____ СТРУКТУРА НЕОРГАНИЧЕСКИХ ___ СОЕДИНЕНИЙ

УДК 548.736.5, 539.26, 538.913, 538.953

СИНТЕЗ И РЕНТГЕНОГРАФИЧЕСКИЕ ИССЛЕДОВАНИЯ ТВЕРДЫХ РАСТВОРОВ Cu₂CdGe_rSn_{1 – r}Se₄

© 2019 г. А. У. Шелег¹, В. Ф. Гременок¹, А. С. Середа², В. Г. Гуртовой^{1,*}, В. А. Чумак¹, И. Н. Цырельчук²

¹НП НАН Беларуси по материаловедению, Минск, Белоруссия ²Белорусский государственный университет информатики и радиоэлектроники, Минск, Белоруссия

**E-mail: hurtavy@physics.by* Поступила в редакцию 24.08.2017 г. После доработки 20.02.2018 г. Принята к публикации 26.04.2018 г.

Из элементарных компонентов Cu, Cd, Ge, Sn и Se методом однотемпературного синтеза получены высокотемпературная ромбическая фаза четверного соединения Cu₂CdGeSe₄, тетрагональная фаза Cu₂CdSnSe₄ и твердые растворы Cu₂CdGe_xSn_{1-x}Se₄. Рентгенографическим методом при комнатной температуре определены параметры элементарной ячейки полученных соединений и твердых растворов. Показано, что в системе Cu₂CdGe_xSn_{1-x}Se₄ образуется непрерывный ряд твердых растворов в области $0 \le x \le 0.8$ на основе соединения Cu₂CdSnSe₄, система Cu₂CdGe_xSn_{1-x}Se₄ с $x \ge 0.9$ представляет собой ромбическую кристаллическую фазу.

DOI: 10.1134/S0023476119020267

введение

Четверные соединения Cu₂CdGeSe₄ и Cu₂CdSnSe₄ являются представителями большого семейства халькогенидных полупроводников на основе Си с общей формулой $Cu_2B^{II}C^{IV}X_4$ (B = Zn, Cd, Hg; C = Si, Ge, Sn; X = S, Se). Соединения этого семейства перспективны не только с научной точки зрения, но и в плане практического применения. Они обладают уникальными оптическими и электрическими свойствами и представляют значительный интерес для использования их в оптоэлектронике, нелинейной оптике и фотовольтаике в качестве преобразователей солнечного излучения в электрический ток [1-8]. Отметим, что большинство соединений этого семейства кристаллизуется в тетрагональной (пр. гр. I42m) и ромбической (пр. гр. *Ртп*2₁) сингонии.

Соединение Cu₂CdGeSe₄ — типичный полупроводник *p*-типа с шириной запрещенной зоны $1.20-1.29 \Rightarrow B$ [9, 10], что является оптимальной величиной для эффективного использования его в качестве элементов в солнечной энергетике (1.2— $1.5 \Rightarrow B$) [10]. Соединение Cu₂CdSnSe₄ также является полупроводником *p*-типа с шириной запрещенной зоны 0.96 $\Rightarrow B$ [10]. В последнее время в ряде работ показано, что соединения Cu₂CdGeSe₄ и Cu₂CdSnSe₄ — перспективные материалы для термоэлектрических элементов [7, 11–13]. В [14] впервые было установлено, что соединение Сu₂CdGeSe₄ кристаллизуется в тетрагональной сингонии, пр. гр. $I\overline{4}2m$, параметры элементарной ячейки: a = 5.657, c = 10.988 Å. Авторы [10] получили соединение Cu₂CdGeSe₄ с ромбической кристаллической решеткой с параметрами a = 8.088, b = 6.875, c = 6.564 Å. В [15] показано, что соединение Cu₂CdGeSe₄ обладает полиморфизмом и имеет две модификации – низкотемпературную (**HT**) и высокотемпературную (**BT**). HT-модификация Cu₂CdGeSe₄ имеет тетрагональную кристаллическую решетку с параметрами a = 5.748, c = 11.053 Å, пр. гр. $I\overline{4}2m$. BT-модификация характеризуется ромбической решеткой с параметрами a = 8.097, b = 6.893, c = 6.626 Å, пр. гр. $Pmn2_1$.

ВТ-модификация Cu₂CdGeSe₄ в [15] получена методом закалки в холодной воде сплава при 673 K, в [10] — методом горизонтального градиентного охлаждения. НТ-модификация Cu₂CdGeSe₄ в [15] получена методом медленного охлаждения сплава с последующим длительным отжигом. Соединение Cu₂CdSnSe₄ кристаллизуется в тетрагональной сингонии с параметрами элементарной ячейки a = 5.832, c = 11.389 Å, пр. гр. $I\overline{4}2m$ [10].

Поскольку кристаллы соединений $Cu_2CdGeSe_4$ и $Cu_2CdSnSe_4$ обладают интересными физическими свойствами и разными структурами, значительный интерес представляют твердые растворы на их основе, так как, варьируя состав, можно получать новые материалы с непрерывно изменяющимися физическими свойствами. Поэтому цель настоящей работы — синтез соединений $Cu_2CdGeSe_4$, $Cu_2CdSnSe_4$, твердых растворов $Cu_2CdGe_xSn_{1-x}Se_4$ и определение их кристаллографических характеристик в зависимости от состава.

МЕТОДИКА ПОЛУЧЕНИЯ ОБРАЗЦОВ

Для синтеза четверных соединений Cu₂CdGeSe₄, Cu₂CdSnSe₄ и твердых растворов Cu₂CdGe_xSn_{1-x}Se₄ использовали однотемпературный метод, обеспечивающий чистоту получаемого вещества и отсутствие потерь компонентов. Исходными веществами служили элементарные компоненты: медь, кадмий, олово и германий чистоты 99.999% и селен марки ОСЧ. Синтез проводили в двойных кварцевых ампулах, прошедших предварительную химико-термическую обработку (ампулы были протравлены в "царской водке", тщательно промыты дистиллированной водой и высушены в термошкафу при $T \sim 120^{\circ}$ C). Двойные ампулы используют для того, чтобы предохранить синтезируемый состав от окисления на воздухе в случае, если внутренняя ампула при кристаллизации растрескается. Исходные компоненты в соотношениях, соответствующих определенному формульному составу, в количестве ~10-12 г загружали в ампулу, откачивали до остаточного давления ~10⁻³ Па и отпаивали от вакуумной системы. Затем данную ампулу помещали в другую ампулу с предварительно припаянным к ней кварцевым штоком и также откачивали и отпаивали, после чего размешали ее в вертикальной однозонной печи.

На первоначальном этапе температуру печи повышали со скоростью ~200 град/ч до 600°С и поддерживали ее в течение 2 ч. Затем со скоростью ~100 град/ч температуру поднимали до 860°С. За этим следовало двухчасовое выдерживание. Затем температуру поднимали до 880– 890°С. При достижении данной температуры включали вибрационное перемешивание, и систему выдерживали в таком состоянии в течение 12 ч. Затем вибрацию отключали и понижали температуру со скоростью ~5 град/ч до ~550°С, после чего печь отключали от сети. Для гомогенизации полученных слитков соединений и твердых растворов проводили их изотермический отжиг в вакууме при ~710°С в течение 500 ч.

МЕТОДИКА ЭКСПЕРИМЕНТА

Рентгенографические исследования полученных соединений и твердых растворов проводили на рентгеновском дифрактометре ДРОН-3 (Cu K_{α} излучение). В качестве монохроматора использо-

КРИСТАЛЛОГРАФИЯ том 64 № 2 2019

вали монокристаллическую пластинку графита. Дифрактограммы порошковых образцов исследуемых соединений записывали автоматически с шагом 0.03° по шкале 20. Образцами служили порошки полученных соединений и твердых растворов, запрессованные в пластмассовые кюветы. Параметры элементарной ячейки исследуемых образцов определяли на основе записанных дифрактограмм с использованием программного пакета Fullprof [16].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведены дифрактограммы твердых растворов $Cu_2CdGe_xSn_{1-x}Se_4$ различного состава с x = 0, 0.25, 0.5, 0.75, 0.8, 0.9, 1 при комнатной температуре. Как видно из рисунка, при x = 0-0.75 на лифрактограммах наблюдаются рефлексы, характерные только для тетрагональной фазы. Дифрактограммы системы $Cu_2CdGe_xSn_{1-x}Se_4$ с *x* ≥ 0.9 полностью соответствуют ромбической фазе. Обращает на себя внимание то, что на дифрактограмме Cu₂CdGe_xSn_{1 – x}Se₄ в случае x = 0.8наблюдаются рефлексы, характерные как для тетрагональной, так и для ромбической фазы, т.е. в сплаве присутствуют две фазы. Таким образом, в системе $Cu_2CdGe_xSn_{1-x}Se_4$ наблюдается непрерывный ряд твердых растворов в широкой области составов на основе соединения Cu₂CdSnSe₄ с тетрагональной кристаллической решеткой, а в области составов $x \ge 0.8$ система Cu₂CdGe_xSn_{1-x}Se₄ принадлежит ромбической сингонии. Отметим, что на дифрактограммах некоторых образцов этой системы наблюдались следы двойных соединений, таких как CdSe, SnSe.

Из рис. 1 видно, что в системе $Cu_2CdGe_xSn_{1-x}Se_4$ при замещении атомов Sn атомами Ge с меньшим атомным радиусом все рефлексы на дифрактограммах с ростом *x* смещаются в область больших углов, т.е. происходит сжатие кристаллической решетки. По полученным дифракционным спектрам определены параметры элементарной ячейки исследованной системы $Cu_2CdGe_xSn_{1-x}Se_4$.

На рис. 2 приведены зависимости параметров *a*, *c* и объема элементарной ячейки системы Cu₂CdGe_xSn_{1-x}Se₄ от состава. Как видно из рисунка, параметры *a* и *c* с ростом значений *x* плавно уменьшаются по линейному закону, что соответствует правилу Вегарда и свидетельствует об образовании в системе Cu₂CdGe_xSn_{1-x}Se₄ непрерывного ряда твердых растворов в области $0 \le x \le$ ≤ 0.8 . Хотя при x = 0.8 в системе Cu₂CdGe_xSn_{1-x}Se₄ наблюдаются рефлексы как НТ тетрагональной модификации, так и рефлексы ВТ ромбической модификации. Из рис. 2 видно, что объем эле-

Рис. 1. Дифрактограммы твердых растворов Cu₂CdGe_xSn_{1 - x}Se₄ для *x*: *I* - 0, *2* - 0.25, *3* - 0.5, *4* - 0.75, *5* - 0.8, *6* - 0.9, 7 - 1.

Рис. 2. Параметры и объем элементарной ячейки системы $Cu_2CdGe_xSn_{1-x}Se_4$: 1-a, 2-c, 3-V.

ментарной ячейки обеих фаз $Cu_2CdGe_xSn_{1-x}Se_4$ с ростом *х* плавно уменьшается.

В таблице 1 приведены параметры элементарной ячейки системы $Cu_2CdGe_xSn_{1-x}Se_4$ для твердых растворов тетрагональной фазы в области $0 \le \le x \le 0.8$ и ромбической фазы в области составов $x \ge 0.8$. Обращает на себя внимание очень незначительное изменение параметров *a*, *b* и *c* ромбической фазы с изменением состава.

Полученные в настоящей работе значения параметров элементарной ячейки кристаллов соединений Cu₂CdGeSe₄ (a = 8.051, b = 6.862, c = 6.586 Å) и Cu₂CdSnSe₄ (a = 5.825, c = 11.389 Å) при комнатной температуре хорошо согласуются с данными [10].

ЗАКЛЮЧЕНИЕ

Синтезированы четырехкомпонентные соединения $Cu_2CdGeSe_4$ с ромбической кристаллической решеткой, $Cu_2CdSnSe_4$ с тетрагональной ре-

x	<i>a</i> , Å	b, Å	c, Å	<i>V</i> , Å ³
Тетрагональная				
0	5.825	5.825	11.389	386.502
0.25	5.804	5.804	11.316	381.327
0.5	5.774	5.774	11.209	373.815
0.75	5.758	5.758	11.120	368.752
0.8	5.745	5.745	11.098	366.289
Ромбическая				
0.8	8.062	6.868	6.597	365.274
0.9	8.057	6.863	6.591	364.450
1	8.051	6.862	6.586	363.849

Таблица 1. Параметры элементарной ячейки системы $Cu_2CdGe_xSn_{1-x}Se_4$

шеткой и система $Cu_2CdGe_xSn_{1-x}Se_4$. Измерены параметры элементарной ячейки системы $Cu_2CdGe_rSn_{1-r}Se_4$ в зависимости от состава. Показано, что с ростом концентрации х параметры элементарной ячейки a, b и c системы Cu₂CdGe_xSn_{1-x}Se₄ плавно уменьшаются. Установлено, что в системе $Cu_2CdGe_xSn_{1-x}Se_4$ в области $0 \le x \le 0.8$ образуются твердые растворы на основе соединения Cu₂CdSnSe₄. При дальнейшем изменении состава при x = 0.8 в системе наряду с тетрагональной фазой появляется ромбическая, и затем система $Cu_2CdGe_xSn_{1-x}Se_4$ полностью переходит в ромбическую фазу.

СПИСОК ЛИТЕРАТУРЫ

- Chen S., Gong X.G., Walsh A., Wei S.-H. // Phys. Rev. B. 2009. V. 79. № 16. P. 165211.
- 2. Bhaskar P.U., Babu G.S., Kumar Y.B.K., Raja V.S. // Thin Solid Films. 2013. V. 534. P. 249.
- 3. *Todorov T.K., Tang J., Bag S. et al.* // Adv. En. Mater. 2013. V. 3. № 1. P. 34.
- 4. *Grossberg M., Krustok J., Raudoja J., Raadik T.* // Appl. Phys. Lett. 2012. V. 101. № 10. P. 102102.
- 5. *León M., Levcenko S., Serna R. et al.* // Mater. Chem. Phys. 2013. V. 141. № 1. P. 58.
- Шелег А.У., Гуртовой В.Г., Мудрый А.В. и др. // Журн. прикладной спектроскопии. 2014. Т. 81. № 5. С. 704.
- Chetty R., Bali A., Mallik R.C. // Intermetallics. 2016. V. 72. P. 17.
- 8. *Singh A., Singh S., Levcenko S. et al.* // Angew. Chem. Int. Ed. 2013. V. 52. № 35. P. 9120.
- 9. Мкртчян С.А., Довлетов К., Жуков Э.Г. и др. // Неорган. материалы. 1988. Т. 24. № 7. С. 1094.
- Matsushita H., Maeda T., Katsui A., Takizawa T. // J. Crystal Growth. 2000. V. 208. № 1–4. P. 416.
- Chetty R., Dadda J., de Boor J. et al. // Intermetallics. 2015. V. 57. P. 156.
- 12. *Liu F.S., Zheng J.X., Huang M.J. et al.* // Scientific Rep. 2014. V. 4. P. 5774.
- Ibáñez M., Cadavid D., Zamani R. et al. // Chem. Mater. 2012. V. 24. № 3. P. 562.
- Parthe E., Yvon K., Deitch R.H. // Acta Cryst. B. 1969. V. 25. P. 1164.
- 15. *Gulay L.D., Romanyuk Y.E., Parasyuk O.V.* // J. Alloys Compds. 2002. V. 347. № 1–2. P. 193.
- Rodríguez-Carvajal J. // Commission on Powder Diffraction (IUCr). Newsletter. 2001. V. 26. P. 12.