_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ ____ Соединений

УДК 548.736

ПОЛЯРНЫЙ ГЕРМАНАТО-СИЛИКАТ К_{1.46}Pb_{1.54}Ca[(Ge_{0.23}Si_{0.77})₃O₉](OH)_{0.54} · 0.46H₂O С ВОЛЛАСТОНИТОВОЙ ЦЕПОЧКОЙ И ШИРОКИМ ИЗОМОРФИЗМОМ

© 2019 г. Е. Л. Белоконева^{1,*}, И. А. Морозов¹, О. В. Димитрова¹, А. С. Волков¹

¹Московский государственный университет им. М.В. Ломоносова, Москва, Россия

* *E-mail: elbel@geol.msu.ru* Поступила в редакцию 09.07.2018 г. После доработки 20.08.2018 г. Принята к публикации 20.08.2018 г.

В гидротермальных условиях в системе PbO–SiO₂–GeO₂ получены кристаллы нового полярного германато-силиката с общей формулой K_{1.46}Pb_{1.54}Ca [(Ge_{0.23}Si_{0.77})₃O₉](OH)_{0.54} · 0.46H₂O. Параметры ромбической ячейки: a = 14.0879(3), b = 5.9202(1), c = 13.0465(3) Å, пр. гр. *Pmn2*₁. Кристаллическая структура определена прямыми методами по программе SHELX и уточнена до фактора расходимости R = 0.0388 с использованием 3643 рефлексов с $I \ge 1.96\sigma(I)$. Для нового соединения характерен широкий изоморфизм заселения позиций атомами Ge и Si, K и Pb, (OH) и H₂O, и лишь три из десяти катионных позиций структуры заняты атомами Pb, K и Ca без примесей. Анионный радикал представлен волластонитовыми трехчленными тетраэдрическими цепочками, соединенными октаэдрами Pb1 в смешанный каркас, известный для K,Sc-силиката и высокотемпературной модификации K,Ho-силиката. Координация свинца в позиции Pb2(Pb_{0.64}K_{0.36}) наподобие зонтичной (четвертая связь идет на молекулы воды и (OH)-группы в канале структуры) отражает неактивность неподеленной электронной пары атомов Pb. Несмотря на ацентричность кристаллов, они, повидимому, не обладают выраженными нелинейно-оптическими свойствами.

DOI: 10.1134/S0023476119020061

ВВЕДЕНИЕ

Разнообразные и сложные структурные мотивы силикатов, основных минералов земной коры, демонстрируют комбинации кремнекислородных тетраэдров от простейших изолированных группировок до сложнейших каркасов [1, 2]. Соединения данного класса многочисленны и не только известны в природе, но и получены синтетическим путем. Германий является аналогом кремния, однако у него больший ионный радиус, и он демонстрирует как тетраэдрическую, так и октаэдрическую координацию, которая для кремния достижима лишь при высоких давлениях [1]. Известно около десяти германатов свинца. Обнаружены сегнетоэлектрические свойства ряда ацентричных представителей. Для обоих элементов возможны изоморфные замещения в общей тетраэдрической позиции, и такие соединения относятся к германато-силикатам. Их число невелико по сравнению с собственно силикатами, но для ряда структурных типов получены соединения с изоморфным вхождением Ge в тетраэдрические позиции. К их числу относятся аналоги минералов, в том числе породообразующие, а также разнообразные цеолиты согласно базе данных [3].

Таким образом, представляет интерес получение кристаллов смешанных германато-силикатов и их исследование.

В настоящей работе приведены результаты гидротермального синтеза, исследования кристаллической структуры нового германато-силиката и описаны особенности его строения, в том числе достаточно необычный широкий изоморфизм. Проведено сравнение с известными представителями данного структурного типа [4].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез, состав и свойства кристаллов. Кристаллы $K_{1.46}$ Pb_{1.54}Ca[(Ge_{0.23}Si_{0.77})₃O₉](OH)_{0.54} · 0.46H₂O (I) получены в гидротермальных условиях. Соотношение оксидов в системе составляло PbO : CaO : SiO₂ : GeO₂ = 3 : 1 : 2 : 2. Синтез проводили в высококонцентрированных растворах K_2 CO₃ (20 мас. %) в стандартных автоклавах объемом 5–6 см³, футерованных фторопластом, при $T = 270-280^{\circ}$ C и P = ~80-90 атм. В качестве минерализаторов также присутствовали ионы Cl⁻ и B₂O₃. Нижний предел температуры ограничен кинетикой гидротермальных реакций, верхний –

возможностями аппаратуры. Коэффициент заполнения автоклава выбирали таким образом, чтобы давление оставалось постоянным. Время взаимодействия составляло 18—20 сут, что было необходимо для полного завершения реакции, после чего кристаллы, полученные в результате опыта (невысокий выход кристаллов), были промыты водой. Среди шихты и окалины были обнаружены немногочисленные прозрачные бесцветные уплощенные квадратно-призматические кристаллы. Они были мелкие, высота отдельных призм достигала 0.15 мм.

Состав кристаллов определен с помощью рентгеноспектрального анализа, выполненного в лаборатории локальных методов исследования вещества МГУ на микрозондовом комплексе на базе растрового электронного микроскопа Jeol JSM-6480LV. Он показал присутствие атомов K, Pb, Ca, Ge, Si. Тест на генерацию второй оптической гармоники [5], давший сигнал ~0.1 по отношению к сигналу эталона кварца, из-за слишком малого количества кристаллов не позволил достоверно оценить свойства, поэтому вопрос о центросимметричности или ацентричности нового соединения решался в ходе структурной расшифровки.

Рентгеноструктурное исследование. Параметры новой фазы определены на дифрактометре Xcalibur S с CCD-детектором. Дифракционные картины ряда кристаллов свидетельствовали об их разупорядочении. Для съемки был выбран небольшой по размеру и наиболее совершенный прозрачный уплощенный прямоугольно-призматический монокристалл размером 0.10 × 0.04 × × 0.03 мм. Экспериментальный набор для определения структуры получен на том же дифрактометре в области, превышающей половину сферы обратного пространства. Обработка данных выполнена с использованием программы CrysAlis [6], согласно погасаниям рефлексов была выбрана ацентричная пр. гр. Ртл21. Расшифровка структуры выполнена прямыми методами без предварительного знания химической формулы по программе SHELXS [7]. Были найдены положения основных тяжелых атомов Pb1, Pb2, а также Ge, K1, K3 в частных и общих позициях пр. гр. Pmn2₁. Анализ межатомных расстояний между локализованными тяжелыми атомами и пиками электронной плотности на картах разностных синтезов Фурье, которые соответствовали 11 атомам О. позволил установить сорт каждого тяжелого атома. В результате в структуре были определены позиции атомов Pb1, Pb2, Pb3, K1, K2. В трех тетраэдрических позициях, очевидно, находились одновременно и атомы Si, и атомы Ge, поскольку расстояния в них превышали расстояния Si–O. Найдена была дополнительно позиция атома Са, и фактор расходимости для данной модели

составлял ~0.098 в изотропном приближении атомных смещений. Дальнейший анализ показал, что в структуре имеются всего 12 позиций для атомов О в частных и общих положениях пространственной группы. По результатам уточнения кристалл – рацемический двойник с соотношением компонентов ~0.2:0.8. Были получены завышенные расстояния для атомов Pb2 и Pb3 при одновременно завышенных их смещениях в изотропном приближении. Было допущено изоморфное заселение данных позиций более крупными и легкими атомами К. В то же время для позиции К2 ситуация была обратной, что говорило о возможном изоморфном вхождении Pb. Позиции Pb1, K1 и Ca были заняты только этими атомами. Заселенность каждой из семи смешанных позиций, включая тетраэдрические, была получена путем пошагового варьирования составов с учетом минимального фактора расходимости и корректности тепловых поправок. Каждая позиция была заселена атомами обоих сортов без дефектов. Позиция К2 помимо статистического заполнения оказалась расщепленной на две, расстояние между которыми 0.6 Å. Анализ показал. что в структуре имеются мостиковые между тетраэдрами в цепочке атомы Об, О8, О10, О11. Две позиции О3 и О12 согласно балансу валентных усилий отвечали изоморфному вхождению в них групп ОН- и молекул воды в соотношении 0.54 : 0.46. Итоговая структурная формула, записанная для каждой позиции, достаточно отражает широкий сложна и изоморфизм: $Pb(Pb_{0.32}K_{0.18})(Pb_{0.12}K_{0.38})K(K_{0.4}Pb_{0.1})Ca[(Ge_{0.3}Si_{0.7})]$ $(Ge_{0.2}Si_{0.8})_2O_9](OH_{0.27}H_2O_{0.23})_2$. Ей соответствует химическая формула $K_{1.46}$ Pb_{1.54}Ca[(Ge_{0.7}Si_{2.3})O₉](OH)_{0.54} · · 0.46H₂O. Поглощение не учитывали, поскольку средняя величина $\mu r \sim 0.8$ и анизотропия формы исследуемого высоко поглощающего кристалла сказались лишь на уточнении тепловых параметров атомов О в изотропном приближении. Заключительное уточнение позиционных и анизотропных тепловых параметров всех остальных атомов выполнено методом наименьших квадратов с помощью того же комплекса программ. Учет аномального рассеяния Мо-излучения и варьирование весовой схемы позволили снизить фактор расходимости до $R_{hkl} = 3.88\%$ с использованием 3643 рефлексов с $I \ge 1.96\sigma(I)$. Шесть слабых некачественных отражений были отбракованы. Полученный параметр Флэка x = 0.020(1) указывал на правильность выбранной абсолютной конфигурации.

Кристаллографические данные, характеристики эксперимента и результаты уточнения структуры приведены в табл. 1, координаты и тепловые параметры атомов — в табл. 2, основные межатомные расстояния — в табл. 3. Информация о структуре имеется в банке данных ICSD (депозит № 433781).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для нового полярного германато-силиката I характерен широкий изоморфизм заселения позиций атомами Ge и Si, K и Pb, (OH) и H₂O, и лишь три из десяти катионных позиций структуры заняты атомами Pb, К и Са без примесей. Анионный радикал представлен волластонитовыми трехчленными тетраэдрическими цепочками. вытянутыми вдоль оси а и соединенными октаэдрами Pb1 в смешанный каркас (рисунок 1а). Подобный каркас известен для синтетического силиката $K_3Sc[Si_3O_9]$ · H_2O (II), полученного ранее и имеющего близкие, но меньшие по сравнению с I (табл. 2) на ~0.3 Å параметры элементарной ячейки: a = 13.88, b = 12.74, c = 5.73 Å, та же пр. гр. $Pmn2_1$ [4]. Формула соединения I, записанная по аналогии с Π как $(K_{1.46}Pb_{0.54}Ca)Pb[(Ge_{0.7}Si_{2.3})O_9](OH)_{0.54} \cdot 0.46H_2O,$ отражает изоморфное заселение позиций различными ионами при сохранении ее электронейтральности. Радиусы катионов в октаэдрах сушественно различаются, и в случае Sc, более мелкопо сравнению с Рb, каркас искажен го минимально (рис. 16). Как показано в [4], соединение со Sc аналогично модификации $K_3Ho[Si_3O_9]$, которая была получена в результате фазового перехода при повышении температуры из центросимметричной структуры и для которой в [4] был предложен механизм перехода типа порядокбеспорядок, основанный на симметрийном подходе. Достаточно неожиданной является реализация данного смешанного каркаса с гораздо более крупным Pb. Это, по-видимому, обусловлено вхождением в тетраэдрические позиции большого количества атомов Ge и укрупнением тетраэдров. сравнимых по размеру с Рb-октаэдрами. Тем не менее каркас искажен так же. как и в структуре соединения с гольмием. По сравнению с соединением II в структуре I позиция K1 отвечает Са и занята только им. Позиция К2 соответствует К1 и заселена только атомами К. Позиция КЗ (в центрах полостей каркаса) отвечает К2, заселена статистически (K,Pb) и расщеплена. Позиция К4 соответствует Pb2, занята совместно с К. Позиция К5 (в центрах полостей каркаса) отвечает Pb3, она смешанная (K,Pb), с избытком К. Тетраэдрические позиции совпадают, однако заполнены в структуре I статистически (Si,Ge) в несколько другом соотношении (рис. 1, табл. 2). Межатомные расстояния в катионных позициях (табл. 3) соответствуют указанным составам позиций с учетом стандартных межатомных расстояний. Заселенные статистически в структуре I позиции (OH, H₂O) в структуре II заняты молекулами воды. Координация позиции К4 в структурах II и I одна и та же, поэтому возможно вхождение в нее вместо атомов К атомов Рb в большем количестве по сравнению с К. Для атомов Pb2 наблюдается

Таблица 1. Кристаллографические данные, характеристики эксперимента и результаты уточнения структуры I

Химическая формула	$\frac{K_{1.46}Pb_{1.54}Ca[(Ge_{0.23}Si_{0.77})_{3}O_{9}]}{(OH)_{0.54} \cdot 0.46H_{2}O}$		
М	691.66		
Сингония, пр. гр., Z	Ромбическая, <i>Ртп</i> 2 ₁ , 4		
<i>a</i> , <i>b</i> , <i>c</i> , Å	14.0879(3), 5.92023(12), 13.0465(3)		
$V, Å^3$	1088.13(4)		
D_x , г/см ³	4.222		
Излучение; λ, Å	$MoK_{\alpha}; 0.71073$		
μ, мм ⁻¹	27.038		
<i>T</i> , K	293		
Размер образца, мм	$0.10\times0.04\times0.03$		
Дифрактометр	XCalibur S		
Тип сканирования	ω		
θ_{max}	32.65		
Пределы h, k, l	$-21 \le h \le 21, -8 \le k \le 8, \\ -18 \le l \le 18$		
Количество рефлексов измеренных/независи- мых/с $I \ge 1.96\sigma(I)/R_{ycp}$	21901/3841/3643/0.0501		
Метод уточнения	$F^2(hkl)$		
Весовая схема	$\frac{1}{[\sigma^2(F_o)^2 + (0.0445P)^2 + 17.6600P]}, P = [\max(F_o)^2 + 2(F_c)^2]/3$		
Число параметров	120		
<i>R</i> _{all}	0.0416		
R_{gt}, R_{wgt}	0.0388, 0.0927		
S	1.032		
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-2.649/2.311		
Программы	SHELX		

зонтичная координация, выявленная ранее в [8] — три атома О. Однако имеется четвертый атом О (позиция ОЗ с (OH,H₂O)), достраивающий зонтик до искаженного тетраэдра. Подобная координация не оставляет места для активной неподеленной электронной пары атома Pb.

ПОЛЯРНЫЙ ГЕРМАНАТО-СИЛИКАТ

Атом	Состав позиции	Позиция	x/a	y/b	<i>z/c</i>	$U_{_{ m ЭKB}},{ m \AA}^2$
Pb1		4 <i>b</i>	0.25912(2)	0.15243(6)	0.0486	0.00795(10)
Pb2	Pb _{0.64} K _{0.36}	2 <i>a</i>	0.5000	-0.1561(2)	0.4176(1)	0.0197(2)
Pb3	Pb _{0.24} K _{0.76}	2 <i>a</i>	0.5000	0.3144(4)	0.2033(2)	0.0240(4)
K1		2 <i>a</i>	0.5000	0.1406(8)	-0.0797(5)	0.0209(9)
K2*	K _{0.4} Pb _{0.1}	2 <i>a</i>	0.0000	0.3650(10)	0.2124(6)	0.030(1)
K2'*	K _{0.4} Pb _{0.1}	2 <i>a</i>	0.0000	0.2600(20)	0.1980(5)	0.039(2)
T1	Si _{0.7} Ge _{0.3}	4 <i>b</i>	0.3888(2)	0.6502(4)	-0.0324(2)	0.0224(5)
<i>T</i> 2	Si _{0.8} Ge _{0.2}	4 <i>b</i>	0.1158(2)	0.6587(4)	0.0133(3)	0.0255(5)
<i>T</i> 3	Si _{0.8} Ge _{0.2}	4 <i>b</i>	0.2308(2)	0.8287(5)	-0.1655(2)	0.0253(5)
Ca		4 <i>b</i>	0.2660(3)	0.6588(5)	0.2172(2)	0.0207(6)
O1		4 <i>b</i>	0.1478(6)	-0.1210(10)	0.0771(6)	0.007(2)
O2		4 <i>b</i>	0.2904(6)	0.1790(10)	0.2152(7)	0.010(2)
O3	H ₂ O _{0.46} (OH) _{0.54}	2 <i>a</i>	0.5000	-0.184(3)	0.1917(15)	0.029(3)
O4		4 <i>b</i>	0.2359(6)	0.078(2)	-0.1166(7)	0.007(1)
O5		4 <i>b</i>	0.1525(5)	0.426(1)	0.0613(7)	0.008(1)
O 6		4 <i>b</i>	0.1420(6)	-0.315(1)	-0.1119(6)	0.008(1)
07		4 <i>b</i>	0.3694(5)	0.864 (1)	0.0409(8)	0.007(1)
O 8		2 <i>a</i>	0.5000	0.661(2)	-0.0799(10)	0.009(2)
O9		4 <i>b</i>	0.3718(6)	0.410(1)	0.0208(6)	0.008(2)
O10		4 <i>b</i>	0.3289(6)	0.683(1)	-0.1420(6)	0.005(1)
O11		2 <i>a</i>	0.0000	0.646(2)	0.0107(12)	0.015(3)
O12	H ₂ O _{0.46} (OH) _{0.54}	2a	0.0000	-0.111(3)	0.2158(15)	0.031(4)

Таблица 2. Координаты базисных атомов и эквивалентные изотропные тепловые параметры в структуре I

* Позиция К2 расщеплена на К2 и К2' в соотношении 1 : 1.

Таблица 3. Основные расстояния *d* между катионами и анионами в структуре I

(Ge,Si)1-тетраэдр		(Ge,Si)2-	-тетраэдр	(Ge,Si)3-тетраэдр	
Связь	d, Å	Связь	d, Å	Связь	<i>d</i> , Å
<i>T</i> 1–O9	1.597(6)	<i>T</i> 2–O5	1.594(6)	<i>T</i> 3–O2	1.581(7)
-O7	1.615(6)	-01	1.612(6)	-O4	1.605(7)
-O10	1.668(6)	-011	1.632(2)	-06	1.660(6)
-O8	1.674(4)	-06	1.665(7)	-O10	1.664(6)
Среднее	1.638	Среднее	1.626	Среднее	1.627
Рb1-полиэдр		Pb2-ne	олиэдр	Рb3-полиэдр	
Связь	d, Å	Связь	d, Å	Связь	<i>d</i> , Å
Pb1–O5	2.218(5)	Pb2–O3	2.980(9)	Pb3–O2	3.067(10) × 2
Pb1–O2	2.225(6)	Pb2–O5	3.262(10) × 2	Pb3–O3	2.957(10)
Pb1–O4	2.235(6)	Pb2-O11	3.141(10)	Pb3-O3'	2.974(10)
Pb1–O9	2.236(6)	Среднее	3.161	Pb3–O6	$3.155(10) \times 2$
Pb1–O1	2.288(6)			Pb3–O9	$3.043(10) \times 2$
Pb1–O7	2.311(5)			Среднее	3.058
Среднее	2.252				

Рис. 1. Смешанные каркасы в одинаковом ракурсе: а – проекция структуры I на плоскость *ac*, показаны Ge,Si-тетраэдры, Pb1-октаэдры, шариками обозначены атомы Pb, Ca, K, (OH,H₂O), линиями выделены связи Pb2–O; б – проекция структуры II на плоскость *ab*, показаны Si-тетраэдры, Sc-октаэдры, шариками обозначены атомы K, линиями выделены связи K4–O.

выводы

Синтезированный и структурно исследованный новый и достаточно редкий германато-силикат K_{1.46}Pb_{1.54}Ca[(Ge_{0.23}Si_{0.77})₃O₉](OH)_{0.54} · 0.46H₂O пополняет реестр немногочисленных соединений с комплексным по составу анионом. Были получены: германато-силикат – аналог силиката назонита Pb₈K_{1.68}Na_{0.32}[(Ge_{0.65}Si_{0.35})₂O₇]₃ [9], германато-силикат Cs₂Pb₂[(Si_{0.6}Ge_{0.4})₂O₇] [8], германато-силикатный аналог аламозита, а также ряд других фаз. Структуры I и II подобны друг другу. В структуре I все разупорядоченные позиции крупных катионов находятся на зеркальных плоскостях *m*, которые рассекают крупные полости каркаса. Получение нового соединения расширяет границы перспективного в отношении ионообмена структурного типа, что иллюстрирует широкий изоморфизм заселения позиций в полостях структуры. Своеобразное окружение К2 в структуре II привело к заселению в структуре I этой позиции атомами Pb. В целом обнаруженные и широко представленные изоморфные соотношения К-Рь достаточно необычны. Невысокое качество многих кристаллов связано с широкой изоморфной смесимостью, и не исключаются некоторые отклонения от установленных заселенностей в случае других образцов кристаллов, полученных в данных условиях гидротермального синтеза. Особый интерес представляет получение данного соединения в больших количествах, а также кристаллов бо́льшего размера для исследования нелинейно-оптических и ионообменных свойств.

Авторы выражают благодарность Н.В. Зубковой за помощь в получении экспериментальных данных, С.Ю. Стефановичу за исследование свойств, а также сотрудникам лаборатории локальных методов исследования вещества МГУ за определение состава кристаллов.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 17-03-00886а и молодежный грант № 18-35-00645).

СПИСОК ЛИТЕРАТУРЫ

- 1. Пущаровский Д.Ю. Структурная минералогия силикатов и их синтетических аналогов. М.: Недра, 1986. 160 с.
- Либау Φ. Структурная химия силикатов. М.: Мир, 1988. 412 с.
- Inorganic Crystal Structure Data Base ICSD. Fachinformationzentrum (FIZ) Karlsruhe. 2011. I version.
- Белоконева Е.Л., Зорина А.П., Димитрова О.В. // Кристаллография. 2013. Т. 58. № 4. С. 585.
- Stefanovich S.Y. // Extended Abstracts of Europ. Conf. on Lasers and ElectroOptics (CLEO Europe'94). Amsterdam, 1994. P. 249.
- Agilent Technologies. CrysAlisPro Software system, version 1.171.37.35, Agilent Technologies UK Ltd., Oxford, UK. 2014.
- 7. Sheldrick G.M. // Acta Cryst. A. 2008. V. 64. P. 112.
- Belokoneva E.L., Morozov I.A., Volkov A.S., Dimitrova O.V. // Solid State Sci. 2018. V. 78. P. 69.
- 9. Белоконева Е.Л., Морозов И.А., Димитрова О.В., Волков А.С. // Кристаллография. 2018. Т. 63. № 6. С. 890.

КРИСТАЛЛОГРАФИЯ том 64 № 2 2019