_____ РЕАЛЬНАЯ СТРУКТУРА ___ **КРИСТАЛЛОВ**

УЛК 548.734:548.4

ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ И РЕЛАКСАЦИИ УПРУГИХ НАПРЯЖЕНИЙ В ГОМОЭПИТАКСИАЛЬНЫХ CVD-ПЛЕНКАХ ГЕРМАНИЯ И АЛМАЗА

© 2019 г. И. А. Прохоров^{1,*}, А. Э. Волошин¹, Д. А. Романов², А. П. Большаков^{3,4}, В. Г. Ральченко^{3,4}

¹ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия ² Московский государственный технический университет, Калужский филиал, Калуга, Россия

³ Институт общей физики РАН, Москва, Россия

⁴ Национальный исследовательский ядерный университет "МИФИ", Москва, Россия

* E-mail: igor.prokhorov@mail.ru Поступила в релакцию 29.05.2018 г. После доработки 29.05.2018 г. Принята к публикации 31.05.2018 г.

Проведены сравнительные исследования реальной структуры эпитаксиальных CVD-пленок германия и алмаза. Рассмотрено влияние особенностей распределения упругих напряжений в двухслойных структурах на протекание релаксационных процессов и распределение лислокаций. На примере эпитаксиальных структур германия показано влияние неоднородной по толщине пластической деформации, обусловленной движением дислокаций в знакопеременном поле упругих напряжений, на формирование остаточного изгиба подложек и пленок. Выявлено существенное различие релаксационных процессов в CVD-пленках алмаза и его кристаллографического аналога германия.

DOI: 10.1134/S002347611903024X

ВВЕДЕНИЕ

Получение совершенных по структуре эпитаксиальных пленок различных материалов сопряжено с известными трудностями. причина которых заключается, прежде всего, в многообразии факторов, влияющих как на рост, так и на структуру пленок. Наряду со структурным совершенством, чистотой и качеством подготовки поверхности подложек существенное влияние на структуру пленок оказывают процессы, проходящие в системе пленка-подложка в ходе эпитаксии. В частности, деформации и напряжения, возникающие в эпитаксиальных структурах (ЭС) главным образом из-за несоответствия периодов кристаллических решеток сопрягаемых материалов, непосредственно влияют на рост, структуру, основные параметры эпитаксиальных пленок и в значительной степени определяют процессы деградации в полупроводниковых приборах, изготовленных на их основе [1]. Это стимулирует интерес к изучению механизмов формирования и взаимодействия дефектов в ЭС.

Важнейшую роль эти вопросы играют и в развитии технологии получения монокристаллов синтетического алмаза методом осаждения из газовой фазы (chemical vapor deposition – CVD), получившей широкое распространение в последние десятилетия [2, 3]. Этот ростовой процесс позволяет получать не только наиболее чистые кристаллы, но и прецизионно управлять содержанием примеси, что особенно важно в электронных, оптических и ряде других областей, в которых используются экстремальные свойства алмаза [4]. Однако получение совершенных по структуре СVD-пленок алмаза по-прежнему остается проблемой.

В гомоэпитаксиальных нелегированных пленках алмаза приролного изотопного состава, выращенных на подложках из алмаза типа Ib, несоответствие периодов ($\Delta a/a \sim 4.8 \times 10^{-5}$ [5]) связано преимушественно с различием в концентрации основной примеси – азота в пленке (более чистый материал) и в подложке, где содержание азота может достигать 0.5 ат. % (~10²¹ см⁻³). Значительного повышения удовня упругих напряжений можно ожидать в изотопно модифицированных пленках алмаза ¹³С на подложках алмаза с природным изотопным составом (*nat*C), для которых несоответствие периодов решеток составляет $\Delta a/a \sim 1.5 \times 10^{-4}$ [6, 7].

Релаксация упругих напряжений в ЭС посредством пластической деформации начинается при толщинах пленок, превышающих критические [8], и сопровождается образованием вблизи межфазной границы (в нейтралях системы) дислокаций несоответствия (ДН). Это приводит к значительному повышению плотности дислокаций в пленках, а при определенных условиях к формированию деформационных микродвойников и дефектов упаковки [9]. И хотя к настоящему времени образования ДН в гомоэпитаксиальных структурах алмаза не обнаружено [10], релаксационные процессы могут оказывать существенное влияние на дополнительную генерацию дислокаций и ухудшение структурных параметров CVDпленок алмаза, особенно при выращивании толстых пленок. Тем более что в ЭС германия, кремния (кристаллографических аналогах алмаза) и других полупроводниковых материалов эти процессы играют важнейшую роль в формировании реальной структуры [9, 11].

В настоящее время для изучения напряженного состояния ЭС широко используют рентгеноструктурные методы исследования, позволяющие в отдельных случаях получать детальную информацию о таких важнейших параметрах, как величина несоответствия, уровень упругой и скачки пластической деформаций на границах раздела фаз даже в многослойных гетероструктурах [12]. Однако в случае CVD-пленок алмаза использование в полном объеме существующих подходов изучения релаксационных процессов затруднено. В частности, химическая инертность алмаза практически исключает возможность использования химического травления для исследования реальной структуры этих кристаллов (за исключением, быть может, плазменного травления непосредственно в CVD реакторе [13]). Учитывая, что алмаз является кристаллографическим аналогом германия, можно ожидать, что процессы релаксации в этих материалах проходят схожим образом.

В настоящей работе проведены сравнительные исследования реальной структуры гомоэпитаксиальных пленок алмаза и германия, для которого такого рода методы исследования хорошо развиты. Выявлен ряд особенностей пластической деформации в этих материалах, обусловленных спецификой распределения упругих напряжений в ЭС.

МЕТОДИКА ЭКСПЕРИМЕНТА

Монокристаллические пленки алмаза получены методом осаждения из газовой фазы на специализированном реакторе ARDIS-100 в плазме CBЧ-разряда (частота 2.45 ГГц) в смесях метан водород при температуре $T \sim 950^{\circ}$ C [3, 14]. В качестве подложек для осаждения CVD-слоев использовали пластины ориентации {001} размером ~5 × × 5 мм² и толщиной 0.5–0.9 мм, изготовленные из монокристаллов алмаза типа Ib, выращиваемых в аппаратах высокого давления (метод *high pressure, high temperature* – **HPHT**). Скорость роста составляла около 9 мкм/ч. Синтез изотопно модифицированных пленок алмаза ¹³С проводили с использованием обогащенного по изотопу ¹³С до 99.96% метана (¹³CH₄) при следующих условиях: содержание метана в смеси – 6%, давление в камере реактора 130 Торр, СВЧ-мощность 2.2 кВт. В настоящей работе исследованы ЭС СVD/HPHT(001) природного изотопного состава с толщиной пленки $t \sim 620$ мкм, толщиной подложки $c \sim 560$ мкм (образец A018) и ¹³C/^{nat}C(001) с толщиной изотопически модифицированной пленки $t \sim 80$ мкм и толщиной подложки $c \sim 525$ мкм (образец ПЗА-1).

Гомоэпитаксиальные пленки германия толщиной $t \sim 1-200$ мкм, легированные бором до концентрации ~8 × 10¹⁸ см⁻³, были выращены газотранспортным методом в хлоридной системе при температуре $T \sim 820^{\circ}$ С на подложках из германия марки ГДГ-3 с ориентацией (111) и (001). Исследованы ЭС с толщиной пленки $t \sim 23$ мкм (образец ЭГС-1) и $t \sim 200$ мкм (образец ЭГС-2).

Исследования методами двухкристальной рентгеновской дифрактометрии и топографии проводили на двухкристальном рентгеновском дифрактометре в CuK_{α1}-излучении. Для расширения пучка и формирования почти плоской волны использовали сильно асимметричное отражение 511 от монохроматора из высокосовершенного бездислокационного германия (угол Брэгга θ ~ $\sim 45.07^{\circ}$, фактор асимметрии отражения $b \sim 0.01$, расходимость пучка после монохроматора составляет ~0.5"). Исследования пластин алмаза проводили в отражении 113 (угол Брэгга $\theta \sim 45.75^{\circ}$), хорошо согласующемся по межплоскостному расстоянию с отражением 511 от германия. Радиус кривизны пластин *R* определяли с использованием двойной щели по методике [15] с чувствительностью до *R* ~ 500 м. Послойное изменение толщины ЭС германия осуществляли полирующим химическим травлением со стороны эпитаксиальной пленки. Толщину контролировали индикатором с точностью ±1 мкм.

Однокристальные рентгенотопографические исследования в геометрии Лауэ (на просвет) с выявлением особенностей распределения дефектов в объеме кристаллов проводили методом Ланга с использованием $MoK_{\alpha 1}$ -излучения.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Проведенные рентгенодифракционные исследования CVD-пленок алмаза высокого оптического качества (прозрачных, бесцветных), отделенных от подложек лазерной резкой с последующей механической полировкой, выявили ряд структурных особенностей образцов, сформировавшихся в процессе их получения. Прежде всего отметим значительный изгиб ряда исследованных пластин с радиусом кривизны $R \sim 4$ м [5]. Формирование остаточного изгиба эпитаксиальных CVD-пленок алмаза, отделенных от подложки лазерной резкой, с радиусом кривизны до $R \sim$ ~ 1.5 м наблюдалось экспериментально в [16, 17]. Изгиб регистрировали по изменению углового положения образца при его линейном перемещении относительно падающего пучка.

С целью установления возможной причины изгиба однородных по составу нелегированных пленок алмаза рассмотрим особенности распределения упругих напряжений в двухслойных структурах с различающимися периодами кристаллических решеток подложки и пленки.

При однородном распределении примеси в эпитаксиальной пленке и подложке со скачком концентрации на межфазной границе напряжения в структуре в изотропном приближении распределены следующим образом [18]:

$$\sigma_{xx} = 0; \quad \sigma_{yy}(x) = \sigma_{zz}(x) = s(x),$$

напряжения в пленке:

$$\sigma_{nn}(x) = -\sigma_{max} \left[1 - \frac{t}{2h} - \frac{3tx}{2h^2} \left(1 - \frac{t}{2h} \right) \right]; \qquad (1)$$

напряжения в подложке:

$$\sigma_{\text{подл}}(x) = \sigma_{\text{max}} \left[\frac{t}{2h} + \frac{3tx}{2h^2} \left(1 - \frac{t}{2h} \right) \right], \quad (2)$$

где $\sigma_{\max} = 2G(1 + v) f/(1 - v), G$ – модуль сдвига, $v - коэффициент Пуассона, f = \Delta a/a$ – несоответствие периодов кристаллических решеток подложки и пленки, t – толщина эпитаксиальной пленки, 2h – общая толщина ЭС. Плоскость *ух* координатной системы совпадает с центральной по толщине плоскостью ЭС, а направление *х* перпендикулярно поверхности пленки.

В общем случае распределение напряжений в такой двухслойной структуре имеет следующие особенности (рис. 1):

— изменение величины и знака напряжений при переходе через границу пленка—подложка i с координатой $x_i = h - t$;

— изменение знака напряжений при переходе через плоскость нулевой деформации подложки (нейтраль *m*) с координатой $x_m = -h/3(1 - t/2h)$, определяемой из условия $\sigma_{\text{подл}}(x_m) = 0$;

— изменение знака напряжений при переходе через плоскость нулевой деформации в пленке (нейтраль *n*) с координатой $x_n = 2 h^2/3t$, удовлетворяющей условию $\sigma_{nn}(x_n) = 0$. Нейтраль в пленке появляется при толщине пленки t > c/2 (*c* – толщина подложки).

Наличие особых точек на профиле распределения упругих напряжений по толщине ЭС и из-

Рис. 1. Схема распределения концентрации примеси (а) и упругих напряжений (б) в двухслойной ЭС. Толщины пленки и подложки соответствуют ЭС алмаза CVD/HPHT (образец A018).

менение положения нейтралей *m* и *n* с ростом *t* необходимо учитывать при рассмотрении особенностей формирования дислокационной структуры эпитаксиальных слоев, поскольку в этих областях происходит скопление дислокаций независимо от способа их образования в ЭС [9]. На рис. 2 приведена микрофотография селективно травленого скола ЭС Ge(B)/Ge(111) при t > c/2(образец ЭГС-2). Наряду с ДН на межфазной границе (i) наблюдаются выходы дислокаций в подложке и пленке в нейтралях *т* и *п* системы. В области (m, i) ниже границы раздела видны также следы дислокационных сегментов, скольжением которых обусловлено формирование сетки ДН и сетки дислокаций в подложке. Пунктиром отмечена область сосредоточения дислокаций в окрестности нейтрали *m*. Образовавшиеся в *m* дислокационные сегменты не успевают под действием малых вблизи нейтрали упругих напряжений занять свое равновесное положение в перемещающейся с ростом толщины пленки нейтрали. В результате в подложке формируется объемная сетка дислокаций, выходы которых видны в нижней части рис. 2. Появление нейтрали в пленке особенно наглядно проявляется в кристаллах со структурой сфалерита, где изменение знака деформации (при переходе через нейтраль) приводит при пластической релаксации к изменению типа $\alpha \leftrightarrow \beta$ образующихся дислокаций [19].

Таким образом, в результате релаксации упругих напряжений в ЭС формируется достаточно сложное распределение дислокаций, обусловленное неоднородной по толщине пластической деформацией. Это, в частности, проявляется в остаточном изгибе первоначально однородных неизогнутых подложек Ge после стравливания эпитаксиальной пленки. На рис. 3 представлены экспериментальные данные по изменению кривизны $\alpha = 1/R$ структуры Ge(B)/Ge (образец

Рис. 2. Микрофотография селективно травленого скола эпитаксиальной структуры Ge(B)/Ge (111) при t > c/2.

ЭГС-1) при ее послойном стравливании со стороны пленки. Стравливание осуществляли до толщины $\xi = \xi_0$, минимальное значение которой ограничено разрушением образца и невозможностью надежного определения его кривизны при меньших толщинах. В исходном состоянии толщина пленки составляла t = 23 мкм, общая толщина ЭС H = 465 мкм. В соответствии со значениями ковалентных радиусов германия и бора $(r_{\text{Ge}} = 1.22, r_{\text{B}} = 0.88 \text{ Å} [20])$ ЭС вогнута со стороны пленки. Радиус кривизны равнялся в среднем $R \sim$ ~ 13 м, анизотропия кривизны не превышала 10%. Наличие остаточного изгиба подложки после стравливания пленки и сложный характер изменения кривизны подложки при ее дальнейшем послойном утонении свидетельствуют о значительных пластических изменениях, прошедших в первоначально однородной неизогнутой подложке.

Из-за неоднородного распределения упругих напряжений по толщине пленок аналогичные процессы должны проходить и в пленках при получении слоев значительной толщины. Таким об-

Рис. 3. Изменение кривизны ЭС Ge(B)/Ge при послойном стравливании со стороны пленки.

разом, эксперименты на ЭС германия объясняют появление остаточного изгиба подложек и пленок за счет неоднородной по толщине пластической деформации при движении дислокаций в знакопеременном поле упругих напряжений с формированием специфических распределений и конфигураций дислокаций [18].

Результаты исследования особенностей протекания релаксационных процессов в ЭС германия, являющегося кристаллографическим аналогом алмаза, можно использовать при анализе структурных особенностей и деформации гомоэпитаксиальных CVD-пленок алмаза.

На рис. 4 представлены двухкристальные топограммы поперечного (110) среза гомоэпитаксиальной структуры алмаза CVD/HPHT (образец А018), полученные в различных точках кривой качания. Высокая концентрация азота в НРНТподложке, вызывающего увеличение периода кристаллической решетки алмаза, приводит к расщеплению кривой качания [5]. Наблюдается формирование пучков дислокаций, распространяющихся примерно параллельно направлению роста пленки. Их образование может быть частично обусловлено прорастанием дислокаций из подложки, а также зарождением дислокаций на межфазной границе пленка-подложка из-за несоответствия периодов кристаллических решеток подложки и пленки (критическая толщина обра-

Рис. 4. Двухкристальные рентгеновские топограммы поперечного (110) среза гомоэпитаксиальной структуры алмаза CVD/HPHT (образец A018), полученные в различных позициях на кривой качания (отмечены точкой).

КРИСТАЛЛОГРАФИЯ том 64 № 3 2019

Рис. 5. Рентгеновские топограммы ЭС Ge(B)/Ge(001) (a), ¹³C/^{nat}C(001) (б) и микрофотография ЭС алмаза ¹³C/^{nat}C(001) (в).

зования ДН для этой ЭС составляет $t_c \sim 4$ мкм [5]), возможных приповерхностных нарушений и загрязнений подложки [21]. Отметим, что аналогичная дислокационная структура с формированием пучков дислокаций, распространяющихся перпендикулярно межфазной границе, без видимых следов пластической деформации с образованием ДН наблюдалась в [22] при изучении гетероэпитаксиальных композиций K₂Ni(SO₄)₂ · $\cdot 6H_2O/K_2Co(SO_4)_2 \cdot 6H_2O$, полученных из низкотемпературных водных растворов. Из-за низкой подвижности дислокаций и высоких критических напряжений их генерации релаксация упругих напряжений посредством скольжения дислокаций с образованием ДН не происходит. Формирование такой дислокационной структуры связано с образованием на гетерогранице включений маточного раствора, служащих источниками дислокаций, которые можно рассматривать как аналог приповерхностных нарушений обработки в структурах алмаза.

Оценочные расчеты координаты нейтрали в пленке для исследованной двухслойной структуры алмаза дали значение $x_n = 2h^2/3t = 374$ мкм. Если пренебречь релаксационными процессами, нейтраль *n* появляется при толщинах пленок, примерно равных половине толщины подложки. В рассматриваемом случае c/2 = 280 мкм. На рентгеновских топограммах (рис. 4) в области перемещения нейтрали при росте пленки (ограничена пунктирными линиями) действительно наблюдаются слабо выраженные особенности в распределении и контрасте изображения дислокаций.

Таким образом, особенности в распределении дислокаций в ЭС германия и частично алмаза находятся в соответствии с распределением упругих напряжений в двухслойных структурах.

В то же время следует отметить существенное различие в протекании релаксационных процес-

сов в ЭС германия и алмаза. Процесс релаксации упругих напряжений в структурах германия при толщинах пленок, превышающих критические, сопровождается формированием на межфазной границе сетки 60°-ных ДН [11] (рис. 5а). Следов пластической деформации с образованием ДН в ЭС ¹³С/^{nat}С (001) с толщиной пленки ~80 мкм, почти на два порядка величины превышающей критическое значение $t_c \sim 1.1$ мкм [7], на рентгеновской топограмме (рис. 5б) не наблюдается. Выявляются лишь следы механической обработки на обратной стороне подложки, идущие вдоль направления [100], являющегося направлением легкой полировки алмаза [23] (рис. 5в). Причина этого, по-видимому, связана с тем, что температура эпитаксии 950°С мала по сравнению с температурой плавления алмаза. Дислокации малоподвижны, в связи с чем эффективной пластической деформации, наблюдаемой в ЭС германия, в пленке алмаза не происходит.

Поэтому на данном этапе возможны лишь предположительные объяснения наблюдаемого изгиба CVD-пленок алмаза, отделенных от подложки. Можно выделить следующие возможные механизмы появления остаточного изгиба пленок:

– перераспределение точечных дефектов (легирующей и/или фоновой примеси) в знакопеременном поле упругих напряжений (рис. 1) при выращивании толстых пленок, аналогичное процессам, проходящим при декорировании дислокаций. Атомам, имеющим большой атомный объем, в неоднородно деформированной области энергетически целесообразно переместиться в растянутую область, а имеющим меньший атомный объем – в сжатую область кристалла [24]. Однако их концентрация, в частности, в нелегированных пленках мала, чтобы вызвать наблюдаемые деформационные эффекты;

 непрерывное увеличение плотности дислокаций по мере роста пленки [17] и их возможное перераспределение под действием упругих напряжений. Однако высокая плотность дислокаций в пленке не позволяет с необходимым для анализа разрешением выявить рентгенотопографически детали дислокационной структуры (рис. 4). Заметных следов скольжения дислокаций не наблюдается;

– нельзя исключить из рассмотрения и возможность появления изгиба из-за несимметричной (с различной шероховатостью) обработки поверхностей пластины. В таком твердом и хрупком материале, как алмаз, трудно механически обработать поверхность без нанесения приповерхностных нарушений. При механической полировке алмаза, несомненно, возникает нарушенный слой, толщина которого по оценкам [23] составляет порядка 1 мкм.

Все эти вопросы нуждаются в дополнительном более детальном рассмотрении.

ЗАКЛЮЧЕНИЕ

Методами двухкристальной рентгеновской дифрактометрии и топографии проведены сравнительные исследования особенностей деформации и реальной структуры гомоэпитаксиальных пленок алмаза и германия. Установлено, что особенности в распределении дислокаций в ЭС германия и частично алмаза находятся в соответствии с распределением упругих напряжений в двухслойных структурах.

Эксперименты на ЭС германия по изменению их кривизны при послойном стравливании объясняют появление остаточного изгиба подложек и пленок за счет неоднородной по толщине пластической деформации при движении дислокаций в знакопеременном поле упругих напряжений.

Установлено существенное различие релаксационных процессов в CVD-пленках алмаза и его кристаллографического аналога германия. Процесс релаксации упругих напряжений в ЭС германия при толщинах пленок, превышающих критические, сопровождается формированием на межфазной границе сетки 60°-ных ДН. Следов пластической деформации с образованием ДН в исследованных ЭС алмаза с толщинами пленок, почти на два порядка величины превышающими критические, не обнаружено.

Остаточный изгиб CVD-пленок алмаза, отделенных от подложки, может быть обусловлен перераспределением точечных дефектов (легирующей и/или фоновой примеси) в знакопеременном поле упругих напряжений при выращивании толстых пленок, изменением дислокационной структуры пленок в процессе их роста, а также несимметричной обработкой поверхностей пленки после лазерного отделения от подложки. Для подтверждения данных предположений требуется проведение более детальных исследований. Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН в части проведения рентгеноструктурных исследований кристаллов. Исследования в части синтеза алмаза в СВЧ-плазме проведены при поддержке Российского научного фонда (грант № 14-12-01403-П).

СПИСОК ЛИТЕРАТУРЫ

- Мильвидский М.Г., Освенский В.Б. Структурные дефекты в эпитаксиальных слоях полупроводников. М.: Металлургия. 1985. 159 с.
- Balmer R.S., Brandon J.R., Clewes S.L. et al. // J. Phys.: Condens. Matter. 2009. V. 21. P. 364211.
- 3. *Ральченко В.Г., Большаков А.П.* // Углеродная фотоника / Ред. Конов В.И. М.: Наука, 2017. С. 9.
- 4. *Wandersande J.W.* // Properties and Growth of Diamond. London: The Inst. Electric. Eng. 1994. P. 33.
- Prokhorov I.A., Ralchenko V.G., Bolshakov A.P. et al. // Crystallogr. Rep. 2013. V. 58. № 7. P. 1010.
- Holloway H.A., Hess R.A., Tamor M.K. et al. // Phys. Rev. B. 1991. V. 44. P. 7123.
- Прохоров И.А., Волошин А.Э., Ральченко В.Г. и др. // Кристаллография. 2016. Т. 61. № 6. С. 945.
- Matthews J.W., Mader S., Light T.B. // J. Appl. Phys. 1970. V. 41. P. 3800.
- 9. Stenin S.I. // Phys. Status Solidi. A. 1979. V. 55. P. 519.
- 10. *Gaukroger M.P., Martineau P.M., Crowder M.J. et al.* // Diamond Relat. Mater. 2008. V. 16. P. 262.
- 11. Prokhorov I.A., Zakharov B.G., Man'shin V.S., Shul'pina I.L. // J. Phys. D: Appl. Phys. 1993. V. 26. P. A76.
- 12. Хапачев Ю.П., Чуховский Ф.Н. // Кристаллография. 1989. Т. 34. Вып. 3. С. 776.
- 13. *Tallaire A., Achard J., Brinza O. et al.* // Diamond Relat. Mater. 2013. V. 33. P. 71.
- 14. Bolshakov A.P., Ralchenko V.G., Yurov V.Y. et al. // Diamond Relat. Mater. 2016. V. 62. P. 49.
- 15. *Прохоров И.А., Захаров Б.Г.* // Поверхность. Рентген., синхротр. и нейтр. исслед. 1999. № 2. С. 106.
- Bauer T., Schreck M., Härtwig J. et al. // Phys. Status Solidi. A. 2006. V. 203. № 12. P. 3056.
- 17. Bauer Th., Schreck M., Stritzker B. // Diamond Relat. Mater. 2006. V. 15. P. 472.
- Прохоров И.А., Захаров Б.Г., Кунакина О.Н., Акимов Г.Г. // Поверхность. Физика, химия, механика. 1982. № 5. С. 23.
- 19. Маньшин В.С., Прохоров И.А., Кунакина О.Н., Захарова Т.А. // Кристаллография. 1992. Т. 37. Вып. 5. С. 1287.
- 20. *Маделунг О*. Физика полупроводниковых соединений элементов III и V групп. М.: Мир, 1967. 477 с.
- 21. Friel I., Clewes S.L., Dhillon H.K. et al. // Diamond Relat. Mater. 2009. V. 18. P. 808.
- 22. Григорьева М.С., Волошин А.Э., Руднева Е.Б. и др. // Кристаллография. 2009. Т. 54. № 4. С. 679.
- 23. Yurov V., Bushuev E., Bolshakov A. et al. // Phys. Status Solidi. A. 2017. V. 214. P. 1700177.
- 24. *Гегузин А.Е.* // Успехи физ. наук. 1986. Т. 149. № 1. С. 149.

КРИСТАЛЛОГРАФИЯ том 64 № 3 2019