РОСТ КРИСТАЛЛОВ

УДК 548.55+546.161+541.135

ВЫРАЩИВАНИЕ КРИСТАЛЛОВ Nd₁₋,Eu²⁺F₃₋, СО СТРУКТУРОЙ ТИПА ТИСОНИТА (LaF₃) И ИССЛЕДОВАНИЕ КОНЦЕНТРАЦИОННОЙ ЗАВИСИМОСТИ ИХ НЕКОТОРЫХ СВОЙСТВ

© 2019 г. Д. Н. Каримов^{1,*}, Н. И. Сорокин^{1,**}, В. И. Соколов², Б. П. Соболев¹

¹Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия ²Институт фотонных технологий ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

> * E-mail: dnkarimov@gmail.com ** E-mail: nsorokin1@yandex.ru Поступила в редакцию 19.02.2018 г. После доработки 19.02.2018 г. Принята к публикации 19.04.2018 г.

Из расплава методом Бриджмена получены кристаллы $Nd_{1-y}Eu_yF_{3-y}$ ($0 \le y \le 0.15$) со структурой тисонита (LaF₃), исследованы их спектры оптического пропускания, зависимости параметров решетки, плотности, показателя преломления и фтор-ионной проводимости от содержания Eu^{2+} (y – мольная доля EuF_2). Кристаллы $Nd_{1-y}Eu_yF_{3-y}$ являются однофазными, при $y \le 0.12$ они кристаллизуются в тригональной сингонии (пр. гр. $P\overline{3}c1$, Z=6), при y=0.15 наблюдается стабилизация высокотемпературной тисонитовой α -фазы (пр. гр. $P6_3/mmc$, Z=2). Изученные кристаллы прозрачны в ИК-диапазоне до 12 мкм. Введение EuF_2 в матрицу NdF₃ приводит к монотонному уменьшению плотности и показателя преломления. Зависимость проводимости от состава $\sigma_{dc}(y)$ имеет немонотонный характер. Максимальной $\sigma_{dc} = 2.0 \times 10^{-4}$ См/см при 293 К обладает кристалл Nd_{0.97} $Eu_{0.03}F_{2.97}$. Для него концентрация носителей заряда составляет $n_{mob} = 5.8 \times 10^{20}$ см⁻³, а их подвижность $\mu_{mob} =$ $= 2.2 \times 10^{-6}$ см²/Bc (при 293 K). Величина σ_{dc} для Nd_{0.97} $Eu_{0.03}F_{2.97}$ в 2.5 раза меньше проводимости Се_{0.97}Sr_{0.03}F_{2.97}, обладающего наилучшими электролитическими характеристиками среди твердых электролитов $R_{1-y}M_yF_{3-y}$ (M = Ca, Sr и Ba).

DOI: 10.1134/S0023476119020140

ВВЕДЕНИЕ

Высокотемпературная химия фторидов редкоземельных элементов (**P3**Э), склонных к образованию нетипичной валентности R^{2+} (Sm²⁺, Eu²⁺, Yb²⁺), отстает от состояния изученности химии трифторидов P3Э RF_3 . Это связано с тем, что отсутствие коммерческих реактивов RF_2 для названных P3Э требует их получения в лабораторных условиях. Контролировать степень восстановления P3Э затруднительно, поэтому всегда возникает вопрос о химическом составе кристаллов.

Фторидные материалы, содержащие ионы европия в низшей степени окисления (2+), представляют интерес как фторпроводящие твердые электролиты (ФТЭЛ), нарушения стехиометрии в которых достигаются гетеровалентными изоморфными замещениями РЗЭ R^{3+} на Eu²⁺ [1–3]. Настоящее исследование связано с поиском и оптимизацией по составу ФТЭЛ с участием дифторида EuF₂, не углубляясь в проблемы его частич-

ного окисления. При низкой степени окисления Eu^{2+} кристаллы $R_{1-y}Eu_yF_{3-y}$ можно рассматривать как псевдобинарные. Значительная доля окисленного до состояния Eu^{3+} переводит этот материал в трехкомпонентное состояние [4].

В качестве объекта исследования выбрана тисонитовая фаза $Nd_{1-y}Eu_yF_{3-y}$, образующаяся в системе EuF_2 – NdF_3 . Она представляет интерес как ФТЭЛ, являясь структурным аналогом высокопроводящих твердых электролитов $Nd_{1-y}M_yF_{3-y}$ (M = Ca, Sr, Ba) [5–8]. Данное исследование имеет фундаментальное значение для развития высокотемпературной химии фторидов РЗЭ с нетипичной валентностью и фторидного материаловедения, поскольку базируется на использовании чистого компонента EuF_2 [9]. Практическое значение имеет получение впервые концентрационной серии тисонитовых кристаллов $Nd_{1-y}Eu_yF_{3-y}$, в которых стехиометрия в структурном типе LaF_3 нарушается изоморфным введением иона евро-

Рис. 1. Внешний вид кристалла $Nd_{1-y}Eu_{y}F_{3-y}$ и изготовленных элементов для исследований.

пия в состоянии окисления Eu²⁺, по размерам слабо отличающегося от Sr²⁺. Выращивание фторидных материалов с участием Eu²⁺ длительное время было затруднено из-за сложности стабилизации его двухвалентного состояния. Тисонитовые кристаллы $R_{1-y}M_yF_{3-y}$ (M – Sr, Ba, двухвалентные РЗЭ; R – трехвалентные РЗЭ) представляют особый интерес с тех пор, как интенсивно стали создавать фтор-ионные источники тока [10–13], которые по многим параметрам могут конкурировать с литий-ионными. Ионный радиус Eu²⁺ близок к радиусу Sr²⁺, но не равен ему. Результат замены Sr²⁺ в тисонитовых ФТЭЛ на ионы Eu²⁺ *а proiri* предсказать невозможно.

Целью работы является получение впервые объемных кристаллов тисонитовой нестехиометрической фазы $Nd_{1-y}Eu_{y}F_{3-y}$ ($0 \le y \le 0.15$), в которой стехиометрия нарушается введением Eu^{2+} , их характеризация и исследование концентрационной зависимости их фтор-ионной проводимости.

МЕТОДИКА ЭКСПЕРИМЕНТА

Фазовая диаграмма системы EuF_2-NdF_3 не изучена. Однако система EuF2-NdF3 аналогична системам MF_2 -NdF₃ (M = Ca, Sr, Ba) [14] и в первую очередь системе SrF₂-NdF₃ ввиду близости ионных радиусов катионов Eu²⁺ (1.25 Å для координационного числа 8) и Sr^{2+} (1.26 Å). Введение EuF₂ в матрицу NdF₃ должно приводить к образованию нестехиометрической фазы Nd_{1-v}Eu_vF_{3-v} имеющей широкую область гомогенности, с дефектной структурой тисонита (LaF_3) . В изученной системе EuF2-LaF3 область гомогенности тисонитовой фазы La_{1-v}Eu_vF_{3-v} имеет предел *у* = 0.08 [15].

Выращивание кристаллов Nd_{1-v}Eu_vF_{3-v} проводили из расплава методом вертикальной направленной кристаллизации в двухзонной установке с резистивным нагревом в многоячеистых графитовых тиглях в смешанной атмосфере (Не + + HF + H₂). Фтористый водород получали термическим разложением $BaF_2 \times HF$. В качестве исходных реактивов использовали порошки NdF₃ и EuF₃ (чистота 99.99 мас. %, Ланхит). Поликристаллический EuF₂ (параметр решетки *a* = = 5.842(1) Å) получали взаимодействием расплава EuF₃ с элементарным кремнием по методике [9]. Для проведения ростовых экспериментов выбраны составы Nd_{1-v}Eu_vF_{3-v} с содержанием EuF₂ y = 0 - 0.15 (по шихте). Температурный градиент в ростовой зоне составлял ~80 К/см. Скорость вывода тигля не превышала 3 мм/ч. Средняя скорость охлаждения кристаллов после роста составляла 100 К/ч. Потери на испарение не превышали 0.8 мас. %. Были получены кристаллические були диаметром 12 мм и длиной до 50 мм. Внешний вид кристаллов Nd_{1-v}Eu_vF_{3-v} и изготовленных из них оптических образцов показан на рис. 1. Окраска образцов при естественном освещении изменяется от фиолетовой (для y = 0) до розовой с введением EuF₂.

Рентгенофазовый анализ кристаллов выполняли на порошковом рентгеновском дифрактометре Rigaku MiniFlex 600 (излучение Cu K_{α}). Регистрация дифрактограмм проводилась в диапазоне углов 20 от 10° до 100°. Идентификацию фаз осуществляли с использования базы данных ICDD PDF-2 (2014). Расчет параметров элементарной ячейки проводили методом полнопрофильного анализа Le Bail с использованием пакета программ Jana2006. Образцы для исследований толщиной h = 2-3 мм вырезали из центральных участков кристаллов Nd_{1 – v}Eu_vF_{3 – v} и полировали.

Плотность кристаллов ρ измеряли методом гидростатического взвешивания в дистиллированной воде при комнатной температуре (T = 293 K) с точностью не менее 0.01 г/см³.

Показатели преломления n кристаллов на длине волны $\lambda = 0.633$ мкм были измерены при T = 293 K с использованием призменного устройства связи Metricon 2010/M (Metricon corp.). Показатель преломления с точностью не хуже ± 0.0005 определяли из зависимости коэффициента отражения R излучения от угла падения θ в условиях нарушенного полного внутреннего отражения при TE-поляризации падающего луча He-Ne-лазера по формуле:

$$n = N_p \sin \theta_{crit},$$

где $N_p = 2.15675$ — показатель преломления измерительной призмы прибора, θ_{crit} — критический угол полного внутреннего отражения.

Спектры пропускания кристаллов регистрировали с помощью спектрофотометра Cary 5000 (Agilent Technologies) и ИК-фурье-спектрометра Nicolet Nexus 5700 (Thermo Scientific) в диапазоне длин волн $\lambda = 0.2-15$ мкм.

Электропроводность на постоянном токе σ_{dc} кристаллов Nd_{1-v}Eu_vF_{3-v} определяли методом импедансной спектроскопии. Измерения выполняли в диапазонах частот 5-5 × 10⁵ Гц и сопротивлений $1-10^7$ Ом (импедансметр Tesla BM-507) в вакууме ~ 1 Па при T = 293 К. Методика электрофизических измерений приведена в [16]. Относительная погрешность измерений σ_{dc} составляла 5%. В качестве материала инертных электродов использовалась серебряная паста (Leitsilber). Площадь электродных поверхностей составляла $S = 50 - 100 \text{ мм}^2$. Кондуктометрические измерения проведены на неориентированных образцах, поскольку анизотропией электропроводности кристаллов нестехиометрических тисонитов можно пренебречь [7, 17]. Наличие в спектрах импеданса блокирующего эффекта от инертных (Ag) электродов при низких частотах указывает на ионный характер электропереноса в изученных кристаллах. Из годографов комплексного импеданса кристаллов с серебряными электродами находили объемное сопротивление R_b, из величины которого с учетом геометрических размеров образцов (h, S) рассчитывали электропроводность:

$$\sigma_{dc} = (h/S)R_b^{-1}.$$

Электронная проводимость кристаллов $R_{1-y}M_yF_{3-y}$ весьма незначительна [18], а результаты исследования методом ЯМР F¹⁹ [19–21] указывают на то, что ионный перенос в них сосредоточен в пределах анионной (фторной) подрешетки.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Спектры пропускания образцов кристаллов $Nd_{1-v}Eu_{v}F_{3-v}$ приведены на рис. 2а. Коротковолновый край пропускания составляет ~0.4 мкм. В ИК-области кристаллы прозрачны до 12 мкм. Интенсивные, характерные для ионов Eu³⁺ (переходы из основного ${}^{7}F_{0}$ состояния на ${}^{7}F_{4}$ и ${}^{7}F_{6}$ уровни $4f^6$ конфигурации иона Eu³⁺) полосы поглощения в области 2 и 3.5 мкм наблюдаются в спектрах пропускания кристаллов EuF_{2+x} (рис. 26). Эти полосы удобно использовать для экспрессного контроля наличия ионов Eu³⁺ в кристаллах $Nd_{1-v}Eu_{v}F_{3-v}$, так как их спектральное положение приходится на диапазоны прозрачности матрицы NdF₃. Данные полосы поглощения в выращенных в работе кристаллах $Nd_{1-v}Eu_{v}F_{3-v}$ не детектируются, что указывает на возможное

КРИСТАЛЛОГРАФИЯ том 64 № 2 2019

Рис. 2. Спектры пропускания кристаллов $Nd_{1-y}Eu_{y}F_{3-y}$ для y = 0, 0.1 (а) и $EuF_{2.084}$ [2] (б). Толщина образцов h = 2 мм.

присутствие ионов Eu³⁺ только в фоновом количестве.

Рентенофазовый анализ кристаллов Nd_{1-y}Eu_yF_{3-y} ($0 \le y \le 0.15$) показал, что все изученные образцы однофазные (рис. 3). При $y \le 0.12$ они кристаллизуются в тригональной ячейке (пр. гр. $P\overline{3}cl$, Z = 6). При дальнейшем увеличении содержания EuF₂ в кристаллах (до y = 0.15) наблюдается стабилизация высокотемпературной тисонитовой α -формы, структура которой подчиняется симметрии $P6_3/mmc$ с гексагональной ячейкой втрое меньшего объема (Z = 2). Концентрационный структурный переход с изменением объема элементарной ячейки и пространственной группы характерен для нестехиометрических тисонитовых фаз $R_{1-y}M_yF_{3-y}$ (R = La-Nd, M = Ca, Sr, Ba), что было показано в [22, 23].

Рис. 3. Дифрактограммы образцов кристаллов $Nd_{1-y}Eu_yF_{3-y}$ для y = 0, 0.07 и 0.15. Указаны положения рефлексов Брэгга для пр. гр. $P\overline{3}c1$ и $P6_3/mmc$.

Параметры тригональной ячейки a(y) и c(y)для Nd_{1-y}Eu_yF_{3-y} слабоквадратично возрастают с увеличением мольной доли *y* и изменяются в пределах a = 7.0295(3) - 7.0475(1) и c = 7.1981(3) - 7.2311(1) Å для y = 0 - 0.12 соответственно (рис. 4). Состав Nd_{0.85}Eu_{0.15}F_{2.85} (y = 0.15) характеризуется следующими параметрами гексагональной ячейки: a = 4.0708(1), c = 7.2391(3) Å. Зависимость плотности $\rho(y)$ имеет практически линейный характер в диапазоне составов $0.02 < y \le 0.15$, значения плотности кристаллов Nd_{1-y}Eu_yF_{3-y} изменяются в пределах от 6.490(5) до 6.326(10) г/см³ для y = 0 - 0.15 (рис. 4).

Концентрационная зависимость показателя преломления $n_o(y)$ кристаллов $Nd_{1-y}Eu_yF_{3-y}$ представлена на рис. 5 (кривая *1*). Кристаллы являются одноосными и оптически отрицательны-

Рис. 4. Концентрационные зависимости параметров решетки (слева) и гидростатической плотности ρ (справа) кристаллов $Nd_{1-\nu}Eu_{\nu}F_{3-\nu}$

ми ($n_0 > n_e$). Использование неориентированных образцов позволило исследовать только обыкновенный показатель n_o . Значения n_o ($\lambda = 0.633$ мкм) образцов с y = 0-0.12 монотонно уменьшаются в диапазоне от 1.618 до 1.595, что сравнимо с данными [24] по величинам показателей преломления кристаллов Nd_{1-y}Sr_yF_{3-y} (y = 0-0.12) (рис. 5, кривые 2, 3). Отметим, что показатели преломления компонентов EuF₂ и SrF₂ этих кристаллов твердых растворов и их молекулярные рефракции *R* существенно различаются (для EuF₂ n == 1.555 [25], *R* = 9.380; для SrF₂ $n_D =$ 1.438, *R* = = 7.710 [26]).

Зависимость фтор-ионной проводимости $\sigma_{dc}(y)$ кристаллов $Nd_{1-\nu}Eu_{\nu}F_{3-\nu}$ показана на рис. 6, она имеет немонотонный вид. При этом максимальная проводимость обнаружена у кристалла состава Nd_{0.97}Eu_{0.03}F_{2.97}. Величина σ_{dc} для Nd_{0.97}Eu_{0.03}F_{2.97}. равна 2.0 × 10⁻⁴ См/см при 293 К, что в 2.5 раза меньше проводимости кристалла Ce_{0.97}Sr_{0.03}F_{2.97}, который обладает наилучшими электролитическими характеристиками среди кристаллов $R_{1-v}M_vF_{3-v}$ (M = Ca, Sr и Ba) [5, 8]. Для сравнения на рис. 6 приведена зависимость $\sigma_{dc}(y)$ для кристаллов нестехиометрической фазы $Nd_{1-\nu}Sr_{\nu}F_{3-\nu}$ [5, 27]. Сравнение ионопроводящих свойств фаз $Nd_{1-\nu}Eu_{\nu}F_{3-\nu}$ и $Nd_{1-\nu}Sr_{\nu}F_{3-\nu}$ показывает, что их зависимости от содержания двухвалентных ионов Eu^{2+} и Sr²⁺ $\sigma_{dc}(y)$ практически совпадают. Максимум $\sigma_{dc}(y)$ для обеих тисонитовых фаз обнаружен при содержании компонента MF_2 ($M = Eu^{2+}$, Sr) y = 0.024 - 0.03. Проводимость наиболее проводя-

Рис. 5. Зависимости показателя преломления $n_{0}(y)$ кристаллов Nd_{1 – y}Eu_yF_{3 – y} на длине волны $\lambda = 0.633$ мкм (*I*), зависимости $n_{0}(y)$ (*2*) и $n_{e}(y)$ (*3*) кристаллов Nd_{1 – y}Sr_yF_{3 – y} ($\lambda = 0.546$ мкм) [24].

щего кристалла $Nd_{0.97}Eu_{0.03}F_{2.97}$ лишь незначительно уступает $\sigma_{dc} = 2.9 \times 10^{-4}$ См/см кристалла $Nd_{0.976}Sr_{0.024}F_{2.976}$.

Гетеровалентные замещения в катионной подрешетке обусловливают появление подвижных вакансий фтора в анионной подрешетке кристаллов $Nd_{1-y}Eu_{y}F_{3-y}$:

$$\mathrm{Nd}^{3+} \rightarrow \mathrm{Eu}^{2+} + V_{\mathrm{F}}^{+},$$

где $V_{\rm F}^+$ — ионный носитель заряда. Механизм ионной проводимости в тисонитовой фазе ${\rm Nd}_{1-y}{\rm Eu}_y{\rm F}_{3-y}$ связан с миграцией примесно-индуцированных вакансий фтора $V_{\rm F}^+$ в объеме кристаллов.

Концентрация носителей заряда в ионных проводниках $Nd_{1-y}Eu_yF_{3-y}$ определяется механизмом образования "примесных" вакансий V_F^+ и может быть рассчитана:

$$n_{mob} = 2Zy/(\sqrt{3}a^2c),$$

где *а* и *с* – параметры решетки тисонитовой фазы, Z = 2 и 6 для гексагональной и тригональной сингоний соответственно. Подвижность анионных вакансий $V_{\rm F}^+$ находили по формуле

$$\mu_{mob} = \sigma_{dc}/qn_{mob}.$$

Полученные значения n_{mob} и μ_{mob} для кристаллов Nd_{1 – y}Eu_yF_{3 – y} приведены на рис. 7, где видно, что с ростом содержания EuF₂ поведение за-

КРИСТАЛЛОГРАФИЯ том 64 № 2 2019

Рис. 6. Концентрационная зависимость проводимости $\sigma_{de}(y)$ для кристаллов $Nd_{1-y}Eu_{y}F_{3-y}$ (*1*) и $Nd_{1-y}Sr_{y}F_{3-y}$ (*2*) при *T* = 293 K.

висимостей $n_{mob}(y)$ и $\mu_{mob}(y)$ различно. С увеличением *у* значения n_{mob} растут линейно, в то время как зависимость $\mu_{mob}(y)$ монотонно уменьшается. Падение величины σ_{dc} кристаллов $Nd_{1-y}Eu_yF_{3-y}$ в этом интервале составов вызвано уменьшением подвижности носителей заряда вследствие ионионных взаимодействий между ними. Характеристики носителей заряда для наиболее проводящего кристалла $Nd_{0.97}Eu_{0.03}F_{2.97}$ составляют $n_{mob} = 5.8 \times$

Рис. 7. Зависимости концентрации $n_{mob}(y)$ (*1*) и подвижности $\mu_{mob}(y)$ при T = 293 К (*2*) от содержания Eu²⁺ (*y*) для кристаллов Nd_{1 – y}Eu_yF_{3 – y}.

 $\times 10^{20}$ см⁻³ и подвижность $\mu_{mob} = 2.2 \times 10^{-6}$ см²/Вс при T = 293 К.

выводы

Из расплава методом Бриджмена выращены кристаллы тисонитовой нестехиометрической фазы Nd_{1 – v}Eu_vF_{3 – v} (0 \le y \le 0.15), проведено исследование их оптических, спектроскопических и проводящих характеристик. Концентрационная зависимость плотности, параметров решетки с увеличение доли EuF₂ (у) носит монотонный убывающий характер. По данным рентгенофазового анализа для составов с у >0.12 наблюдается характерный концентрационный структурный переход с изменением объема элементарной ячейки и пространственной группы ($P\overline{3}c1 \rightarrow$ $\rightarrow P6_3/mmc$). Зависимость проводимости от содержания $Eu^{2+}\sigma_{dc}(y)$ носит немонотонный характер с выраженным максимумом в области $v \approx 0.03$. Максимальная проводимость кристалла Nd_{0.97}Eu_{0.03}F_{2.97} $\sigma_{dc} = 2.0 \times 10^{-4}$ См/см (T = 293 K). Механизм ионного переноса в изученных кристаллах Nd_{1-v}Eu_vF_{3-v} обусловлен прыжковыми перемещениями подвижных вакансий фтора, являющимися носителями заряда. Сравнение ионопроводящих свойств кристаллов фаз Nd_{1-v}Eu_vF_{3-v} и Nd_{1-v}Sr_vF_{3-v} показывает, что их зависимости $\sigma_{dc}(y)$ практически совпадают.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 16-03-00707) в части выращивания кристаллических образцов и при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию в части исследования их характеристик с использованием оборудования Центра коллективного пользования ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сорокин Н.И., Фоминых М.В., Кривандина Е.А. и др. // Тез. докл. международ. конф. "Стекла и твердые электролиты". Санкт-Петербург. Россия. 17– 19 мая. 1999. С. 27.
- 2. Соболев Б.П., Туркина Т.М., Сорокин Н.И. и др. // Кристаллография. 2010. Т. 55. № 4. С. 702.
- Каримов Д.Н., Сорокин Н.И., Соболев Б.П. // Тез. докл. Первого Рос. кристаллограф. конгресса. Москва. 21–26 ноября 2016. Москва, 2016. С. 85.
- Каримов Д.Н., Попов П.А., Сорокин Н.И., Соболев Б.П. // Кристаллография. 2017. Т. 62. № 3. С. 413.

- 5. Сорокин Н.И., Фоминых М.В., Кривандина Е.А. и др. // Кристаллография. 1996. Т. 41. № 2. С. 310.
- 6. *Сорокин Н.И., Фоминых М.В., Фистуль В.И. и др. //* ФТТ. 1999. Т. 41. № 4. С. 638.
- 7. *Сорокин Н.И., Соболев Б.П.* // Электрохимия. 2007. Т. 43. № 4. С. 420.
- Sobolev B.P., Sorokin N.I., Bolotina N.B. // Photonic and electronic properties of fluoride materials / Eds. Tressaud A., Poeppelmeier K. Amsterdam: Elsevier, 2016. P. 465.
- Каримов Д.Н., Ильина О.Н., Иванова А.Г. и др. // Патент РФ на изобретение RU 2627394, приоритет от 13.12.2016. г.
- 10. *Потанин А.А.* // Журн. Рос. хим. о-ва им. Д.И. Менделеева. 2001. Т. XLV. № 5-6. С. 58.
- 11. *Anji Reddy M., Fichtner M.* // J. Mater. Chem. 2011. V. 21. P. 17059.
- Rongeat C., Anji Reddy M., Witter R., Fichtner M. // J. Phys. Chem. 2013. V. 117. P. 4943.
- 13. Gschwind F., Rodriguez-Garsia G., Sandbeck D.J.S. et al. // J. Fluor. Chem. 2016. V. 182. P. 76.
- 14. *Sobolev B.P.* The high temperature chemistry of rare earth trifluorides, Institute of Crystallography, Moscow, and Institut d'Estudis Catalans, Barcelona: Institut d'Estudis Catalans, Spain, 2000, 520 p.
- 15. Виноградова-Жаброва А.С., Финкельштейн Л.Д., Бамбуров В.Г. и др. // Изв. АН СССР. Неорган. метериалы. 1990. Т. 26. № 2. С. 389.
- 16. Иванов-Шиц А.К., Сорокин Н.И., Федоров П.П., Соболев Б.П. // ФТТ. 1983. Т. 25. № 6. С. 1748.
- 17. *Roos A., Aalders A.F., Schoonman J. et al.* // Solid State Ionics. 1983. V. 9–10. P. 571.
- Roos A., Schooman J. // Solid State Ionics. 1984. V. 13. P. 205.
- Лившиц А.И., Бузник В.М., Федоров П.П., Соболев Б.П. // Изв. АН СССР. Неорган. материалы. 1982. Т. 18. № 1. С. 135.
- 20. Aalders A.F., Polman A., Arts A.F.M., de Wijn H.W. // Solid State Ionics. 1983. V. 9–10. P. 539.
- 21. Denecke M.A., Gunser W., Privalov A.V., Murin I.V. // Solid State Ionics. 1992. V. 52. P. 327.
- 22. Болотина Н.Б., Черная Т.С., Калюканов А.И. // Кристаллография. 2015. Т. 60. № 3. С. 391.
- 23. Болотина Н.Б., Черная Т.С., Верин И.А. // Кристаллография. 2016. Т. 61. № 1. С. 36.
- 24. *Кривандина Е.А., Жмурова З.И., Соболев Б.П. и др. //* Кристаллография. 2006. Т. 51. № 5. С. 954.
- 25. Axe J.D., Pettit G.D. // J. Phys. Chem. Solids. 1966. V. 27. № 4. P. 621.
- Константинова А.Ф., Кривандина Е.А., Каримов Д.Н., Соболев Б.П. // Кристаллография. 2010. Т. 55. № 6. С. 990.
- 27. Сорокин Н.И., Соболев Б.П., Кривандина Е.А., Жмурова З.И. // Кристаллография. 2015. Т. 60. № 1. С. 123.

КРИСТАЛЛОГРАФИЯ том 64 № 2 2019