КРИСТАЛЛОГРАФИЯ, 2019, том 64, № 2, с. 173–183

ДИФРАКЦИЯ И РАССЕЯНИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

УДК 548.73, 538.97

К РЕШЕНИЮ ОБРАТНОЙ ЗАДАЧИ ДИФРАКЦИОННОЙ РЕНТГЕНОВСКОЙ ТОПО-ТОМОГРАФИИ. КОМПЬЮТЕРНЫЕ АЛГОРИТМЫ И 3D-РЕКОНСТРУКЦИЯ НА ПРИМЕРЕ КРИСТАЛЛА С ТОЧЕЧНЫМ ДЕФЕКТОМ КУЛОНОВСКОГО ТИПА

© 2019 г. П. В. Конарев^{1,2,*}, Ф. Н. Чуховский^{1,**}, В. В. Волков¹

¹Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия ²Национальный исследовательский центр "Курчатовский институт", Москва, Россия

> * *E-mail: konarev@crys.ras.ru* ** *E-mail: f_chukhov@yahoo.ca* Поступила в редакцию 06.04.2018 г. После доработки 17.04.2018 г. Принята к публикации 17.04.2018 г.

На основе полукинематического решения уравнений Такаги—Топена для амплитуды дифрагированной σ-поляризованной волны предложен последовательный подход к решению обратной задачи дифракционной рентгеновской топо-томографии. Рассмотрен пример точечного дефекта кулоновского типа в кристаллической пластине Si(111) в условиях симметричной лауэ-дифракции и набора наклонных двумерных топографических проекций, отвечающих вращению плоскопараллельного кристалла-образца вокруг вектора дифракции [220]. Для компьютерной реконструкции трехмерной функции поля смещений вокруг точечного дефекта использованы итерационные алгоритмы моделирования отжига и квазиньютоновского типа. Представлены результаты компьютерного моделирования функции поля смещений по данным одной 2D-проекции, отвечающей изображению точечного дефекта на рентгеновской топограмме в классическом смысле рентгеновской дифракционной топографии.

DOI: 10.1134/S0023476119020176

ВВЕДЕНИЕ

Как известно [1-6], дифракционная рентгеновская топография (ДРТ) является высокочувствительным неразрушающим инструментом диагностики различных дефектов кристаллической решетки, таких как полосы роста, границы зерен, дефекты упаковки, отдельные включения и дислокации различного типа. Все эти дефекты приводят к изменению положений отдельных атомов кристаллической структуры относительно ИХ правильного положения. При этом в схемах лауэвской и/или брэгговской дифракции реальная структура кристалла изучается по его 2D-проекциям. Как правило, для интерпретации и анализа экспериментальных ДРТ-изображений дефектов на 2D-проекциях они сопоставляются с 2D-проекциями, рассчитанными на основе компьютерного моделирования изображений дефектов с использованием численных методов решения динамических уравнений Такаги-Топена [1-3, 6-8].

В последние 20 лет в структурном анализе реальных кристаллов широко применяется метод дифракционной рентгеновской топо-томографии (ДРТТ). В методе ДРТТ кристалл-образец поворачивается вокруг оси, перпендикулярной семейству отражающих плоскостей кристалла (ось вращения выбирается вдоль вектора дифракции **h**). Поэтому при различных значениях соответствующего угла поворота получается набор дифракционных 2D-проекций, каждая из которых отвечает разным ориентациям плоскости дифракционного рассеяния рентгеновского излучения по отношению к собственной системе координат кристалла-образца (рис. 1).

Первые ДРТТ-эксперименты были успешно выполнены на синхротронных источниках рентгеновского излучения ESRF [9] и SPring-8 [10], а затем и в России на лабораторных установках с использованием характеристического рентгеновского излучения [11, 12]. При этом для компьютерной 3D-реконструкции дефекта в кристалле по соответствующему набору 2D-проекций ДРТ использовались различные модификации алгоритмов поглощающей томографии [13].

Особый интерес, напрямую связанный с применением метода ДРТТ, представляет идея компьютерной реконструкции пространственного положения дефектов в кристалле, а также, что

Рис. 1. Схема взаимного расположения плоскопараллельной пластины кристалла-образца и тригональной системы координат *XYS*, связанной с наклонной плоскостью дифракционного рассеяния. Ф – угол поворота образца вокруг вектора дифракции **h**.

особенно важно, локальных полей смещений (напряжений) вокруг дефектов в кристаллических веществах.

И здесь компьютерная 3D-реконструкция по экспериментальным данным ДРТТ в равной, если не в большей, степени связана с теми же трудностями, что и интерпретация картин изображения дефектов на 2D-проекциях ДРТ (топограммах) изза сложного механизма формирования дифракционного контраста, отвечающего различным областям вокруг дефектов в кристаллах [1, 2].

В этой связи представляются важными нахождение и использование аппроксимационных аналитических решений уравнений Такаги-Топена, которые позволили бы с достаточной точностью описать особенности контраста дефектов на ДРТ-топограммах, связанные с формированием контраста в той или иной области кристалла вблизи дефекта, что стало бы ключевым моментом для решения обратной задачи ДРТТ, в частности компьютерной 3D-реконструкции функции поля смещений вокруг дефектов.

Настоящая работа посвящена построению аппроксимационного аналитического решения уравнений Такаги—Топена, на базе которого строится решение обратной задачи ДРТТ.

Затем с использованием полукинематического приближения для амплитуды дифрагированной σ -поляризованной волны $E_{\rm h}({\bf r})$ построена теория 3D-реконструкции функции поля упругих статических смещений ${\bf u}({\bf r}-{\bf r}_0)$ точечного дефекта кулоновского типа (${\bf r}_0$ — радиус-вектор положения точечного дефекта в кристалле).

На примере одной 2D-проекции с вектором дифракции $\mathbf{h} = [\overline{2}20]$ для кристалла Si(111) с применением итерационных алгоритмов моделирования отжига [14] и квазиньютоновского спуска [15, 16] найдено решение обратной задачи ДРТТ, а именно, проведена компьютерная реконструкция трехмерной функции поля смещений точечного дефекта, $f(\mathbf{r} - \mathbf{r}_0) = \mathbf{h} \cdot \mathbf{u}(\mathbf{r} - \mathbf{r}_0)$.

Отметим, что первая попытка трехмерной реконструкции статического поля точечного дефекта в кристалле была предпринята в [17], где использовался алгоритм модифицированного алгебраического метода (алгоритм SART [11]), широко применяемого в поглощающей рентгеновской томографии. К сожалению, оказалось, что трехмерные решения для функции поля смещений точечного дефекта, полученные с использованием алгоритма SART, сходятся только при ограниченном количестве разбиений области кристалла вокруг точечного дефекта (не более чем $5 \times 5 \times 5 = 125$ вокселей).

2D-ИЗОБРАЖЕНИЕ ТОЧЕЧНОГО ДЕФЕКТА В КРИСТАЛЛЕ В УСЛОВИЯХ НАКЛОННОЙ СИММЕТРИЧНОЙ ЛАУЭ-ДИФРАКЦИИ. ПОЛУКИНЕМАТИЧЕСКОЕ ПРИБЛИЖЕНИЕ

Целью данного раздела является построение решения динамических уравнений Такаги—Топена в полукинематическом приближении, которое будет использовано в качестве базового для трехмерной реконструкции поля статических смещений по наклонным 2D-проекциям ДРТ.

Как известно [1–3], и это подтверждается неоднократными численными расчетами [16], прямое изображение дефекта в кристалле, если оно есть, обусловлено межветвевым рассеянием блоховских рентгеновских волн в сильно искаженной области кристалла непосредственно вблизи дефекта, что можно интерпретировать как кинематическое рассеяние блоховских волн, распространяющихся в совершенном кристалле вдали от центральной области дефекта.

Для наглядности, а также с целью избежать громоздких формул и вычислений ограничимся рассмотрением распространения **о**-поляризованного рентгеновского волнового поля внутри искаженного кристалла, который "в среднем" находится в точном брэгговском положении.

В рассматриваемом случае распространение рентгеновского волнового поля внутри искаженного кристалла в условиях симметричной двухволновой лауэ-дифракции описывается уравнениями Такаги—Топена [7, 8]:

$$-\frac{2i}{k}\frac{\partial E_0}{\partial s_0} = \chi_0 E_0 + \chi_{\bar{h}} e^{-i\mathbf{h}\mathbf{u}(\mathbf{r})} E_h - \frac{2i}{k}\delta(s_0 + s_h),$$

$$-\frac{2i}{k}\frac{\partial E_h}{\partial s_h} = \chi_0 E_h + \chi_h e^{i\mathbf{h}\mathbf{u}(\mathbf{r})} E_0$$
(1)

вместе с граничными условиями на входной поверхности кристалла z = 0 в виде

$$E_0(-s_h, s_h) = 1, E_h(-s_h, s_h) = 0.$$
(2)

Граничные условия (2) можно непосредственно учесть, модифицируя уравнения (1), в частности добавляя в правую часть первого уравнения

дополнительный член
$$-\frac{2i}{k}\delta(s_0 + s_h)$$
.

Ипользуя известные подстановки $E_0 \rightarrow E_0 e^{ik\chi_0 \frac{s_0 + s_h}{2}}$,

 $E_h \to E_h e^{ik\chi_0 \frac{s_0+s_h}{2}}$ и сохраняя для амплитуд проходящей и дифрагированной волн $E_0(s_0, s_h)$, $E_h(s_0, s_h)$ прежние обозначения, легко показать, что амплитуда дифрагированной волны $E_h(s_0, s_h)$ удовлетворяет неоднородному дифференциальному уравнению гиперболического типа в частных производных второго порядка

$$\frac{\partial^2 E_h}{\partial s_0 \partial s_h} + \frac{\chi_h \chi_h k^2}{4} E_h = \frac{ik\chi_h}{2} e^{i\mathbf{h}\mathbf{u}(\mathbf{r})} \delta(s_0 + s_h) + \frac{ik\chi_h}{2} E_0 \frac{\partial e^{i\mathbf{h}\mathbf{u}(\mathbf{r})}}{\partial s_0}.$$
(3)

Здесь $E_0(s_0, s_h)$ и $E_h(s_0, s_h)$ — амплитуды проходящей и дифрагированной волн в среде, зависящие

от координат s_0, s_h в плоскости рассеяния; $\frac{\partial}{\partial s_0}$ и

 $\frac{\partial}{\partial s_h}$ — производные вдоль направлений проходя-

обл щей и дифрагированной волн, удовлетворяющих точному условию Брэгга; $\theta_{\rm B}$ – угол Брэгга; χ_0 , χ_h , $\chi_{\bar{h}}$ – нулевая, h и \bar{h} компоненты Фурье диэлектрической проницаемости совершенного кристалла соответственно; $k = 2\pi/\lambda$, λ – длина волны падающего излучения; **u**(**r**) – вектор поля смещений, описывающий искажение идеальной кристаллической структуры; **k**₀ – волновой вектор плоской волны, падающей на кристалл-образец в

точном брэгговском положении; $\mathbf{s}_0 = \frac{\mathbf{k}_0}{k_0}, \ \mathbf{s}_h = \frac{\mathbf{k}_h}{k_h};$

h – вектор дифракции.

Интересует поле упругих статических смещений точечного дефекта кулоновского типа $\mathbf{u}(\mathbf{r} - \mathbf{r}_0)$, которое имеет следующий вид:

$$\mathbf{u}(\mathbf{r} - \mathbf{r}_0) = \frac{C}{4\pi} \frac{\mathbf{r} - \mathbf{r}_0}{|\mathbf{r} - \mathbf{r}_0|^3}, \quad C = \text{const}, \quad (4)$$

где \mathbf{r}_0 — радиус-вектор положения точечного дефекта.

В качестве модельного кристалла выбрана плоскопараллельная пластина Si(111), вектор дифракции $\mathbf{h} = [\overline{2}20]$, длина волны падающего рентгеновского характеристического излучения $\lambda =$ = 0.071 нм. Использовалась лабораторная рентгеновская трубка с молибденовым анодом, энергия излучения 17.48 КэВ; $\Lambda -$ длина экстинкции, равная 36.287 ммк, угол Брэгга $\theta_{\rm B} = 10.65^{\circ}$.

КРИСТАЛЛОГРАФИЯ том 64 № 2 2019

Рис. 2. Косоугольные координаты *X*, *S* в наклонной плоскости дифракционного рассеяния; t – толщина образца, $\theta_{\rm B}$ – угол Брэгга.

Отметим, что второй член в правой части первого из двух уравнений Такаги–Топена отвечает плоской волне $E_0(\mathbf{r}) = e^{i\mathbf{k}_0\mathbf{r}}$, падающей на входную поверхность кристалла z = 0.

На рис. 2 показана дискретная треугольная сетка, построенная на векторах s_0 , s_h с одинаковым шагом p, которая может быть использована для компьютерного моделирования и анализа наклонных 2D-проекций ДРТ на основе численного решения уравнений Такаги–Топена (1) с граничными условиями (2) в переменных S, X[11].

Отметим, что S, X – координаты косоугольной системы координат *SXY* (ось *Y* перпендикулярна плоскости (*SX*)), связаны с координатами s_0, s_h линейными соотношениями

$$s_0 + \cos 2\theta_B s_h = \cos 2\theta_B S - X,$$

$$\cos 2\theta_B s_0 + s_h = S + \sin \theta_B X$$

Уравнение (3) можно записать в интегральной форме, вводя в рассмотрение функцию Грина, описывающую распространение дифрагированного излучения в идеальном кристалле от точечного источника в треугольной области (треугольник Бормана) с вершиной в точке (s_0', s_h') характеристиками вдоль направлений $\mathbf{s}_0 = \frac{\mathbf{k}_0}{k}, \ \mathbf{s}_h = \frac{\mathbf{k}_h}{k}$ ($k = k_0 = k_h$), а именно:

$$E_{h}(s_{0}, s_{h}) = \frac{ik}{2} \chi_{h} \int_{-s_{0}}^{s_{h}} ds'_{h} \int_{-s'_{h}}^{s_{0}} ds'_{0} J_{0} \times \\ \times (k \sqrt{\chi_{h} \chi_{\bar{h}}} (s_{0} - s'_{0}) (s_{h} - s'_{h})) \times$$

$$\times \begin{bmatrix} \delta(s'_{0} + s'_{h}) e^{i\hbar u(s'_{0}, s'_{h})} + \\ E_{0}(s'_{0}, s'_{h}) \frac{\partial e^{i\hbar u(s'_{0}, s'_{h})}}{\partial s'_{0}} \end{bmatrix},$$
(5)

где $J_0(u)$ — функция Бесселя нулевого порядка действительного аргумента u.

Дальнейшее рассмотрение компьютерной реконструкции 3D-поля статических смещений точечного дефекта (4) основывается на утверждении, что в области сильных искажений вблизи дефекта рассеяние носит кинематический характер, что обусловлено межветвевым рассеянием блоховских волн вблизи дефекта [1–6]. При этом волновое поле, формирующее так называемое "прямое" изображение дефекта на 2D-проекциях ДРТ, распространяется вдоль направления поля

дифрагированной волны $\mathbf{s}_h = \frac{\mathbf{k}_h}{k}$.

Математически это означает, что для описания прямого ДРТ-изображения дефекта соответствующее выражение для амплитуды дифрагированной волны может быть найдено в результате интегрирования по частям второго члена в квадратных скобках в правой части интегрального уравнения (5).

Кроме того, ограничиваясь только первым членом двойного интеграла в правой части (5), находим

$$E_{h}(s_{0}, s_{h}) = \frac{ik}{2} \chi_{h} \int_{-s_{0}}^{s_{h}} ds'_{h} E_{0}(s_{0}, s'_{h}) e^{i\mathbf{h}\mathbf{u}(s_{0}, s'_{h})}.$$
 (6)

Далее, следуя предположению, что прямое изображение дефекта на 2D-проекциях ДРТ отвечает кинематическому рассеянию проходящей волны в области сильных искажений вблизи дефекта, в правой части интегрального уравнения (6) амплитуду проходящей волны в первом приближении можно заменить на соответствующее выражение для идеального кристалла, т.е. $E_0(s_0, s'_0) \rightarrow E_0^{(id)}(s_0, s'_h)$, где $E_0^{(id)}(s_0, s'_h)$ есть не что иное, как решение для амплитуды проходящей волны в идеальном кристалле соответственно:

$$E_0^{(\mathrm{id})}(s_0, s'_h) = \cos\left[k\sqrt{(\chi_h\chi_{-h})}\frac{(s_0 + s'_h)}{2}\right] \quad \mathbf{H}$$
$$E_h^{(\mathrm{id})}(s_0, s'_h) = i\sqrt{\frac{\chi_h}{\chi_{-h}}}\cos\left[k\sqrt{(\chi_h\chi_{-h})}\frac{(s_0 + s'_h)}{2}\right].$$

Таким образом, для компьютерной 3D-реконструкции поля статических искажений вблизи точечного дефекта (4) для амплитуды дифрагированной волны будем использовать выражение

$$E_h(s_0, s_h) = \frac{ik}{2} \chi_h \int_{-s_0}^{s_h} ds'_h E_0^{(id)}(s_0, s'_h) e^{i\mathbf{h}\mathbf{u}(s_0, s'_h)}.$$
 (7)

Формула (7) для амплитуды $E_h(s_0, s_h)$ описывает кинематическое рассеяние проходящей волны $E_0^{(id)}(s_0, s'_h)$ сильно искаженной области вблизи дефекта, которая представляет собой фазовый объект. При этом волна $E_h(s_0, s_h)$ распространяется вдоль направления дифрагированной волны $\mathbf{s}_h = \frac{\mathbf{k}_h}{k}$. Таким образом, формула (7), полученная в полукинематическом приближении, будет использоваться для описания 2D-проекций ДРТ в той части, которая формируется за счет рассеяния рентгеновской волны в сильно искаженной области кристалла вблизи дефекта.

Для проведения численных расчетов выберем начало системы координат s_0 , s_h в левой верхней вершине трапеции (рис. 2) и введем косоугольную аффинную систему координат *XYS* (ср. с рис. 1), в которой ось *X* направлена вдоль вектора дифракции **h**, а ось *S* вдоль вектора s_h , ось *Y* перпендикулярна плоскости *XS*.

При этом связь между координатами s_0 , s_h и X, S задается соотношениями

$$s_0 = -\frac{X}{2\sin\theta_{\rm B}}, \quad s_h = S + \frac{X}{2\sin\theta_{\rm B}}.$$
 (8)

Кроме соотношений (8) потребуются соотношения между координатами s_0 , s_k и x, Z, а именно:

$$s_{0} = \frac{1}{2} \left(\frac{Z}{\cos \theta_{B}} - \frac{x}{\sin \theta_{B}} \right),$$

$$s_{h} = \frac{1}{2} \left(\frac{Z}{\cos \theta_{B}} + \frac{x}{\sin \theta_{B}} \right).$$
(9)

Имея в виду компьютерную 3D-реконструкцию функции упругих статических смещений точечного дефекта $f(\mathbf{r} - \mathbf{r}_0)$ по данным наблюдаемых 2D-проекций, $I_h(s_0, s_h) = |E_h(s_0, s_h)|^2$, запишем формулу (7) в переменных *X*, *y*, *z* (ось вращения проходим через точку $r_0 = (x_0, y_0, z_0)$)

$$E_{h}(X, y, z; \theta_{\rm B}, \Phi) = \frac{ik}{2\cos\theta_{\rm B}\cos\Phi} \chi_{h} \times \\ \times \int_{0}^{\rm T} dz \cos\left[k\sqrt{(\chi_{h}\chi_{-h})}\frac{z}{2\cos\theta_{\rm B}}\right] e^{if(\mathbf{r}-\mathbf{r}_{0})},$$
(10)

где Φ — угол вращения образца вокруг вектора дифракции **h**, функция $f(\mathbf{r} - \mathbf{r}_0)$ определяется следующим выражением (ср. (4)):

$$f(\mathbf{r} - \mathbf{r}_0) = G \frac{X - X_0 + \frac{\mathrm{tg}\,\Theta_{\mathrm{B}}}{\cos\Phi}(z - z_0)}{\left(\left(X - X_0 + \frac{\mathrm{tg}\,\Theta_{\mathrm{B}}}{\cos\Phi}(z - z_0)\right)^2 + (y - y_0 + \mathrm{tg}\,\Phi(z - z_0))^2 + (z - z_0)^2\right)^{3/2}}, \quad G = \mathrm{const.}$$
(11)

. .

КРИСТАЛЛОГРАФИЯ том 64 № 2 2019

Отметим, что координаты *x*, *y*, *z* "жестко" связаны с декартовыми координатами в кристалле.

В формуле (11) в явной форме учтена зависимость функции поля смещений точечного дефекта (4) в переменных X, y, z от угловых параметров $\theta_{\rm B}, \Phi$.

Теоретическая формула (10) для амплитуды дифрагированной волны $E_h(X, y, z; \theta_B, \Phi)$ наряду с формулой (11) для функции поля смещений точечного дефекта $f(\mathbf{r} - \mathbf{r}_0)$ в области сильных искажений является основным выражением для решения обратной задачи ДРТТ.

Имея в виду компьютерную 3D-реконструкцию функции $f(\mathbf{r} - \mathbf{r}_0)$ на основе минимизации целевой χ^2 -функции вида

$$\chi^{2} \{ f(\mathbf{r} - \mathbf{r}_{0}) \} = \frac{1}{N(X, y, z)} \times \sum_{\{X, y, z\} \Phi} (I_{h, obs} \{ X, y, z; \theta_{B}, \Phi \} - (12) - I_{h, calc} \{ X, y, z; \theta_{B}, \Phi)^{2} = Min,$$

будем использовать итерационные алгоритмы моделирования отжига [14] и квазиньютоновского спуска [15, 16], адаптированные применительно к решению обратной задачи ДРТТ.

В (12) $I_{h,obs}{X, y, z; \theta_B, \Phi}$ есть модельная (наблюдаемая) ДРТ-проекция, отвечающая значению угла наклона Φ , а $I_{h,calc}{X, y, z; \theta_B, \Phi}$ рассчитывается по формуле (10) в соответствии с выбранным итерационным алгоритмом, начиная с некоторой стартовой функции поля смещений $f_{in}(\mathbf{r} - \mathbf{r}_0)$.

КОМПЬЮТЕРНАЯ 3D-РЕКОНСТРУКЦИЯ ФУНКЦИИ СМЕЩЕНИЙ ТОЧЕЧНОГО ДЕФЕКТА НА ОСНОВЕ ПРИМЕНЕНИЯ МЕТОДОВ СИМУЛИРОВАННОГО ОТЖИГА И КВАЗИНЬЮТОНОВСКОГО СПУСКА

Моделирование на основе алгоритма симулированного отжига. Как известно [14], алгоритм симулированного отжига (SA) широко применяется для минимизации нелинейных целевых функций и является одним из эффективных методов для решения задачи с большим количеством переменных и комбинаторной природой итерационных вычислений.

Стартуя с заданной в качестве начального приближения модели и варьируя ее параметры псевдослучайным образом, программа SA работает до достижения наилучшей сходимости расчетной модели с наблюдаемыми данными ДРТ-проекции дефекта (минимум целевой χ^2 -функции (12)).

Будем различать два состояния системы — функции поля смещений $f(\mathbf{r} - \mathbf{r}_0)$: текущее и проб-

ное значения функции $f(r-r_0)$. В итерационном процессе текущее состояние, становясь пробным, служит в дальнейшем в качестве нового те-кущего состояния системы.

Псевдослучайное изменение системы применяется к текущему состоянию, которое затем становится пробной функцией $f(r - r_0)$. Вероятность принятия пробной функции в качестве новой текущей определяется значением больцмановской функции $\exp(-\Delta \chi^2/T)$, где $\Delta \chi^2$ – изменение целевой функции, Т – параметр, называемый температурой отжига. Выбор нового текущего состояния системы существенно зависит от значения Т. Легко видеть, что более высокая температура означает более высокую вероятность $\exp(-\Delta \chi^2/T)$), это позволяет принять пробную модель в качестве новой текущей даже в случае худшего пробного приближения в сравнении с текущим, когда $\Delta \chi^2 > 0$. Но если $\Delta \chi^2 < 0$, то пробная модель всегда принимается в качестве новой текущей. В начале итерационной минимизации целевой χ²-функции температура Т выбирается достаточно высокой, так что частота принятия худшего состояния системы в качестве текущего в 10-100 раз превышает частоту обновления лучших состояний системы (другими словами, изменения системы носят почти случайный характер). Это заставляет программу SA "блуждать" по пространству поиска минимальных значений функции системы *f*. В принципе, программа SA может преодолевать локальные минимумы целевой χ^2 -функции, которые являются одним из главных препятствий для многих других нелинейных методов минимизации целевой χ^2 -функции, например, для градиентных методов спуска [15, 16].

В итерационном процессе минимизации целевой χ^2 -функции температура T_{n+1} на следующем после предыдущего *n*-шага (внешний цикл по *n*) снижается монотонно как $T_{n+1} = FT_n$, где коэффициент отжига *F* равен 0.9–0.95, а значение целевой χ^2 -функции уменьшается аналогично тому, как снижается внутренняя энергия системы в процессе понижения температуры (так называемая машина Больцмана). По этой причине программа-алгоритм SA получила название "симулированного отжига" (алгоритм Метрополиса [18]). В табл. 1 представлены детали протокола итерационной программы SA согласно [14, 18].

Для простоты все последующие результаты расчетов приводятся в безразмерных координатах. Положение точечного дефекта задается радиус-вектором \mathbf{r}_0 , $\mathbf{r}_0 = \mathbf{n}t/2$, \mathbf{n} – внутренняя нормаль к входной поверхности кристалла z = 0. Толщина *t* модельного кристалла Si(111) выбрана такой, что поглощением рентгеновского излучения в образце можно пренебречь.

КОНАРЕВ и др.

Таблица 1. Протокол использования итерационной программы-алгоритма SA

Последовательные стадии протокола SA	Программа-алгоритм SA – функциональные стадии
Инициализация число элементов системы $\{i, j, k\}$ температура $T_1 = T_{in}$ целевая функция $\chi^2_{1,1} = \chi^2_{in}$	N — номер итерации внешнего цикла по температуре T_n m — номер итерации внутреннего цикла (при фиксированном значении температуры T_n система $f_{1,1}(\{i, j, k\}) = f_{in}(\{i, j, k\})$, n = (1, 2,, N), N = 200 — число внешних циклов по $Tm = (1, 2,, M), M = 500000$ — число внутренних циклов $T_{n+1} = T_n^* F, F = 0.95$
Итерации <i>n</i> = (1, 2,, <i>N</i>), <i>N</i> = 200 для каждого номера итерации <i>n</i> и номера в цикле по <i>m</i> Алгоритм SA внутренний цикл по <i>m</i> = (1, 2,, <i>M</i>), <i>M</i> = 500000	$f_{m+1,n} = f_{m,n}(\{i, j, k\}) U\{i, j, k\} \rightarrow \hat{U}\{i, j, k\}$ для одного произвольно выбранного элемента U $\{i, j, k\}$; изменение энергии системы $\Delta_{m,n} = \chi^2_{m+1,n}(f_{m+1,n}) - \chi^2_{m,n}(f_{m,n})$ $\Delta_{m,n} < 0$: безусловно принимается пробная модель $f_{m+1,n}$; $\Delta_{m,n} > 0$: принимается пробная модель $f_{m+1,n}$, если вероятность $W_{m,n} = \exp(-\Delta_{m,n}/T_n)$ больше случайно генерируемого числа в елиничном интервале чисел [0, 1].
Внешний цикл по <i>n</i> = (1, 2,, <i>N</i>), если <i>N</i> = 200 – остановка работы программы SA	В обратном случае принимается модель $f_{m,n}$ Если частота v успешных изменений системы $f_{m,n}$ на данной тем- пературе T_n такая, что v > $M/10$, программа переходит на следую- щий шаг по температуре T_{n+1} внешнего цикла. Если частота v < 50 при значении текущей температуры T_n и/или n = N, программа SA выходит из режима работы, сохраняя послед- нее состояние системы $f_{m,n}$

На первом этапе решения обратной задачи ДРТТ программа SA была протестирована на примере минимизации целевой χ^2 -функции в случае одной 2D-проекции, когда в формуле (12) остается одно слагаемое с $\Phi = 0$, а именно:

$$\chi^{2} = 1/N\{X, y, z\} \sum_{\{X, y, z\}} (I_{h,obs}\{X, y, z; \Theta_{B}, 0\} - I_{h,calc}\{X, y, z; \Theta_{B}, 0\})^{2} = Min,$$
(13)
$$I_{h,calc}\{X, y, z; \Theta_{B}, 0\} = |E_{h}\{X, y, z; \Theta_{B}, 0\}|^{2},$$

где $I_{h, obs}{X, y, z; \theta_B, 0}$ наблюдаемая (модельная) 2D-проекция, рассчитанная на основе формулы (10) с учетом теоретической функции смещений (11) при значении масштабирующего коэффициента G = 1, а интенсивность $I_{h, calc}{X, y, z; \theta_B, 0}$ рассчитывается по формуле (10) с пробными функциями смещений в процессе итерационной минимизации целевой χ^2 -функции (13).

Отметим, что масштабирующий коэффициент *G* в формуле (11) можно выбрать равным единице за счет соответствующего выбора шага дискретной пространственной сетки координат в кристалле, на которой задается функция поля смещений $f(\mathbf{r} - \mathbf{r}_0)$. Кроме того, преследуя цель оценить степень сходимости итерационного процесса минимизации целевой χ^2 -функции к правильной (теоретической) функции $f_{obs}(\mathbf{r} - \mathbf{r}_0)$ (см. (11)), будем использовать контрольный параметр (**СР**), который определяется как

$$CP = 1/N\{X, y, z\} \times$$

$$\times \sum_{\{X, y, z\}} \frac{\left|f_{obs}\{X, y, z; \Theta_{B}, 0\} - f_{calc}\{X, y, z; \Theta_{B}, 0\}\right|}{\left|f_{obs}\{X, y, z; \Theta_{B}, 0\}\right|} \quad (14)$$

и представляет собой среднестатистическую оценку относительного отклонения текущего решения от истинного решения.

Для случая наблюдаемой 2D-проекции ДРТ (рис. 3) результаты компьютерной 3D-реконструкции функции смещений $f(\mathbf{r} - \mathbf{r}_0)$ для различных пространственных сеток, на которых она определена, а также ее различных линейных комбинаций в качестве стартовых функций с индексами убывания { p_i } в интервале значений i = 1-4представлены в табл. 2.

Диапазон поиска каждого индекса убывания $\{p_i\}, i = 1-4, в$ части действия алгоритма SA (внут-

ренний цикл, табл. 1) задавался с равной вероятностью в интервале чисел 0.0–3.0.

Как видно из табл. 2, в случае одного индекса убывания $\{p_i\}, i = 1$, в качестве стартового значения теоретическое решение для функции смещений $f(\mathbf{r} - \mathbf{r}_0)$ с индексом убывания p = 1.5 достигается с точностью, по крайней мере CP = 10^{-6} , в то время как для большего, чем единица, числа индексов убывания $\{p_i\}, i = 1-4$, теоретическое решение достигается с точностью порядка CP = 10^{-2} .

На практике представляет интерес 3D-реконструкция функции поля смещений $f(\mathbf{r} - \mathbf{r}_0)$ деффекта в кристалле без необходимости его описания в аналитической форме. В отличие от случая, описанного выше, будем рассматривать функцию $f(\mathbf{r} - \mathbf{r}_0)$ в каждом узле дискретной пространственной сетки как искомый параметр. При этом будут использованы только свойства симметрии функции $f(\mathbf{r} - \mathbf{r}_0)$ по координатам $x - x_0$, $y - y_0$, $z - z_0$, а также "включено" требование монотонного убывания с увеличением расстояний $|y - y_0|$ и/или $|z - z_0|$.

Наблюдаемая 2D-проекция ДРТ от тонкого (непоглощающего) кристалла Si(111) (рис. 3) рассчитана на основе формулы (10) с учетом (11) на пространственной сетке, состоящей из 15 × 15 × × 15 узлов. Видно, что проекция является симметричной относительно координаты *у* и в направлении распространения дифрагированной волны сдвигается от центра вдоль координаты *х* как целое на величину $t/2 \times tg \theta_B$ (в данном случае этот сдвиг равен 4/3 в безразмерных координатах *x* и *z*).

Y 0.68 14 0.69 0.70 0.71 12 0.72 0.73 $10 \cdot$ 8 6 4 2 10 8 12 X 2 À 6

Рис. 3. Наблюдаемая 2D-проекция ДРТ кристалла Si(111) с точечным дефектом. Теоретическая функция поля смещений $f(\mathbf{r} - \mathbf{r}_0)$ с индексом убывания p = 1.5 задана в узлах пространственной сетки {15, 15, 15}.

Входные данные и результаты компьютерной 3D-реконструкции функции $f(\mathbf{r} - \mathbf{r}_0)$ по данным наблюдаемой 2D-проекции ДРТ представлены в табл. 3. В первом столбце указаны пространственные сетки, на которых проводятся расчеты, жирным шрифтом (здесь и далее) выделены номера плоскостей вдоль оси *z*, в которых значения функции $f(\mathbf{r} - \mathbf{r}_0)$ варьируются, в то время как в остальных плоскостях они фиксированы в соот-

Простран- ственная сетка {i, j, k}	Стартовые значения			Конечные значения		
	$p_i, \{i = 1 - 4\}$	Целевая χ ² - функция	СР	$p_i, \{i = 1 - 4\}$	Целевая х ² - функция	СР
{21, 21, 21}	{0.9}	0.77	0.79	{1.5}	$1 \times \cdot 10^{-7}$	6×10^{-7}
{21, 21, 21}	$\{0.5, 1.0, 1.8\}$	0.48	0.95	{1.51, 1.47, 1.52}	3×10^{-4}	5×10^{-3}
{21, 21, 21}	$\{0.9, 1.2, 1.8, 2.1\}$	1.43	0.99	{1.51, 1.50, 1.49, 1.50}	6×10^{-3}	1×10^{-2}
{41, 41, 41}	{0.9}	0.79	1	{1.5}	8×10^{-7}	4×10^{-7}
{41, 41, 41}	$\{0.5, 1.0, 1.8\}$	0.48	0.96	{1.49, 1.49, 1.52}	3×10^{-4}	1×10^{-2}
{41, 41, 41}	{0.9, 1.2, 1.8, 2.1}	1.44	1	{1.48, 1.54, 1.49, 1.49}	3×10^{-3}	1.4×10^{-2}

Таблица 2. Компьютерная 3D-реконструкция функции поля смещений $f(\mathbf{r} - \mathbf{r}_0)$ для точечного дефекта кулоновского типа в кристаллах с использованием алгоритма SA. Входные данные и результаты расчетов

Примечание. Функция поля смещений $f(\mathbf{r} - \mathbf{r}_0)$ ищется в виде аналитического выражения с индексом убывания $\{p_i\}, i = 1-4$. Время одного расчета составляет 10–12 ч на персональном компьютере с процессором IntelCore 2, 2.24 ГГц.

Пространственная сетка { <i>i</i> , <i>j</i> , <i>k</i> }	С	тартовые значени	Конечные значения		
	P _{ini}	Целевая χ ² - функция	СР	Целевая χ ² - функция	СР
{15, 15, 1–6 7–9 10–15}	1.55	1.67×10^{-2}	0.0161	1.31×10^{-5}	0.0171
{15, 15, 1–5 6–10 11–15}	1.55	1.56×10^{-2}	0.0273	2.94×10^{-6}	0.029
{15, 15, 15}	1.55	1.42×10^{-2}	0.0658	2.63×10^{-8}	0.118

Таблица 3. Компьютерная 3D-реконструкция функции поля смещений $f(\mathbf{r} - \mathbf{r}_0)$ для точечного дефекта кулоновского типа в кристалле с использованием алгоритма SA. Входные данные и результаты расчетов

Примечание. Искомая функция поля смещений $f(\mathbf{r} - \mathbf{r}_0)$ задается в численном виде. Время одного расчета составляет 5–6 ч на персональном компьютере с процессором IntelCore 2, 2.24 ГГц.

ветствии с теоретическим индексом убывания p == 1.5.

Из табл. 3 видно, что в случае пространственной сетки {15, 15, 15} удается снизить значение целевой χ^2 -функции более чем на 6 порядков, в то время как контрольный параметр СР растет до 0.118 против стартового значения, равного 0.0658.

Вероятно, это может происходить по двум причинам, первая из которых – неоднозначность решения обратной задачи ДРТТ. Такой вывод следует, в частности, из того факта, что в случае перехода к пространственным сеткам с меньшим числом узлов по толщине кристалла контрольный параметр СР уменьшается.

Вторая причина заключается в эффективности работы самого алгоритма SA для минимизации целевой χ^2 -функции. Расчеты показывают, что, если вместо минимизации целевой χ^2 -функции (13) применяется алгоритм SA для минимизации СР-функции, согласно (14), значение параметра СР уменьшается только примерно в 2 раза, например, для пространственной сетки {15, 15, 15} параметр СР изменяется от 0.0658 до 0.0371, в то время как его значение должно было бы снизиться до нуля в предположении, что алгоритм SA работает эффективно.

Моделирование на основе алгоритма квазиньютоновского спуска. Для сравнения с результатами, полученными с использованием алгоритма SA, был применен для минимизации целевой χ^2 функции (13) алгоритм квазиньютоновского спуска по схеме Левенберга-Маркварда. Был использован программный код NL2SNO, имеющийся в открытом доступе (подробнее в [15, 16, 19], вариант NL2SOL с расчетом градиентов по методу конечных разностей).

Результаты минимизации целевой χ^2 -функции (13) с использованием алгоритма квазиньютоновского спуска для различных пространственных сеток и различных стартовых значений индекса убывания p_{ini} функции $f(\mathbf{r} - \mathbf{r}_0)$ представлены в табл. 4. Обозначения для идентификации пространственных сеток приняты аналогично тому, как это сделано в табл. 3. Видно, что для двух пространственных сеток {15, 15, 1-6 | 7-9 | 10-15} и {15, 15, 1-5 | **6**-**10** | 11-15} удается достичь значений контрольного параметра $CP \sim 5 \times 10^{-5}$ при конечных значениях целевой χ^2 -функции порядка 10⁻²².

Отметим, что в случае пространственной сетки {15, 15, 15} и различных стартовых значениях индекса убывания *p*_{ini} контрольный параметр СР практически не уменьшается по сравнению со стартовым СР. а в некоторых случаях даже растет.

Как показывают расчеты, последнее обстоятельство можно преодолеть, если последовательно использовать итерационную схему, корректируя при каждой итерации значения функции $f(\mathbf{r} - \mathbf{r}_0)$ в периферийной области от центра точечного дефекта. Детали расчетов с использованием корректировки значений функции $f(\mathbf{r} - \mathbf{r}_0)$ периферийных областях пространственной сетки выходят за рамки данной работы и являются отдельной темой будущего исследования.

На рис. 4 приведены сечения трехмерной функции $f(\mathbf{r} - \mathbf{r}_0)$ в плоскостях z = const для значений z = 6, 8, 10 (z = 8 – центральное сечение).

Верхние рисунки 4а, 4б, 4в – сечения теоретической 3D-функции $f(\mathbf{r} - \mathbf{r}_0)$, индекс убывания p = 1.5, нижние – сечения 3D-функции $f(\mathbf{r} - \mathbf{r}_0)$ как результат компьютерной 3D-реконструкции с использованием метода квазиньютоновского спуска. Наилучшее согласие соответствующих изображений имеет место для центрального сечения z = 8. В принципе, это может означать, что

К РЕШЕНИЮ ОБРАТНОЙ ЗАДАЧИ

фекта кулоновского типа в	кристалле с испо	льзованием алгор	итма квазиньют		
Пространственная сетка { <i>i</i> , <i>j</i> , <i>k</i> }	Стартовые значения			Конечные значения	
	P _{ini}	Целевая х²- функция	СР	Целевая х²- функция	СР
{15, 15, 1–6 7–9 10–15}	5.0	8.24×10^{-3}	$8.30 \times 10^{+2}$	3.76×10^{-6}	1.374
	3.0	4.54×10^{-5}	2.581	4.46×10^{-9}	8.07 × 10 ^{−2}
	2.0	6.32×10^{-9}	0.211	5.27×10^{-14}	4.37×10^{-2}
	1.55	2.52×10^{-11}	1.77×10^{-2}	5.67×10^{-14}	1.81 × 10 ⁻²
	1.45	1.21×10^{-11}	1.71×10^{-2}	6.88×10^{-21}	4.90 × 10 ^{−6}
	1.00	8.79×10^{-11}	0.112	5.74×10^{-13}	0.116
	0.50	7.21×10^{-11}	0.155	3.67×10^{-13}	0.132
	0.05	7.02×10^{-11}	0.174	3.45×10^{-13}	0.128
	5.0	8.24×10^{-3}	$8.30 \times 10^{+2}$	3.76×10^{-6}	1.374
	3.0	4.54×10^{-5}	2.581	4.46×10^{-9}	8.07×10^{-2}
{15, 15, 1–5 6–10 11–15}	5.0	1.71×10^{-2}	$2.09 \times 10^{+3}$	3.39×10^{-5}	3.066
	3.0	6.29×10^{-5}	5.291	3.01×10^{-8}	0.249
	2.0	8.47×10^{-9}	0.408	1.57×10^{-14}	6.69 × 10 ⁻²
	1.55	2.82×10^{-11}	2.92×10^{-2}	2.14×10^{-22}	2.70×10^{-3}
	1.45	1.47×10^{-11}	2.79×10^{-2}	9.56×10^{-28}	6.00 × 10 ⁻⁴
	1.00	1.29×10^{-10}	0.185	5.61×10^{-13}	0.212
	0.50	1.07×10^{-10}	0.260	2.32×10^{-13}	0.226
	0.05	1.00×10^{-10}	0.291	1.74×10^{-12}	0.231
{15, 15, 15}	5.0	1.94×10^{-02}	$2.46 \times 10^{+3}$	9.74×10^{-06}	46.2
	3.0	4.92×10^{-05}	1.047	1.20×10^{-08}	8.771
	2.0	5.39×10^{-09}	1.011	9.59×10^{-16}	0.692
	1.55	2.42×10^{-11}	7.06×10^{-2}	5.03×10^{-24}	0.119
	1.52	3.31×10^{-12}	2.82×10^{-2}	3.33×10^{-17}	4.46×10^{-2}
	1.48	2.46×10^{-12}	2.72×10^{-2}	6.38×10^{-27}	4.24×10^{-2}
	1.45	1.24×10^{-11}	6.65×10^{-2}	7.99×10^{-17}	0.107

Таблица 4. Результаты компьютерной 3D-реконструкции функции поля смещений $f(\mathbf{r} - \mathbf{r}_0)$ для точечного дефекта кулоновского типа в кристалле с использованием алгоритма квазиньютоновского спуска

Примечание. Время одного расчета составляет 0.5 часа на персональном компьютере с процессором IntelCore 2, 2.24 ГГц.

 1.36×10^{-10}

 1.48×10^{-10}

 1.49×10^{-10}

0.476

0.704

0.814

 4.30×10^{-14}

 1.40×10^{-13}

 1.87×10^{-12}

0.694

0.778

0.659

1.00

0.50

0.05

КОНАРЕВ и др.

Рис. 4. Сечения 3D-функции поля смещений точечного дефекта $f(\mathbf{r} - \mathbf{r}_0)$ в плоскостях z = const. В безразмерных единицах: z = 6 (а), z = 8 (центральное сечение (б)), z = 10 (в). Верхняя панель – сечения теоретической 3D-функции поля смещений $f(\mathbf{r} - \mathbf{r}_0)$, индекс убывания p = 1.5; нижняя панель – сечения 3D-функции поля смещений $f(\mathbf{r} - \mathbf{r}_0)$, восстановленной в узлах пространственной сетки {15, 15, 15} с использованием алгоритма квазиньютоновского спуска.

наилучшим образом удается восстановить 3Dфункцию $f(\mathbf{r} - \mathbf{r}_0)$ в области непосредственно вблизи центра дефекта.

ЗАКЛЮЧЕНИЕ

Развит последовательный подход к решению обратной задачи ДРТТ. Предложено полукинематическое приближение для решения уравнений Такаги—Топена, соответствующего дифракционному рассеянию рентгеновских лучей в сильно искаженной области вблизи дефекта в кристалле.

Для решения обратной задачи ДРТТ были использованы итерационные алгоритмы моделирования отжига и квазиньютоновского спуска, приведены результаты компьютерной 3D-реконструкции функции поля смещений точечного дефекта $f(\mathbf{r} - \mathbf{r}_0)$. Показано, что использованные в работе алгоритмы при определенных ограничениях на класс функций, на котором ищется функция $f(\mathbf{r} - \mathbf{r}_0)$, работают в случае одной 2D-проекции ДРТ, что позволяет восстановить теоретическую 3D-функцию поля смещений $f(\mathbf{r} - \mathbf{r}_0)$, заданную как в аналитической форме, так и в

численном виде в узлах пространственной сетки кристаллической пластины.

Проведенные предварительные расчеты показали, что алгоритм квазиньютоновского спуска допускает определенную возможность улучшить работу итерационной схемы, корректируя при каждой итерации значения 3D-функции $f(\mathbf{r} - \mathbf{r}_0)$ в узлах пространственной сетки в периферийной области на некотором расстоянии от центра точечного дефекта.

Представляется весьма вероятным, что сходимость процесса минимизации целевой χ^2 -функции с использованием алгоритма квазиньютоновского спуска также должна улучшиться в случае использования набора наблюдаемых наклонных 2D-проекций (общая формула (12)), что является немаловажным обстоятельством для фильтрации шумов и практической обработки 2D-проекций в условиях ДРТТ.

Авторы выражают благодарность В.Е. Асадчикову за обсуждения и полезные замечания, сделанные им в ходе выполнения данной работы.

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН в области развития методов исследования структуры с помощью рентгеновского и синхротронного излучений.

СПИСОК ЛИТЕРАТУРЫ

- 1. Инденбом В.Л., Чуховский Ф.Н. // УФН. 1972. Т. 107. Вып. 2. С. 229.
- 2. Epelboin Y. // Acta Cryst. A. 1975. V. 31. P. 591.
- 3. *Authier A*. Dynamical theory of X-ray diffraction. Oxford: University press, 2003. 513 p.
- 4. Смирнова И.А., Суворов Э.В., Шулаков Е.В. // ФТТ. 2007. Т. 49. Вып. 6. С. 1050.
- 5. *Шульпина И.Л., Прохоров И.А.* // Кристаллография. 2012. Т. 57. № 5. С. 740.
- Беседин И.С., Чуховский Ф.Н., Асадчиков В.Е. // Кристаллография. 2014. Т. 59. № 3. С. 365.
- 7. Takagi S. //Acta Cryst. 1962. V. 15. P. 1311.
- 8. Taupin D. // Bull. Soc. Fr. Mineral. 1961. V. 84. P. 51.
- Ludwig W., Cloetens P., Härtwig J. et al. // J. Appl. Cryst. 2001. V. 34. P. 602.
- Kawado S., Taishi T., Iida S. et al. // J. Synchrotron Rad. 2004. V. 11. P. 304.

- 11. Золотов Д.А., Бузмаков А.В., Асадчиков В.Е. и др. // Кристаллография. 2011. Т. 56. № 3. С. 426.
- 12. Золотов Д.А., Бузмаков А.В., Елфимов Д.А. и др. // Кристаллография. 2017. Т. 62. № 1. С. 12.
- Календер В. Компьютерная томография. Основы, техника, качество изображений в области клинического использования. М.: Техносфера, 2006. 344 с.
- Kirkpatrick S., Gelatt C.D., Vecci M.P. // Science. 1983. V. 220. P. 671.
- 15. *Gill P.E., Murray W., Wright M.H.* Practical Optimization. London: Academic Press. 1981. 401 p.
- Dennis J., Gay D., Welsch R. // ACM Trans. Math. Soft. 1981. V. 7. P. 348.
- Asadchikov V., Besedin I., Buzmakov A. et al. // Acta Cryst. A. 2014. V. 70. P. C1132.
- Metropolis N., Rosenbluth A.W., Rosenbluth M.N. et al. // J. Chem. Phys. 1953.V. 21(6). P. 1087.
- 19. *More J.J.* // The Levenberg-Marquardt algorithm, implementation and theory. Springer Lecture Notes in Mathematics № 630 / Ed. Watson G.A. Berlin; New York: Springer-Verlag, 1978. P. 105.