-метокси-5-бромсалицилового альдегида в 50 мл этанола добавляли 0.97 г (0.01 моль) 2-фурфуриламина. Смесь кипятили в течение 10 мин, послечего оставляли для кристаллизации в холодильнике на сутки. Выпавшие лимонные кристаллы фильтровали на фильтре Шотта, промывали холодным этанолом и сушили в токе сухого аргона. $T_{пл} = 84-85^{\circ}\mathrm{C}$. Аналогично получили HL^6 в виде коричневых кристаллов, $T_{пл} = 144-145^{\circ}\mathrm{C}$.

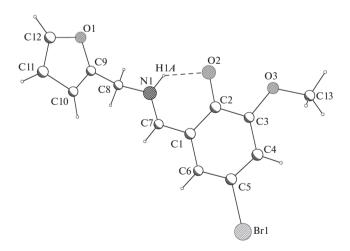
ИК-спектр HL^5 , см⁻¹: 1632, 1575, 1340, 1330, 1275, 1255, 1147, 1095, 1077, 1030, 1007, 992, 980, 950, 915, 886, 865, 848, 817, 742, 730, 696, 600, 578, 465.

ИК-спектр HL^6 , см⁻¹: 1635, 1615, 1530, 1510, 1500, 1370, 1350, 1305, 1230, 1150, 1140, 1100, 1070, 1030, 1015, 990, 960, 928, 890, 868, 830, 803, 792, 755, 725, 645, 635, 600, 542, 480, 450.

ИК-спектры регистрировали на спектрометре ИКС-29 в суспензии в вазелиновом масле.

Рентгеноструктурный анализ. Кристаллографические данные и характеристики эксперимента для кристаллов HL^5 , HL^6 приведены в табл. 1. Структуры расшифрованы прямым методом и уточнены методом наименьших квадратов в полноматричном анизотропном приближении для всех неводородных атомов. Позиции атомов водорода рассчитаны геометрически и включены в уточнение по модели "наездника". Атом Н1 в структуре HL^6 найден из разностного синтеза Φ_V рье и уточнен в изотропном приближении. Атом H1 в структуре HL^5 задан в рассчитанной позиции при атоме N1 (а не при O2 или O3) исходя из величины *R*-фактора: 0.0530 (0.0537 или 0.0538 для вариантов с атомом Н1 соответственно при O2 или O3). Высокое значение R-фактора структуры $\mathrm{H}L^6$ определяется плохим качеством кристалла. Кристалл HL^5 — рацемический двойник, структура уточнена по программе "Twin"; соотношение двух компонент двойника — 0.56:0.44. Основные длины связей и валентные углы в структуре HL^5 , HL^6 приведены в табл. 2. Полные

Таблица 2. Основные длины связей d (Å) и валентные углы ω (град) в структурах HL^5 и HL^6


Связь	H <i>L</i> ⁵	$\mathrm{H}L^6$	Угол	$\mathrm{H}L^{5}$	$\mathrm{H}L^{6}$
	D			ω	
N1-C7	1.262(13)	1.291(7)	C7-N1-C8	121.8(10)	123.5(4)
N1-C8	1.476(13)	1.485(7)	O1-C9-C10	104.9(10)	109.5(5)
O1-C9	1.353(19)	1.340(8)	O1-C9-C8	131.9(12)	133.2(6)
O1-C12	1.374(19)	1.427(8)	O1-C12-C11	104.7(16)	107.1(6)
O2-C2	1.328(12)	1.264(6)	C9-C10-C11	112.5(16)	107.3(5)
C1-C2	1.407(14)	1.443(7)	C10-C11-C12	107(2)	110.3(6)
C1-C6	1.434(14)	1.395(7)	O2-C2-C1	123.1(9)	121.2(4)
C1-C7	1.416(15)	1.406(7)	O2-C2-C3	118.1(9)	125.0(5)
C2-C3	1.429(15)	1.440(7)	Br1-C5-C4	117.5(8)	
C3-C4	1.371(14)	1.388(7)	Br1-C5-C6	117.1(7)	
C4-C5	1.363(14)	1.364(8)	C3-O3-C13	116.7(8)	
C5-C6	1.343(13)	1.375(8)	O3-C3-C2	113.5(9)	
C8-C9	1.454(16)	1.472(8)	O3-C3-C4	126.3(9)	
C9-C10	1.218(16)	1.361(7)	O3-N2-O4		121.6(5)
C10-C11	1.37(3)	1.345(9)	O3-N2-C3		119.2(5)
C11-C12	1.27(3)	1.318(9)	O4-N2-C3		119.2(5)
Br1-C5	1.928(10)		N2-C3-C4		116.3(5)
O3-C3	1.362(12)		N2-C3-C2		121.1(5)
O3-C13	1.413(10)				
N2-O3		1.203(6)			
N2-O4		1.224(6)			
N2-C3		1.439(7)			

кристаллографические данные для HL^5 , HL^6 депонированы в Кембриджском банке структурных данных (CCDC № 1529807, 1529947, http://www.ccdc.cam.ac.uk/deposit/).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Строение молекул HL^n показано на рис. 1 (n = 5) и 2 (n = 6). В обеих молекулах достаточно прочные внутримолекулярные водородные связи N1-H1···O2 (N-H 0.86 и 1.07(9) Å, H···O 1.91 и 1.87(9) Å, N···O 2.595(11) и 2.624(6) Å, N-H···O 135° и $124(6)^{\circ}$ для HL^{5} и HL^{6} соответственно) замыкают шестичленные Н-циклы NHOС3, такие же, как в ранее исследованных молекулах HL^2 [4] и H L^4 [5]. Учитывая наличие достаточно длинной связи N1-H1 1.07(9) Å, можно полагать, что молекула HL^6 (так же, как и HL^4) реализуется в цвиттер-ионной биполярной форме в с положительным зарядом, локализованным на атоме азота, и отрицательным — на атоме кислорода. С другой стороны, в этой молекуле обе связи N1-C7 1.291(7) и O2-C2 1.264(6) Å имеют повышенную

кратность (последняя связь существенно короче, чем аналогичная связь в структурах с n=4 и 5: 1.304(6), 1.328(12) Å соответственно), что может свидетельствовать о вкладе таутомерной хиноидной формы δ . Также сложно однозначно судить о

Рис. 1. Строение молекулы HL^5 .

$$O_3$$
 O_2 O_4 O_4 O_5 O_6 O_7 O_8 O_8

Рис. 2. Строение молекулы HL^6 .

таутомерной форме молекулы кристалла-двойника $\mathrm{H}L^5$, так как атом $\mathrm{H}1$, геометрически заданный при атоме $\mathrm{N}1$ на расстоянии $\mathrm{N}1\mathrm{-H}1$ 0.86 Å, не поддается уточнению. В этой структуре связь $\mathrm{N}1\mathrm{-C}7$ 1.262(13) Å — самая короткая из аналогичных связей в трех структурно исследованных молекулах $\mathrm{H}L^n$ (1.275(2), 1.303(7), 1.286(6) Å соответственно для n=2,4,6). Наиболее приемлемый вариант таутомерной формы для $\mathrm{H}L^5$ — цвиттерионная.

Отметим, что замена заместителей в монозамещенных *R*-салицилиден-2-фурфуриламинах

 HL^n ($R = -CH_2C_4H_4O$; Z = 3-OMe (n = 2); 4-OH (n = 4); 3-OMe, 5-Br (n = 5); 3-NO₂ (n = 6)) влияет на реализацию одной из трех таутомерных форм: бензоидной, a (HL^2), хиноидной, δ ; цвиттер-ионной, e (HL^4), либо смеси двух из трех форм e, e, e.

В структурах Н L^n (n=5,6) между молекулами существуют только ван-дер-ваальсовы взаимолействия.

Авторы выражают благодарность А.В. Чуракову за помощь в проведении эксперимента РСА.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гарновский А.Д., Васильченко И.С., Гарновский Д.А. Современные аспекты синтеза металлокомплексов. Основные лиганды и методы. Ростов н/Д: ЛаПО, 2000. 355 с.
- 2. *Elerman Y., Kabak M., Kavlakoglu E. et al.* // J. Mol. Struct. 1999. V. 510. № 1–3. P. 207.
- 3. *Ogawa K., Fujiwara T., Harada J. //* Mol. Cryst. Liq. Cryst. Sci. Technol. A. 1999. V. 344. № 1. P. 169.
- Сергиенко В.С., Абраменко В.Л., Горбунова Ю.Е., Чураков А.В. // Журн. неорган. химии. 2017. Т. 62. № 2. С. 180.
- Сергиенко В.С., Абраменко В.Л., Горбунова Ю.Е. // Журн. неорган. химии. 2017. Т. 62. № 8. С. 1043.
- 6. APEX2, SAINT, SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. 2008–2009.
- Altomare A., Gascsrano G., Giacovazzo C., Guagliard A. // J. Appl. Cryst. A. 1993. V. 26. P. 343.
- 8. Sheldrick G.M. // Acta Cryst. A. 2008. V. 64. P. 112.