УДК 544.6, 546.161, 548.55, 548.73

ВЫРАЩИВАНИЕ И ИССЛЕДОВАНИЕ СВОЙСТВ КРИСТАЛЛОВ $Sm_{1-v}Sr_vF_{3-v}$ (0 < $y \le 0.31$)

© 2019 г. Н. И. Сорокин¹, Д. Н. Каримов^{1,*}, Н. В. Самсонова¹, А. Г. Иванова¹, В. А. Федоров¹, Б. П. Соболев¹

¹ Институт кристаллографии им. А.И. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия * E-mail: dnkarimov@gmail.com

Поступила в редакцию 26.02.2018 г. После доработки 26.03.2018 г. Принята к публикации 23.04.2018 г.

Из расплава методом направленной кристаллизации во фторирующей атмосфере получены кристаллы $Sm_{1-y}Sr_yF_{3-y}$ (0 < $y \le 0.31$). Кристаллы изучены методами рентгенофазового анализа и оптической спектроскопии, измерены их фтор-ионная проводимость σ_{dc} , плотность ρ и показатели преломления n_D . Установлено, что в условиях роста кристаллов не происходит восстановления ионов Sm^{3+} до Sm^{2+} . Обратимый полиморфный переход $\alpha \leftrightarrow \beta$ -SmF₃ не позволяет получить объемные (>1–3 мм³) образцы тисонитовой фазы (тип LaF₃) при y < 0.02. Зависимости $\rho(y)$ и $n_D(y)$ кристаллов носят убывающий характер. Зависимость $\sigma_{dc}(y)$ имеет немонотонный вид, максимальной $\sigma_{dc} = 1.6 \times 10^{-4}$ См/см при 293 К обладает кристалл $Sm_{0.98}Sr_{0.02}F_{2.98}$. При y = 0.31 образуется эвтектический композит 69SmF₃ × 31SrF₂, проводимость которого $\sigma_{dc} = 6 \times 10^{-8}$ См/см, что ниже σ_{dc} кристалла с y = 0.02 в ~3 × 10³ раз. В рамках модели прыжковой проводимости рассчитаны концентрация n_{mob} и подвижность μ_{mob} носителей заряда для $Sm_{1-y}Sr_yF_{3-y}$ (0.02 ≤ $y \le 0.25$). Для наиболее проводящего кристалла $Sm_{0.98}Sr_{0.02}F_{2.98}$ $n_{mob} = 4.0 \times 10^{20}$ см⁻³ и $\mu_{mob} = 2.5 \times 10^{-6}$ см²/Вс при T = 293 К.

DOI: 10.1134/S0023476119030263

введение

Выращиваемые из расплава в графитовых контейнерах кристаллы на основе фторидов редкоземельных элементов (**P3**Э) с переменной степенью окисления, к которым относятся самарий, европий и иттербий, подвержены частичному восстановлению (Sm³⁺ \rightarrow Sm²⁺, Eu³⁺ \rightarrow Eu²⁺, Yb³⁺ \rightarrow Yb²⁺), степень которого трудно контролировать. В результате данные о высокотемпературной химии трифторидов РЗЭ, склонных к образованию нетипичной степени окисления R^{2+} , отстают от состояния изученности химии трифторидов других РЗЭ, поскольку всегда оставался неясным вопрос о химическом составе таких кристаллов.

Нестехиометрические тисонитовые (тип LaF₃) фазы Sm_{1-y} M_y F_{3-y} на основе SmF₃ представляют интерес как фторпроводящие твердые электролиты (**ФТЭЛ**), нарушения стехиометрии которых достигаются гетеровалентными изоморфными замещениями Sm³⁺ на M^{2+} (M =Ca, Sr, Ba). При низкой степени восстановления Sm³⁺ такие кристаллы можно рассматривать как псевдобинарные. Исходя из данных о частичном восстановлении расплава SmF_3 графитом [1], исследователи старались ограничивать опыты по росту кристаллов фторидов с его участием в качестве компонента. В результате для SmF_3 (и в меньшей степени для EuF_3 и YbF_3) возник пробел как в области знаний о его высокотемпературной химии, так и о возможностях получения и использования материалов с его участием. С этим ограничением на исследования Sm-содержащих фторидных кристаллов в ряде областей применения (особенно, фотонике) приходилось мириться.

Для предпринятой в работе оптимизации составов сильно нестехиометрических ФТЭЛ по величине ионной проводимости высокая чистота кристаллов по примесям не так критична, что подтолкнуло поставить эксперименты по росту нестехиометрических кристаллов на основе SmF₃. Ранее [2, 3] были изучены ионопроводящие свойства кристалла состава Sm_{0.875}Sr_{0.125}F_{2.875}, которые показали его высокие электролитические характеристики. Тисонитовая фаза Sm_{1-y}Sr_yF_{3-y} представляет интерес как ФТЭЛ и по своим свойствам сопоставима с известными высокопроводящими твердыми электролитами R_{1-y} Sr_yF_{3-y} (R = La-Nd) [4-6].

Выполнение этого исследования помимо прикладной задачи оптимизации ФТЭЛ для нового поколения источников тока имеет большое значение для развития высокотемпературной химии фторидов РЗЭ переменной валентности и фторидного материаловедения.

Химическое семейство РЗЭ является самым многочисленным (17 элементов) во всей Периодической системе элементов. Оно характеризуется большим изменением размеров ионов R^{3+} по ряду РЗЭ. Эти изменения немонотонно меняются с ростом атомного номера: растут от Sc^{3+} к Y^{3+} и далее до La³⁺, затем начинают уменьшаться до Lu³⁺ (эффект лантаноидного сжатия). На фоне изменений ионных радиусов происходит три смены структурных типов соединений RF₃ (морфотропные превращения), разбивающие ряд трифторидов РЗЭ на пять структурных подгрупп. От типа структур, наличия (отсутствия) полиморфных превращений у соединений этих подгрупп и температур фазовых переходов зависит корректность фазовых диаграмм с участием RF_3 , на которых базируется фторидное материаловедение с участием ионов РЗЭ, важных для практических применений во многих областях физики.

Первый морфотропный переход в ряду RF_3 приходится на участок ряда, охватывающий элементы Pm, Sm, Eu. Оказалось, что фториды всех этих трех РЗЭ ограничены для экспериментальных исследований. Фторид прометия недоступен из-за естественной радиоактивности, фториды самария и европия почти не получали для практического применения из-за частичного восстановления. В результате три РЗЭ подряд выпали из ряда, предельно затруднив интерполяцию свойств соединений Pm, Sm, Eu, которая хорошо работает как прием именно для РЗЭ на малых участках ряда.

В условиях, обычных для термического анализа скоростей нагрева в номинально чистом SmF₃, происходит обратимый фазовый переход из непроводящей ромбической β-формы (пр. гр. *Pnma*, Z = 4) в низкотемпературную фтор-проводящую тисонитовую форму α -*l*-SmF₃ (пр. гр. *P*3*c*1, Z = 6).

Отметим, что структура типа тисонита имеет две формы: тригональную (пр. гр. $P\overline{3}c1$, Z = 6) и гексагональную (пр. гр. $P6_3/mmc$, Z = 2), которые выделены в [7] и по этим данным соотносятся как высокотемпературная и низкотемпературная соответственно. Переход между ними может быть отнесен к типу "размытого", затрагивающего только одну из подрешеток – анионную. Аналогичный переход наблюдается у соединений со структурой типа флюорита и не является реконструктивным полиморфным превращением. Для того чтобы отделить "размытый" переход (между формами) от полиморфного (между модификациями) решено сохранить за модификациями общепринятые обозначения буквами греческого алфавита (α , β). Разные типы тисонитовой (в данном случае) структуры обозначим в соответствии с областью их температурной устойчивости как *h*- (*high* – высокотемпературная) и *l*- (*low* – низкотемпературная) формы. Они незначительно различаются на рентгенограммах порошка, не всегда определяются в работах и могут сосуществовать в одном кристалле. Когда эти формы определены (как в данной работе), возникают двойные обозначения, включающие в себя модификацию и форму.

Учитывая сказанное выше, тисонитовая модификация α-SmF3 в свою очередь претерпевает "размытый" переход из низкотемпературной формы α -*l*-SmF₃ (пр. гр. $P\overline{3}c1, Z=6$) в высокотемпературную форму α -*h*-SmF₃ (пр. гр. *P*6₃/*mmc*, *Z*= = 2) при T ~ 1100°С [8]. Из двух РЗЭ (Sm, Eu) полиморфный переход у EuF₃ происходит при 852 ± \pm 8°C [7], т.е. в области температур, где расторможена объемная диффузия, и его наличие хорошо доказывается термическим анализом. У SmF₃ (температура плавления $T_{nn} = 1304 \pm 10^{\circ}$ С [7], порог "замораживания" объемной диффузии составляет ~540°С) фазовое полиморфное преврашение находится в области 495°С [8], где объемная диффузия заторможена. Это вызывает разброс температур превращения по данным разных авторов на несколько десятков градусов [9]. В результате уверенно расположить морфотропный переход между PmF₃ и SmF₃ затруднительно.

Практическим значением проводимого исследования является получение концентрационной серии тисонитовых кристаллов $Sm_{1-y}Sr_yF_{3-y}$, рост которых длительное время тормозился соображениями о наличии у SmF_3 деструктивного полиморфного $\alpha \leftrightarrow \beta$ -превращения, что методически сделано впервые.

Особый интерес тисонитовые кристаллы $R_{1-y}M_yF_{3-y}$ (M = Sr, Ba; $R - P3\Theta$) стали представлять недавно, после интенсификации работ по созданию новых фтор-ионных источников тока, способных по многим параметрам конкурировать с литий-ионными источниками тока [10–14].

Целью работы являются получение из расплава кристаллов тисонитовой фазы $\text{Sm}_{1-y}\text{Sr}_y\text{F}_{3-y}$ и эвтектического композита состава 69SmF₃ × × 31SrF₂, их характеризация методами рентгенофазового анализа (**РФА**) и оптической спектроскопии, исследование зависимостей фтор-ионной проводимости $\sigma_{de}(y)$, плотности $\rho(y)$ и показателя преломления $n_D(y)$ от состава.

МЕТОДИКА ЭКСПЕРИМЕНТА

Выращивание кристаллов и получение эвтектического композита. Фазовая диаграмма системы SrF_2-SmF_3 [15] показана на рис. 1. Эта система относится к эвтектическому типу с координатами эвтектики: температура 1312 \pm 10°C, состав 69 \pm ± 2 мол. % SmF₃. Процесс получения кристаллов флюоритовой фазы $Sr_{1-x}Sm_xF_{2+x}$ (фаза **F** на рис. 1) и их комплексная аттестация приведены в [16, 17]. Добавление SrF₂ к SmF₃ приводит к образованию нестехиометрической фазы Sm_{1-y}Sr_yF_{3-y} с дефектной структурой типа тисонита (LaF₃), в которой содержание SrF₂ изменяется в интервале 0-23 мол. % при эвтектической температуре (фаза Т на рис. 1). На кривых ликвидуса фазы Sm_{1-v}Sr_vF_{3-v} наблюдается температурный максимум (1340 ± 10°С) для состава с 13 мол. % SrF₂ (мол. доля $y \approx 0.13$), который превышает температуру плавления компонента SmF_3 на ~35°C.

Для проведения ростовых экспериментов выбраны составы $Sm_{1-\nu}Sr_{\nu}F_{3-\nu}$ с содержанием SrF_{2} в диапазоне y = 0 - 0.31. Выращивание кристаллов $Sm_{1-\nu}Sr_{\nu}F_{3-\nu}$ и композита 69SmF₃ × 31SrF₂ осуществлялось методом направленной кристаллизации в двухзонной установке с резистивным нагревом и графитовым тепловым узлом в смешанной атмосфере высокочистых гелия и CF₄ (до 50 об. %). Исходными реактивами служили порошки SmF₃ (чистота 99.99 мас. %, ЛАНХИТ) и SrF₂ (чистота 99.995 мас. %, Sigma-Aldrich). Использовались многоячеистые графитовые тигли с затравочными каналами. Температурный градиент в ростовой зоне составлял ~80°С/см. Скорость опускания тигля ~3 мм/ч. Средняя скорость охлаждения кристаллов после роста составляла 100°С/ч. Потери на испарение не превышали 0.5-0.8 мас. %.

Рентенофазовый анализ выполняли на порошковом рентгеновском дифрактометре Rigaku MiniFlex 600 (излучение Cu K_{α}). Регистрацию дифрактограмм проводили в диапазоне углов 20 от 10° до 100°. Идентификацию фаз осуществляли с использованием базы данных ICDD PDF-2 (2014). Уточнение параметров элементарной ячейки проводили методом Ритвельда с использованием программного обеспечения X'Pert HighScore Plus (PANanalytical, Нидерланды).

Образцы толщиной h = 2 мм для исследований вырезали из центральных участков кристаллов $\text{Sm}_{1-y}\text{Sr}_{y}\text{F}_{3-y}$ (0.03 $\leq y \leq$ 0.31) и полировали. Образец с y = 0.02 имел размеры $h = 1 \times 3 \times 3$ мм³.

Плотность кристаллов ρ измеряли методом гидростатического взвешивания в дистиллированной воде при комнатной температуре с точностью $\Delta \rho = \pm 0.005 \text{ г/см}^3$.

КРИСТАЛЛОГРАФИЯ том 64 № 3 2019

Рис. 1. Фазовая диаграмма системы SrF_2-SmF_3 (а). Показаны кристаллы, полученные из составов максимумов для флюоритовой (**F**) и тисонитовой (**T**) фаз. Внешний вид серии образцов $Sm_{1-y}Sr_yF_{3-y}$ и $Sm_{0.995}Sr_{0.005}F_{2.9995}$ (б).

Показатели преломления n_D (длина волны $\lambda = 0.589$ мкм) исследовали рефрактометрическим методом (иммерсионная жидкость α -бромнафталин) при комнатной температуре при помощи рефрактометра ИРФ-454.

Спектры оптического пропускания кристаллов регистрировали при комнатной температуре с помощью спектрофотометра Cary 5000 (Agilent Technologies) и ИК фурье-спектрометра Nicolet Nexus 5700 (Thermo Scientific) в диапазоне длин волн $\lambda = 0.2-15$ мкм.

Электрофизические измерения проводили на неориентированных образцах, так как величиной анизотропии проводимости кристаллов тисонитовых нестехиометрических фаз можно пренебречь [18, 19]. В качестве материала инертных электродов использовали графитовую пасту Dag-580 (Acheson Colloids). Электропроводность на постоянном токе σ_{dc} определяли методом импедансной спектроскопии. Методика электрофизических измерений приведена в [20]. Относительная погрешность измерений σ_{dc} составляла 5%.

Измерения комплексного импеданса $Z^*(\omega)$ концентрационной серии кристаллов $Sm_{1-y}Sr_yF_{3-y}$ при комнатной температуре (T = 293 K) выполняли в диапазонах частот $5-5 \times 10^5$ Гц и сопротивлений $1-10^7$ Ом (импедансметр Tesla BM-507) в вакууме ~1 Па. Для кристалла $Sm_{0.97}Sr_{0.03}F_{2.97}$ и эвтектического композита $69SmF_3 \times 31SrF_2$ проведены температурные исследования импеданса $Z^*(\omega)$ в интервале 290–541 К.

Рис. 2. Дифрактограммы образцов Sm_{1 – y}Sr_yF_{3 – y}. Приведены положения рефлексов Брэгга для фаз указанных пространственных групп.

Наличие в спектрах импеданса блокирующего эффекта от инертных (графитовых) электродов при низких частотах указывает на ионный характер электропереноса в кристаллах. Для эвтектического композита $69 \text{SmF}_3 \times 31 \text{SrF}_2$ найдена общая проводимость образца, ее разделение на объемно- и межкристаллитный вклады не проводилось.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Получены 14 кристаллических буль $Sm_{1-\nu}Sr_{\nu}F_{3-\nu}$ диаметром 12 мм и длиной 25-35 мм с содержанием, равным $0.005 \le y \le 0.31$ (рис. 1б). Кристаллы с $0.03 \le y \le 0.21$ не имели трещин и объемных включений. Для образцов составов с $0.005 \le y \le$ ≤0.02 прозрачная фаза наблюдалась только в нижней части буль и составляла менее 2% от общей длины. Для составов в диапазоне $0.18 \le y \le$ ≤ 0.25 в верхней части кристалла наблюдалась полупрозрачная оттесненная фаза, а образец с составом v = 0.31 был двухфазным и визуально образцы полупрозрачным. Отметим, ЧТО $Sm_{1-\nu}Sr_{\nu}F_{3-\nu}$ для $0.005 \le y \le 0.02$ застревали в ячейках графитового тигля. Причиной такого «залипания» (механического застревания) кристаллов $\text{Sm}_{1-y}\text{Sr}_{y}\text{F}_{3-y}$ является полиморфный переход β -SmF₃ (пр. гр. *Pnma*) $\leftrightarrow \alpha$ -*l*-SmF₃ (пр. гр. *P* $\overline{3}c1$), сопровождающийся уменьшением плотности.

РФА кристаллов $Sm_{1-y}Sr_yF_{3-y}$ показал, что они являются однофазными во всем объеме для составов $0.03 \le y \le 0.18$ (рис. 2). Кристаллические були $Sm_{1-y}Sr_yF_{3-y}$ с $0.005 \le y \le 0.02$ являются двухфазными. Непрозрачные верхние участки этих буль (рис. 1а) отвечают ромбической фазе β -SmF₃ (пр. гр. *Pnma*), а прозрачные – тисонитовой фазе α -*l*-Sm_{1-y}Sr_yF_{3-y} (пр. гр. *P*3*c*1). Низкотемпературная фаза α -*l*-Sm_{1-y}Sr_yF_{3-y} образуется при кристаллизации составов с $0.005 \le y \le 0.08$. Для составов с y > 0.08 наблюдаются переход из тисонитовой формы α -*l*-Sm_{1-y}Sr_yF_{3-y} (пр. гр. *P*3*c*1) в высотемпературную форму α -*h*-Sm_{1-y}Sr_yF_{3-y} (пр. гр. *P*6₃/*mmc*) и ее стабилизация.

Полупрозрачная оттесняемая субстанция в верхней части образцов $\text{Sm}_{1-y}\text{Sr}_{y}\text{F}_{3-y}$ для $0.18 \le y \le 0.25$ состоит из смеси "примесной" флюоритовой фазы $\text{Sr}_{1-x}\text{Sm}_{x}\text{F}_{2+x}$ (пр. гр. $Fm\overline{3}m$) с параметром элементарной ячейки a = 5.775(1) Å и ос-

Рис. 3. Концентрационная зависимость параметров решетки (\bigcirc , \spadesuit) и объемов элементарной ячейки (\blacksquare) тисонитовой фазы Sm_{1-y}Sr_yF_{3-y}. Пунктир – аналитические зависимости *a*(*y*) и *c*(*y*) по данным [21].

новной тисонитовой фазы α -*h*-Sm_{1-y}Sr_yF_{3-y}, что согласуется с полученным в [15] значением предельной растворимости SrF₂ в матрице SmF₃ ($y \approx \approx 0.23$).

Образец с y = 0.31 представляет собой двухфазный во всем объеме эвтектический композит, состоящий из смеси нестехиометрических фаз с предельными составами для флюоритовой (пр. гр. $Fm\overline{3}m$, a = 5.774(1) Å) и тисонитовой (пр. гр. $P6_3/mmc$, a = 4.0419(1) и c = 7.1951(1) Å) структур.

На рис. 3 приведены концентрационные зависимости параметров решетки a(y), c(y) и объема элементарной ячейки V кристаллов нестехиометрической фазы Sm_{1 – v}Sr_vF_{3 – v} Данные удовлетворительно совпадают с результатами [21]. Значения параметра c(y) слабо квадратично возрастают от 7.1323(1) до 7.1951(1) Å в диапазоне составов $0.005 \le y \le 0.31$. В области y = 0.08 - 0.10 отчетливо наблюдаются смена форм структуры типа тисонита и переход от "большой ячейки" (α-l- $Sm_{1-\nu}Sr_{\nu}F_{3-\nu}$, пр. гр. $P\overline{3}c1, Z=6$) к "малой ячейке" (α -*h*-Sm_{1-y}Sr_yF_{3-y}, пр. гр. *P*6₃/*mmc*, *Z* = 2). Наблюдаемый концентрационный структурный переход с изменением объема элементарной ячейки и пространственной группы симметрии характерен для тисонитовых нестехиометрических фаз $R_{1-y}M_{y}F_{3-y}$ (R = La - Nd, M = Ca, Sr, Ba) [22, 23].

Результаты измерения плотности $\rho(y)$ кристаллов тисонитовой фазы $\text{Sm}_{1-y}\text{Sr}_{y}\text{F}_{3-y}$ приведены на рис. 4а. Зависимость $\rho(y)$ имеет практически линейный (с погрешностью $\Delta \rho = \pm 0.02$ г/см³) убывающий характер в диапазоне $0.03 \le y \le 0.23$. Данные по плотностям тисонитовой α -*l*-SmF₃ и ром-

КРИСТАЛЛОГРАФИЯ том 64 № 3 2019

Рис. 4. Концентрационные зависимости плотности (а) и показателей преломления (б) для кристаллов Sm_{1 – y}Sr_yF_{3 – y} при T = 293 К. Обозначения: \bigcirc – экспериментальные значения; ренттеновская плотность для α -SmF₃ (**I**) и β -SmF₃ (**O**) [24], Δ – данные [25] для Sm_{0.87}Sr_{0.13}F_{2.87}; \bigcirc , **O** – экспериментальные значения для n_0 и n_e соответственно; \diamondsuit , **H** – n_0 и n_e для Sm_{0.87}Sr_{0.13}F_{2.87} для λ = 0.635 мкм [25]; \square , **I**, \boxtimes – главные показатели преломления для β -SmF₃ [26].

бической β -SmF₃ модификаций [24] и кристалла Sm_{0.87}Sr_{0.13}F_{2.87} [25] приведены для сравнения.

Зависимости показателей преломления n_D кристаллов Sm_{1 – y}Sr_yF_{3 – y} от состава (0.03 $\leq y \leq$ 0.25) показаны на рис. 46. Кристаллы являются одноосными и оптически отрицательными ($n_o > n_e$). Значения n_o на длине волны $\lambda = 0.589$ мкм монотонно уменьшаются в диапазоне от 1.601(1) до 1.569(1) в исследованном диапазоне составов *y*. Зависимости $n_D(y)$ могут быть описаны полиномами второй степени, параметры которых указаны на рис. 46. Двулучепреломление $\Delta n_D \sim 0.008$ и практически не зависит от состава кристаллов *y*. Как видно из рис. 46, оптические данные для кри-

Рис. 5. Спектры пропускания кристаллов $\text{Sm}_{1-y}\text{Sr}_y\text{F}_{3-y}$ для y = 0.13 (1), 0.18 (2) и кристалла $\text{La}_{0.99}\text{Sm}_{0.01}\text{F}_3$, выращенного в восстановительных условиях (3). Толщина образцов 2 мм.

сталла $Sm_{0.87}Sr_{0.13}F_{2.87}$, выращенного в [25] методом Чохральского, существенно отличаются от настоящих, что указывает, по-видимому, на ошибку в определении его химического состава. Для сравнения приведены значения главных показателей преломления кристалла β -SmF₃ [26].

Спектры оптического пропускания кристаллов Sm_{1-v}Sr_vF_{3-v} показаны на рис. 5. Кристаллы прозрачны в ИК-диапазоне до 13 мкм. В спектрах наблюдаются переходы из основного ⁶Н_{5/2}-состояния на расположенные выше мультиплеты 4/5конфигурации Sm³⁺. Характерные для ионов Sm^{2+} полосы поглощения, связанные $4f^5-4f5d^1$ переходами, расположены в видимой и УФ-областях спектра [27]. Для сравнения на рис. 5 (кривая 3) приведен спектр пропускания кристалла $La_{0.99}Sm_{0.01}F_3$, выращенного в восстановительной атмосфере. В спектре этого кристалла наблюдается поглощение в области $\lambda < 0.7$ мкм, указывающее на наличие в нем доли восстановленных ионов Sm²⁺, чего не наблюдается для изучаемых кристаллов Sm_{1-v}Sr_vF_{3-v}. Таким образом, в окислительно-восстановительных условиях выращивания кристаллов Sm_{1 – v}Sr_vF_{3 – v} из расплава в графитовых тиглях, реализуемых в проводимых экспериментах, значимого восстановления ионов Sm^{3+} до состояния (2+) не происходит.

Концентрационная зависимость фтор-ионной проводимости кристаллов тисонитовой фазы $Sm_{1-y}Sr_yF_{3-y}$ (0.02 $\leq y \leq$ 0.25) имеет монотонно убывающий характер (рис. 6). Максимальная проводимость $\sigma_{dc} = 1.6 \times 10^{-4}$ См/см обнаружена

Рис. 6. Концентрационная зависимость ионной проводимости $\sigma_{dc}(y)$ для кристаллов Sm_{1 – y}Sr_yF_{3 – y} (*1*–3) и композита 69SmF₂ × 31SrF₂ (*4*) при *T* = 293 K: *1*, *4* – данная работа, *2* – [6], *3* – [28]. Температурные зависимости ионной проводимости $\sigma_{dc}(T)$ для кристаллов Sm_{0.97}Sr_{0.03}F_{2.97} (*1*), Sm_{0.875}Sr_{0.125}F_{2.875} [6] (*2*) и композита 69SmF₂ × 31SrF₂ (*3*) показаны на вставке.

для состава кристалла $Sm_{0.98}Sr_{0.02}F_{2.98}$. Его проводимость в ~3 раза ниже, чем у наиболее проводящего среди $R_{1-y}Sr_yF_{3-y}$ кристалла $Ce_{0.97}Sr_{0.03}F_{2.97}$ [3, 5]. Проводимость эвтектического композита 69SmF₃ × 31SrF₂ равна $\sigma_{dc} = 6 \times 10^{-8}$ См/см, что значительно (в 2.7 × 10³ раз) ниже значения σ_{dc} кристалла Sm_{0.98}Sr_{0.02}F_{2.98}. Для сравнения на рис. 6 приведены данные по проводимости кристаллов Sm_{1-y}Sr_yF_{3-y} (y = 0.125 [6] и 0.13 [28]).

Температурные зависимости ионной проводимости $\sigma_{dc}(T)$ для кристалла $\mathrm{Sm}_{0.97}\mathrm{Sr}_{0.03}\mathrm{F}_{2.97}$ и эвтектического композита 69 $\mathrm{SmF}_2 \times 31\mathrm{SrF}_2$ в интервале температур 290—541 К показаны на вставке рис. 6 (кривые *1* и *3*). Зависимости $\sigma_{dc}(T)$ обрабатывали по уравнению Френкеля—Аррениуса:

$$\sigma_{dc}T = A \exp(-\Delta H_{\sigma}/kT), \qquad (1)$$

где A — предэкспоненциальный множитель проводимости, ΔH_{σ} — энтальпия активации ионного транспорта, k — константа Больцмана, T — температура. Параметры уравнения Френкеля—Аррениуса составляют: $A = 3.5 \times 10^3$ См К/см, $\Delta H_{\sigma} = 0.30 \pm 0.03$ эВ для кристалла Sm_{0.97}Sr_{0.03}F_{2.97} и $A = 2.7 \times 10^6$ См К/см, $\Delta H_{\sigma} = 0.65 \pm 0.02$ эВ для композита 69 SmF₂ × 31 SrF₂.

Для сравнения на вставке рис. 6 (кривая 2) показана зависимость $\sigma_{dc}(T)$ для кристалла конгруэнтно плавящегося состава Sm_{0.875}Sr_{0.125}F_{2.875}, исследованная ранее [6] в широком интервале тем-

Рис. 7. Зависимости концентрации $n_{mob}(y)$ (1) и подвижности $\mu_{mob}(y)$ при T = 293 К (2) для кристаллов $\text{Sm}_{1-y}\text{Sr}_y\text{F}_{3-y}$ от содержания SrF_2 .

ператур 173–1073 К. В этом интервале σ_{dc} возрастают от 2 × 10⁻¹² до 7 × 10⁻¹ См/см (на 11 порядков). При 573 К зависимость $\sigma_{dc}(T)$ разделяется на два участка. Параметры уравнения Френкеля–Аррениуса составляют: $A = 9.1 \times 10^5$ См К/см, $\Delta H_{\sigma} = 0.53 \pm 0.01$ эВ при 173–573 К и $A = 5.6 \times 10^4$ См К/см, $\Delta H_{\sigma} = 0.39 \pm 0.02$ эВ при 573–1073 К.

Результаты исследования тисонитовых фаз $R_{1-y}M_yF_{3-y}$ в системах MF_2-RF_3 (M = Ca, Sr, Ba) методом F¹⁹ ЯМР [29–31] указывают на то, что ионный перенос в них происходит в анионной подрешетке. Механизм ионной проводимости в кристаллах $R_{1-y}M_yF_{3-y}$ связан с миграцией фторных вакансий V_F^+ , кластеры дефектов не обнаружены [2–6, 28, 32–34].

Гетеровалентные замещения в катионной подрешетке $Sm_{1-y}Sr_{y}F_{3-y}$ обусловливают появление в анионной подрешетке подвижных вакансий фтора:

$$\mathrm{Sm}^{3+} \to \mathrm{Sr}^{2+} + V_{\mathrm{F}}^{+}, \qquad (2)$$

где $V_{\rm F}^+$ — ионный носитель заряда. Ионный транспорт в кристаллах Sm_{1 – y}Sr_yF_{3 – y} определяется характеристиками подвижных $V_{\rm F}^+$:

$$\sigma_{dc} = q n_{mob} \mu_{mob}, \qquad (3)$$

где q, n_{mob} и μ_{mob} — заряд, концентрация и подвижность вакансий $V_{\rm F}^+$. Концентрация носителей заряда в ионных проводниках $R_{1-y}M_yF_{3-y}$ не зависит от температуры и определяется механизмом образования "примесных" вакансий (2). С учетом структурных данных рассчитана концентрация носителей:

$$n_{mob} = 2Zy/(\sqrt{3a^2c}), \qquad (4)$$

КРИСТАЛЛОГРАФИЯ том 64 № 3 2019

и далее из (3) и (4) вычислена их подвижность μ_{mob} .

Рассчитанные значения n_{mob} и μ_{mob} для кристаллов Sm_{1 – y}Sr_yF_{3 – y} приведены на рис. 7. Концентрация носителей заряда при T = 293 К для наиболее проводящего кристалла Sm_{0.98}Sr_{0.02}F_{2.98} составляет $n_{mob} = 4.0 \times 10^{20}$ см⁻³ при подвижности $\mu_{mob} = 2.5 \times 10^{-6}$ см²/Вс. С ростом содержания SrF₂ поведение зависимостей $n_{mob}(y)$ и $\mu_{mob}(y)$ разнонаправлено. С увеличением у от 0.02 до 0.25 значения n_{mob} возрастают в 12 раз, в то время как значения μ_{mob} падают в 2 × 10⁴ раз. Снижение величины σ_{dc} кристаллов Sm_{1 – y}Sr_yF_{3 – y} в интервале изученных составов $0.02 \le y \le 0.25$ вызвано уменьшением подвижности носителей заряда вследствие ионногных взаимодействий между ними.

ЗАКЛЮЧЕНИЕ

Впервые из расплава методом Бриджмена получена серия кристаллов $Sm_{1-y}Sr_yF_{3-y}$ (0 < $y \le \le 0.31$). Показано, что полиморфное $\alpha \leftrightarrow \beta$ -превращение в SmF₃ не позволяет получить объемные образцы тисонитовой фазы $Sm_{1-y}Sr_yF_{3-y}$ (тип LaF₃) для составов y < 0.02. В реализованных условиях выращивания кристаллов $Sm_{1-y}Sr_yF_{3-y}$ из расплава в графитовом тигле во фторирующей атмосфере (CF₄) не происходит существенного восстановления ионов Sm³⁺ до состояния Sm²⁺.

Низкотемпературная тисонитовая фаза α -*l*-Sm_{1-y}Sr_yF_{3-y} (пр. гр. $P\overline{3}c1$) образуется для кристаллов Sm_{1-y}Sr_yF_{3-y} с 0.005 $\leq y \leq$ 0.08. Начиная с содержания y > 0.08 рентгенографически наблюдается стабилизация высокотемпературной тисонитовой фазы α -*h*-Sm_{1-y}Sr_yF_{3-y} (пр. гр. $P6_3/mmc$). Образец с y = 0.31 является двухфазным эвтектическим композитом, состоящим из смеси нестехиометрических фаз с насыщенными при эвтектической температуре составами для флюоритовой (Sr_{1-x}Sm_xF_{2+x}) и тисонитовой (Sm_{1-y}Sr_yF_{3-y}) структур.

Установлено, что концентрационный переход в тисонитовых модификациях α -*l*-Sm_{1-y}Sr_yF_{3-y} $\leftrightarrow \alpha$ -*h*-Sm_{1-y}Sr_yF_{3-y} при y = 0.08-0.1 не проявляется на концентрационных зависимостях плотности $\rho(y)$, показателя преломления $n_D(y)$ и проводимости $\sigma_{dc}(y)$. Для нестехиометрической тисонитовой фазы Sm_{1-y}Sr_yF_{3-y} (0.03 $\leq y \leq 0.25$) значения плотности $\rho(y)$ и показателя преломления $n_D(y)$ монотонно уменьшаются в диапазоне составов $0.03 \leq y \leq 0.25$.

Исследована концентрационная зависимость ионной проводимости кристаллов нестехиометрической фазы $\text{Sm}_{1-y}\text{Sr}_{y}\text{F}_{3-y}$ в интервале составов $0.02 \le y \le 0.25$ и композита $69\text{SmF}_2 \times 31\text{SrF}_2$.

Проводимость при комнатной температуре эвтектического композита $69 \text{SmF}_2 \times 31 \text{SrF}_2$ равна $\sigma_{dc} = 6 \times 10^{-8} \text{ См/см}$, а для наиболее проводящего кристалла твердого раствора состава $\text{Sm}_{0.98}\text{Sr}_{0.02}\text{F}_{2.98}$ (y = 0.02) $\sigma_{dc} = 1.6 \times 10^{-4} \text{ Cm/cm}$.

В рамках модели прыжковой проводимости для кристаллов $\text{Sm}_{1-y}\text{Sr}_{y}\text{F}_{3-y}$ рассчитаны концентрация и подвижность носителей заряда (вакансий фтора), которые составляют $n_{mob} = 4.0 \times 10^{20} \text{ см}^{-3}$ и $\mu_{mob} = 2.5 \times 10^{-6} \text{ см}^{2}/\text{Bc}$ (T = 293 K) для кристалла $\text{Sm}_{0.98}\text{Sr}_{0.02}\text{F}_{2.98}$. Антибатное поведение зависимостей $n_{mob}(y)$ и $\mu_{mob}(y)$ определяет снижение величины σ_{dc} кристаллов $\text{Sm}_{1-y}\text{Sr}_{y}\text{F}_{3-y}$ с ростом содержания y.

Авторы выражают благодарность Н.А. Ивановской, Б.В. Набатову и Т.Б. Косовой за помощь в получении экспериментальных данных.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проекты № 16-03-00707, 17-00-00118) в части выращивания кристаллических образцов и Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию в части исследования характеристик кристаллов с использованием оборудования Центра коллективного пользования Федерального научно-исследовательского центра "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kirhenbaum A.D., Cahill J.A.* // J. Inorg. Nuclear Chem. 1960. V. 14. № 1–2. P. 148.
- 2. Сорокин Н.И., Фоминых М.В., Кривандина Е.А. и др. // Кристаллография. 1996. Т. 41. № 2. С. 310.
- 3. *Сорокин Н.И., Соболев Б.П.* // Электрохимия. 2007. Т. 43. № 4. С. 420.
- Сорокин Н.И., Соболев Б.П. // Кристаллография. 1994. Т. 39. № 5. С. 889.
- 5. *Соболев Б.П., Сорокин Н.И.* // Кристаллография. 2014. Т. 59. № 6. С. 891.
- Sobolev B.P., Sorokin N.I., Bolotina N.B. // Photonic & Electronic Properties of Fluoride Materials / Eds. Tressaud A., Poeppelmeier K. Amsterdam: Elsevier, 2016. P. 465.
- Greis O., Cader M.S.R. // Thermochim. Acta. 1985. V. 87. P. 145.
- Rotereau K., Daniely Ph., Desert A., Gesland J.Y. // J. Phys. Cond. Matter. 1998. V. 10. № 6. P. 1431.
- 9. *Sobolev B.P.* The Rare Earth Trifluorides. The High Temperature Chemistry of Rare Earth Trifluorides, Institute of Crystallography, Moscow, and Institut d'Es-

tudis Catalans, Barcelona: Institut d'Estudis Catalans, Spain, 2000. 520 p.

- 10. *Потанин А.А.* // Журн. Рос. хим. о-ва им. Д.И. Менделеева. 2001. Т. XLV. № 5-6. С. 58.
- Anji Reddy M., Fichtner M. // J. Mater. Chem. 2011. V. 21. P. 17059.
- Rongeat C., Anji Reddy M., Witter R., Fichtner M. // J. Phys. Chem. 2013. V. 117. P. 4943.
- 13. Gschwind F., Rodriguez-Garsia G., Sandbeck D.J.S. et al. // J. Fluor. Chem. 2016. V. 182. P. 76.
- 14. *Dieudonne B., Chable J., Mauvy F. et al.* // J. Phys. Chem. C. 2015. V. 119. P. 25170.
- 15. *Sobolev B.P., Seiranian K.B.* // J. Solid State Chem. 1981. V. 39. № 3. P. 337.
- 16. Соболев Б.П., Каримов Д.Н., Сульянов С.Н. и др. // Кристаллография. 2009. Т. 54. № 1. С. 129.
- 17. Сорокин Н.И., Каримов Д.Н., Сульянова Е.А. и др. // Кристаллография. 2010. Т. 55. № 4. С. 708.
- Roos A., Aalders A.F., Schoonman J. et al. // Solid State Ionics. 1983. V. 9–10. P. 571.
- 19. *Сорокин Н.И., Соболев Б.П.* // Электрохимия. 2007. Т. 43. № 4. С. 420.
- Иванов-Шиц А.К., Сорокин Н.И., Федоров П.П., Соболев Б.П. // ФТТ. 1983. Т. 25. № 6. С. 1748.
- Соболев Б.П., Александров В.Б., Федоров П.П. и др. // Кристаллография. 1976. Т. 21. № 1. С. 95.
- Болотина Н.Б., Черная Т.С., Калюканов А.И. и др. // Кристаллография. 2015. Т. 60. № 3. С. 391.
- 23. *Хрыкина О.Н., Сорокин Н.И., Верин И.А. и др. //* Кристаллография. 2017. Т. 62. № 4. С. 559.
- 24. Бацанова Л.Р. // Успехи химии. 1971. Т. 40. № 6. С. 945.
- Ананьева Г.В., Баранова Е.Н., Заржицкая М.Н. и др. // Изв. АН СССР. Неорган. материалы. 1980. Т. 16. № 1. С. 68.
- Staritzky E., Asprey L B. // Anal. Chem. 1957. V. 29. № 5. P. 855.
- 27. Раджабов Е.А., Козловский В.А. // Изв. РАН. Сер. физ. 2015. Т. 79. № 2. С. 275.
- Мурин И.В., Глумов О.В., Подколзина И.Г. и др. // Журн. прикл. химии. 1982. Т. 55. № 2. С. 300.
- Лившиц А.И., Бузник В.М., Федоров П.П., Соболев Б.П. // Неорган. материалы. 1982. Т. 18. № 1. С. 135.
- Aalders A.F., Polman A., Arts A.F.M., de Wijn H.W. // Solid State Ionics. 1983. V. 9–10. P. 539.
- Denecke M.A., Gunser W., Privalov A.V., Murin I.V. // Solid State Ionics. 1992. V. 52. P. 327.
- 32. Takahashi T., Iwahara H., Ishikawa T. // J. Electrochem. Soc. 1977. V. 124. № 2. P. 280.
- 33. *Мурин И.В., Глумов О.В., Амелин Ю.В. //* Журн. прикл. химии. 1980. Т. 53. № 7. С. 1474.
- Roos A., van de Pol F.C.M., Keim R., Schoonman J. // Solid State Ionics. 1984. V. 13. P. 191.