_____ ФИЗИЧЕСКИЕ СВОЙСТВА _ КРИСТАЛЛОВ __

УДК 548.312

ОСОБЕННОСТИ ЭЛЕКТРОННОЙ СТРУКТУРЫ ПСЕВДОБИНАРНЫХ СПЛАВОВ (GeTe)_m-(Sb₂Te₃)_n

© 2019 г. В. Г. Орлов¹, Г. С. Сергеев^{1,*}

¹ Национальный исследовательский центр "Курчатовский институт", Москва, Россия * E-mail: Sergeev_GS@nrcki.ru Поступила в редакцию 17.05.2017 г. После доработки 27.10.2017 г. Принята к публикации 15.11.2017 г.

Для соединений GeTe, Sb₂Te₃, GeSb₂Te₄ и Ge₂Sb₂Te₅, принадлежащих классу псевдобинарных сплавов (GeTe)_m–(Sb₂Te₃)_n, которые переходят из кристаллического состояния в аморфное и совершают обратный переход под действием лазерного излучения или импульса электрического тока за необычайно короткие времена порядка 1–100 нс, методом функционала электронной плотности выполнены расчеты электронной зонной структуры с помощью программного комплекса WIEN2k. Проведен подробный анализ параметров критических точек (максимумов, минимумов, точек перегиба) в распределении электронной плотности, располагающихся в точках высокой симметрии кристаллической структуры. Выявлены характерные значения параметров критических точек в распределении электронной плотности для данного класса материалов.

DOI: 10.1134/S0023476119030214

ВВЕДЕНИЕ

Псевдобинарные сплавы $(GeTe)_m - (Sb_2Te_3)_n$ являются функциональными материалами, обладающими рядом свойств, используемых в практических приложениях. Конечные соединения GeTe и Sb₂Te₃ на линии GeTe-Sb₂Te₃ тройной фазовой диаграммы Ge-Sb-Te [1, 2] известны как узкозонные полупроводники с высокой термоэлектрической эффективностью [3]. GeTe обладает ферроэлектрическими свойствами в низкотемпературной ромбоэдрической α -фазе (пр. гр. *R3m*) [4], в то время как в высокотемпературной β-фазе со структурой типа NaCl (пр. гр. *Fm*3*m*) является параэлектриком [5, 6].

В последние годы псевдобинарные сплавы $(GeTe)_m - (Sb_2Te_3)_n$ привлекли внимание вследствие их использования для изготовления различных видов оптической дисковой памяти и потенциальной возможности создания на их основе энергонезависимой электронной памяти [1, 2, 7]. Востребованность данного класса материалов обусловлена рядом уникальных свойств, в частности короткими (1–100 нс) временами перехода под действием лазерного излучения или импульса электрического тока из кристаллического состояния в аморфное и столь же короткими временами рекристаллизации. За данную способность

они получили название "phase change materials" (**PCM**). При этом у **PCM** в аморфном и кристаллическом состояниях заметно различаются оптические характеристики [8] и электросопротивление [9, 10].

Уникальность свойств РСМ на основе сплавов $(GeTe)_m$ -(Sb₂Te₃)_n ставит вопрос об особенностях электронного строения, отличающих данный класс материалов. С целью получения ответа на этот вопрос с помощью программного комплекса WIEN2k [11] были проведены расчеты электронной зонной структуры ряда стехиометрических соединений, входящих в класс РСМ: α- и β-GeTe, Sb₂Te₃, GeSb₂Te₄ и Ge₂Sb₂Te₅. В расчетах использовали модифицированный Траном и Блахой обменно-корреляционный потенциал Беке-Джонсона [12], который позволяет получать корректные значения диэлектрической щели в полупроводниках и оксидах [13]. Извлеченное из результатов зонных расчетов пространственное распределение электронной плотности ($\Theta\Pi$) $\rho(\mathbf{r})$ было проанализировано с помощью программы CRITIC2 [14], предназначенной для топологического анализа скалярных полей в периодических структурах. Кристаллографическим аспектам результатов анализа особенностей в распределении электронной плотности в РСМ посвящена данная работа.

Соединение	α-GeTe	β-GeTe	Sb ₂ Te ₃	GeSb ₂ Te ₄	Ge ₂ Sb ₂ Te ₅
Параметры решетки, Å	$a_{\rm h} = 4.165$ $c_{\rm h} = 10.670$ $a_{\rm rh} = 4.293$ $\alpha = 58.03^{\circ}$	<i>a</i> = 6.003	$a_{\rm h} = 4.264$ $c_{\rm h} = 30.458$ $a_{\rm rh} = 10.447$ $\alpha = 23.55^{\circ}$	$a_{\rm h} = 4.210$ $c_{\rm h} = 40.60$ $a_{\rm rh} = 13.75$ $\alpha = 17.61^{\circ}$	a = 4.224 c = 17.229
Пр. гр.	R3m	Fm3m	R3m	R3m	$P\overline{3}m1$
Литература	[6]	[6]	[18]	[19]	[20]

Таблица 1. Параметры кристаллических решеток

МЕТОД НАХОЖДЕНИЯ КРИТИЧЕСКИХ ТОЧЕК В РАСПРЕДЕЛЕНИИ ЭЛЕКТРОННОЙ ПЛОТНОСТИ В КРИСТАЛЛАХ

В качестве основы в программе CRITIC2 [14] взят широко используемый метод нахождения особенностей в распределении $\Im \Pi \rho(\mathbf{r})$ молекул, получивший название "Квантовой теории атомов в молекулах" (Quantum theory of atoms in molecules (QTAIM)) [15], основанный на анализе матрицы вторых производных $\Im \Pi$ по координатам, называемой матрицей Гессе или гессианом:

$$(\partial^2 \rho / \partial x_i \partial x_j),$$
 (1)

где $i, j = 1, 2, 3, x_1 = x, x_2 = y, x_3 = z$. Точки **г**_с, в которых градиент ЭП обращается в ноль, $\nabla \rho(\mathbf{r}_{c}) = 0$, называются критическими. В этих точках ЭП обладает экстремальными свойствами (имеет минимум или максимум, а также может быть седловой точкой). Диагонализуя симметричную матрицу Гессе ρ, можно найти ее собственные значения λ_i (*i* = 1, 2, 3) (главные значения кривизны) и координатные оси – главные оси кривизны. Знак и величина лапласиана ЭП $abla^2 \rho = \partial^2 \rho / \partial x^2 + \partial^2 \rho / \partial y^2 + \partial^2 \rho / \partial z^2$ в критической точке являются важными признаками типа химической связи [15]. Собственные значения λ_i матрицы Гессе действительны и могут иметь любой знак, а также равняться нулю. Классификация особых точек ρ проводится по рангу ω – числу ненулевых главных значений кривизны, и сигнатуре σ – алгебраической сумме их знаков: (ω , σ). Локальные максимумы ρ ЭП на ядрах, называемые nucleus, рассматриваются как критические точки с параметрами (3, -3) [15]. Критическая точка (3, +3) представляет собой локальный минимум в распределении ЭП и носит название клетки (cage). Из двух седловых критических точек: (3, +1) – кольцо (ring) и (3, -1) – связь (bond) –

КРИСТАЛЛОГРАФИЯ том 64 № 3 2019

последняя играет важную роль в классификации типа химической связи.

Метод критических точек в распределении ЭП кристаллов используется для анализа природы химической связи в них столь же успешно [16, 17], как и в химии молекул. В простейшем варианте классификации типов химической связи в кристаллах в качестве параметров рассматриваются знак и величина лапласиана ЭП $\nabla^2 \rho_b$ в седловой критической точке типа bond (3, -1), знаки и соотношения абсолютных величин главных значений кривизны λ_i (*i* = 1, 2, 3) в данной критической точке, величина заряда ρ_b , а также характер распределения ЭП в межатомной области кристалла. В частности, ковалентная связь характеризуется отрицательным знаком лапласиана $\nabla^2 \rho_b < 0$, отрицательными значениями $\lambda_{1,2} < 0$, большими по абсолютной величине $|\lambda_{1,2}| > \lambda_3$, большим значением ЭП в критической точке р_ь. В то время как для ионной связи $\nabla^2 \rho_b > 0, |\lambda_{L2}| \ll \lambda_3, \rho_b$ мало, зарядовая плотность концентрируется в основном в местах расположения атомов [15-17].

В расчетах параметры кристаллических решеток, приведенные в табл. 1, брались из экспериментальных данных. Указанные в таблице параметры решеток веществ, кроме β -GeTe, были измерены при комнатной температуре. Параметр решетки β -GeTe был взят из [6] и соответствовал температуре 686 К. Для кристаллов ромбоэдрической симметрии параметры решеток даны в двух установках: гексагональной (a_h , c_h) и ромбоэдрической (a_{rh} , α).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты поиска критических точек в распределении ЭП кристаллов стехиометрических соединений α - и β -GeTe, Sb₂Te₃, GeSb₂Te₄ и

Рис. 1. Распределение электронной плотности в плоскостях кристаллов α-GeTe (a–г) и β-GeTe (д, е), содержащих критические точки типа bond. Верхний ряд (a, б, д) – полная электронная плотность, нижний ряд (в, г, е) получен методом CDD. Размерность шкал для верхнего и нижнего рядов – э/Å³.

Ge₂Sb₂Te₅ приведены в табл. 2. В частности, дана информация о типах критических точек, позициях Уайкова, в которых они находятся, указаны координаты (в параметрах решетки) одной из критических точек каждого типа, величины главных значений кривизны λ_i (i = 1, 2, 3) распределения ЭП в данной критической точке, значения лапласиана $\nabla^2 \rho_c$ и величина ЭП ρ_c в критической точке. У веществ со структурами, описываемыми пр. гр. *R3m* и *R*3*m*, координаты критических точек приведены в параметрах решетки в ромбоэдрических осях a_{rh} . Для критических точек типа nucleus указаны расположенные в них атомы, но параметры не приведены в силу их нефизичности. Для критических точек типа bond указаны атомы, между которыми находится критическая точка.

Пространственная группа кристалла накладывает ограничения на типы и позиции критических точек. У всех исследованных веществ критические точки располагаются в позициях высокой симметрии [21], указанных в табл. 1. При этом количество критических точек в элементарной ячейке удовлетворяет соотношению Морзе [16, 17, 22]:

$$n-b+r-c = 0; \quad c \ge 1, \quad r \ge 3,$$

 $b \ge 3, \quad n \ge 1,$ (2)

где n, b, r и c — количества критических точек типа nucleus, bond, ring и cage соответственно.

Из табл. 2 следует, что для всех веществ, за исключением α -GeTe, лапласиан ЭП в критических точках типа bond имеет положительный знак $\nabla^2 \rho_b > 0$, что свидетельствует о выталкивании ЭП из областей вблизи данных критических точек [15–17].

Сравнение величин главных значений кривизны $|\lambda_{1,2}|$ и λ_3 для критических точек типа bond у всех исследованных соединений позволяет сделать вывод о том, что химическую связь в них нельзя классифицировать ни как ковалентную, ни как ионную. В химии молекул был введен еще один тип связи, получивший название "chargeshift bonding", для которого флуктуации ЭП играют важную роль [23–25]. Представляется весьма вероятным, что флуктуационные процессы в электронной подсистеме РСМ, стимулированные лазерным облучением или импульсами электрического тока, могут служить движущей силой для структурных фазовых превращений типа "кристалл–аморфное состояние–кристалл".

На рис. 1 в качестве примера показаны картины распределения ЭП в плоскостях кристаллов α -GeTe и β -GeTe, содержащих критические точки

ОСОБЕННОСТИ ЭЛЕКТРОННОЙ СТРУКТУРЫ

Тип крити- ческой точки	Символ Уайкова	Атом, связи	x	У	Z.	λ ₁ , э/Å ⁵	λ ₂ , э/Å ⁵	λ ₃ , э/Å ⁵	$ abla^2 ho_c, \Im/ m{\AA}^5$	$ ho_c$ э/Å ³
α-GeTe										
nucleus	1 <i>a</i>	Te	0.000	0.000	0.000					
nucleus	1 <i>a</i>	Ge	0.472	0.472	0.472					
bond	3 <i>b</i>	Ge-Te	0.260	0.712	0.260	-1.00	-0.99	1.96	-0.04	0.36
bond	3 <i>b</i>	Ge-Te	0.718	0.255	0.718	-0.43	-0.43	1.44	0.58	0.18
ring	3 <i>b</i>		0.490	0.490	0.930	-0.11	0.19	0.39	0.47	0.06
ring	3 <i>b</i>		0.987	0.987	0.520	-0.10	0.17	0.38	0.46	0.06
cage	1 <i>a</i>		0.749	0.749	0.749	0.04	0.09	0.09	0.22	0.02
cage	1 <i>a</i>		0.237	0.237	0.237	0.06	0.06	0.09	0.21	0.02
	l.				β-GeTe	1		1	1	
nucleus	4 <i>a</i>	Ge	0.000	0.000	0.000					
nucleus	4 <i>b</i>	Te	0.500	0.500	0.500					
bond	24 <i>e</i>	Ge-Te	0.000	0.000	0.229	-0.66	-0.66	1.71	0.39	0.26
ring	24 <i>d</i>		0.750	0.250	0.000	-0.11	0.16	0.41	0.46	0.06
cage	8c		0.750	0.250	0.750	0.07	0.07	0.07	0.21	0.02
					Sb ₂ Te ₃					
nucleus	1 <i>a</i>	Te ₁	0.00	0.000	0.00					
	2c	Te ₂	0.211	0.211	0.211					
	2c	Sb	0.400	0.400	0.400					
bond	6 <i>h</i>	Sb–Te ₂	0.416	0.890	0.416	-0.88	-0.88	1.79	0.03	0.34
	6 <i>h</i>	Sb–Te ₁	0.208	0.208	0.687	-0.56	-0.55	1.58	0.46	0.23
	3 <i>d</i>	$Te_2 - Te_2$	0.500	0.000	0.000	-0.21	-0.20	0.99	0.58	0.10
ring	6 <i>h</i>		0.618	0.099	0.099	-0.11	0.25	0.32	0.46	0.06
	3e		0.500	0.500	1.000	-0.09	0.09	0.41	0.41	0.05
	6 <i>h</i>		0.276	0.875	0.276	-0.06	0.14	0.23	0.31	0.04
cage	2c		0.096	0.096	0.096	0.01	0.09	0.09	0.19	0.02
	2c		0.302	0.302	0.302	0.04	0.07	0.07	0.18	0.02
	1b		0.500	0.500	0.500	0.03	0.04	0.04	0.10	0.01
GeSb ₂ Te ₄										
nucleus	1a 2-	Ge	0.000	0.000	0.000					
	20 20	50 Te	0.144	0.144	0.144					
	20 20	$1e_1$	0.290	0.290	0.290					
bond	20 6h	re_2	0.432	0.432	0.432	0.78	0.76	1.61	0.07	0.31
UUIIU	34	$Sb = 1c_2$	0.718	1.000	1 000	-0.78	-0.70	1.01	0.07	0.31
	5u 6h	30-30 Ge Te	0.300	0.131	0.678	-0.72	-0.70	1.40	0.04	0.29
	0 <i>n</i> 6 <i>h</i>	$Ue - Ie_1$	0.131	0.131	0.078	-0.70	-0.09	1.30	0.20	0.27
ring	0 <i>n</i> 6 <i>h</i>	$1c_1 - 1c_2$	0.928	0.429	0.429	-0.40	-0.44	0.34	0.38	0.20
Tillg	30		0.858	0.554	0.554	-0.12	0.28	0.34	0.49	0.07
	50 6h		0.000	0.307	0.500	_0.09	0.20	0.39	0.47	0.00
	6h		0.086	0.548	0.086	-0.09	0.16	0.36	0.43	0.05
cage	1 <i>h</i>		0.500	0.500	0.500	0.06	0.08	0.08	0.15	0.02
cube	20		0.217	0.217	0.217	0.02	0.09	0.09	0.20	0.02
	$\frac{2c}{2c}$		0.644	0.644	0.644	0.03	0.08	0.08	0.19	0.02
	2c		0.928	0.928	0.928	0.03	0.06	0.06	0.16	0.01

Таблица 2. Позиции и параметры критических точек кристаллов

КРИСТАЛЛОГРАФИЯ том 64 № 3 2019

Тип крити- ческой точки	Символ Уайкова	Атом, связи	x	У	z	λ ₁ , э/Å ⁵	λ ₂ , э/Å ⁵	λ ₃ , э/Å ⁵	$ abla^2 ho_c, artheta / \dot{A}^5$	$ ho_c$ э/Å ³
				(Ge ₂ Sb ₂ Te ₅					
nucleus	1 <i>a</i>	Te ₃	0.000	0.000	0.000					
	2 <i>d</i>	Te ₂	0.333	0.666	0.783					
	2 <i>d</i>	Te ₁	0.333	0.666	0.450					
	2 <i>d</i>	Ge	0.333	0.666	0.108					
	2 <i>c</i>	Sb	0.000	0.000	0.333					
bond	3f	Te ₁ -Te ₁	0.000	0.500	0.500	-0.80	-0.78	2.25	0.67	0.31
	6 <i>i</i>	Sb–Te ₁	0.160	0.320	0.389	-0.62	-0.61	1.43	0.20	0.26
	6 <i>i</i>	Te ₂ –Sb	0.839	0.678	0.278	-0.58	-0.57	1.56	0.41	0.24
	6 <i>i</i>	Te ₃ –Ge	0.181	0.362	0.059	-0.57	-0.57	1.49	0.35	0.23
	6 <i>i</i>	Te ₂ –Ge	0.029	0.515	0.158	-0.56	-0.55	1.47	0.36	0.23
ring	6 <i>i</i>		0.326	0.163	0.445	-0.11	0.22	0.40	0.50	0.06
	3e		0.000	0.500	0.000	-0.10	0.11	0.43	0.43	0.06
	6 <i>i</i>		0.168	0.335	0.218	-0.10	0.11	0.43	0.43	0.06
	6 <i>i</i>		0.995	0.498	0.332	-0.10	0.20	0.30	0.40	0.05
	6 <i>i</i>		0.833	0.167	0.109	-0.09	0.18	0.30	0.39	0.05
cage	1 <i>b</i>		0.000	0.000	0.500	0.05	0.08	0.08	0.21	0.02
	2 <i>d</i>		0.333	0.667	0.613	0.03	0.08	0.08	0.19	0.02
	2 <i>d</i>		0.333	0.667	0.278	0.03	0.07	0.07	0.18	0.02
	2 <i>d</i>		0.333	0.667	0.941	0.04	0.06	0.06	0.17	0.02
	2 <i>c</i>		0.000	0.000	0.159	0.04	0.07	0.07	0.17	0.02

Таблица 2. Окончание

типа bond. На рис. 1а, 1б и 1д изображено распределение полной ЭП от валентных электронов Ge и Те, а на рис. 1в, 1г и 1е – распределение ЭП, полученное с помощью метода CDD (charge density difference), в котором из полной ЭП соединения вычитается ЭП, рассчитанная для отдельных атомов. На рис. 1а, 1б, 1в и 1г распределение ЭП в α-GeTe показано в плоскостях, параллельных базовой плоскости гексагональной ячейки с координатами *z* = 0.41 (б, г) и 0.56 (а, в). В этих плоскостях расположены критические точки типа bond со значениями $\rho_{\rm b} = 0.36$ и $\rho_{\rm b} = 0.18$ э/Å³ соответственно (табл. 2). На рис. 1д и 1е показано распределение ЭП для β-GeTe в плоскости, удаленной от вершины ячейки на 0.13a (a – параметр кубической ячейки) и перпендикулярной главной диагонали куба. Данная плоскость содержит критические точки типа bond, в которых $\rho_{\rm b} = 0.26$ э/Å³. Выбор плоскости обусловлен необходимостью сравнения результатов расчетов для α- и β-GeTe. Локальные максимумы в распределении ЭП на рис. 1а, 1б и 1д наблюдаются у атомов Ge и Te, расположенных выше и ниже плоскостей. На рис. 1г и 1е отчетливо видны положения трех критических точек типа bond, в то время как по рис. 1в можно сделать вывод, что в данной плоскости α -GeTe значения ЭП в критических точках типа bond и их окрестностях различаются незначительно.

Отметим, что в исследованных PCM не только характеристики критических точек типа bond (λ_i ,

 $\nabla^2 \rho_b$, ρ_b) относительно слабы по сравнению с типичными параметрами для ковалентных и ионных соединений [16, 17], но и характеристики седловых точек типа ring, играющих заметную роль при структурных превращениях [15–17], имеют весьма малые значения.

По данным табл. 2 можно сделать вывод о том, что точки высокой симметрии в кристаллических структурах играют важную роль, поскольку в них располагаются как атомы вещества, так и критические точки в распределении ЭП кристалла. Информация о параметрах критических точек представляется весьма существенной для понимания особенностей физических свойств веществ и возможности их использования в практических приложениях.

ЗАКЛЮЧЕНИЕ

Найдены параметры критических точек в распределении электронной плотности ряда соединений, принадлежащих к классу псевдобинарных сплавов (GeTe)_m-(Sb₂Te₃)_n, обладающих свойствами РСМ. Отличительной особенностью исслелованных соелинений является положительный знак лапласиана ЭП в критических точках типа bond, что свидетельствует о выталкивании ЭП из области вблизи данных критических точек. Относительно маленькими оказались найденные значения параметров седловых критических точек как типа bond, так и типа ring, что, вероятно, способствует высокой скорости структурных фазовых превращений типа "кристалл-аморфное состояние-кристалл" при локальном воздействии на РСМ лазерным облучением или импульсом электрического тока.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Wuttig M., Yamada N. //* Nature Mater. 2007. V. 6. P. 824.
- Siegrist T., Merkelbach P., Wuttig M. // Ann. Rev. Condens. Matter Phys. 2012. V. 3. P. 215.
- 3. Wood C. // Rep. Prog. Phys. 1988. V. 51. P. 459.
- 4. Stegmeier E.F., Harbeke G. // Solid State Commun. 1970. V. 8. P. 1275.
- Chattopadhyay T., Boucherle J.X., von Schnering H.G. // J. Phys. C: Solid State Phys. 1987. V. 20. P. 1431.
- Chatterji T., Kumar C.M.N., Wdowik U.D. // Phys. Rev. B. 2015. V. 91. P. 054110.
- Deringer V.L., Dronkowski R., Wuttig M. // Adv. Funct. Mater. 2015. V. 25. P. 6343.
- Yamada N., Ohno E., Nishiuchi K. et al. // J. Appl. Phys. 1991. V. 69. P. 2849.

- 9. Lankhost M.H., Ketelaars B.W., Wolters R.A. // Nature Mater. 2005. V. 4. P. 347.
- Xiong F., Liao A.D., Estrada D., Pop E. // Science. 2011. V. 232. P. 568.
- 11. Blaha P., Schwarz K., Madsen G.K.H. et al. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties / Ed. Schwarz K. Vienna: Techn. Univ. Wien, 2001.
- 12. Tran F., Blaha P. // Phys. Rev. Lett. 2009. V. 102. P. 226401.
- Dixit H., Saniz R., Cottenier S. et al. // J. Phys.: Condens. Matter. 2012. V. 24. P. 205503.
- Otero-de-la-Roza A., Johnson E.R., Luaña V. // Comput. Phys. Commun. 2014. V. 185. P. 1007.
- Bader R.F.W. Atoms in Molecules. A Quantum Theory. International Series of Monographs on Chemistry V. 22. Oxford: Clarendon Press, 1990. 458 p.
- 16. Gatti C. // Z. Kristallogr. 2005. B. 220. S. 399.
- 17. The Quantum Theory of Atoms in Molecules. From Solid State to DNA and Drug Design / Eds. Matta C.F., Boyd R.J. Weinheim: Wiley-VCH, 2007. 527 p.
- Anderson T.L., Krause H.B. // Acta Cryst. B. 1974. V. 30. P. 1307.
- 19. *Агаев К.А., Талыбов А.Г. //* Кристаллография. 1966. Т. 11. Вып. 3. С. 454.
- 20. Karpinskii O.G., Shelimova L.E., Kretova M.A., Fleurial J.P. // J. Alloys Compd. 1998. V. 268. P. 112.
- 21. Int. Tables for Crystallography, Vol. A. Space-group symmetry, 5th ed. Ed. Hahn Th. Springer, 2005. 911 p.
- 22. *Morse M., Cairns S.S.* Critical point theory in global analysis and differential geometry. New York: Academic Press, 1969. 389 p.
- 23. Shaik S., Maitre P., Sini G., Hiberty P.C. // J. Am. Chem. Soc. 1992. V. 114. P. 7861.
- 24. Shaik S., Danovich D., Silvi B. et al. // Chem. Eur. J. 2005. V. 11. P. 6358.
- Zhang L., Ying F., Wu W. et al. // Chem. Eur. J. 2009. V. 15. P. 2979.