—— НАНОМАТЕРИАЛЫ —

УДК 538.971

ПРИМЕНЕНИЕ ЭМПИРИЧЕСКОГО ПОТЕНЦИАЛА Si-O-C ДЛЯ МОДЕЛИРОВАНИЯ МЕТОДОМ ПЕРЕКЛЮЧЕНИЯ СВЯЗЕЙ АМОРФНЫХ АТОМНЫХ СТРУКТУР И ПЕРЕХОДНЫХ СЛОЕВ

© 2019 г. И.В.Белов^{1,*}

¹Национальный исследовательский центр "Курчатовский институт", Москва, Россия

* *E-mail: ivanbelov1977@gmail.com* Поступила в редакцию 25.01.2018 г. После доработки 25.01.2018 г. Принята к публикации 27.04.2018 г.

Представлены параметры эмпирического потенциала REBO2 для системы Si–O–C. Расчеты, полученные с использованием этого потенциала, показали хорошее совпадение с экспериментальными значениями длин и углов элементарных ячеек, энергии связей и поверхностной энергии для Si, SiO₂ и SiC. Разработан и апробирован алгоритм переключения связей в многокомпонентной системе. Предложен метод моделирования структуры переходного слоя между кристаллическим Si и аморфным SiO₂, а также между кристаллическим SiC и аморфным SiO₂.

DOI: 10.1134/S0023476119040052

ВВЕДЕНИЕ

Компьютерный алгоритм для генерирования структур аморфных материалов под названием "моделирование атомной структуры методом переключения связей" был предложен в 1985 г. [1]. Он показал хорошее совпадение радиальной функции распределения атомов в аморфном Si и аморфном Ge с экспериментальными данными.

Основа этого метода — метод Монте-Карло с шагом, состоящим из поворота связи 5-2 (рис. 1) и небольшого изменения положений атомов 1, 3, 4, 7, 6, 8, чтобы две связи 1-2 и 5-6 исчезли, а две другие, 1-5 и 2-6, образовались. Координационное число атомов после переключения связей не изменяется.

Каждый шаг рассматриваемого случайного процесса (переключения связей, диффузии, химических реакций) происходит с вероятностью $\exp(-\Delta E/kT)$ при $\Delta E > 0$ и равной единице при $\Delta E < 0$, где ΔE – разница значений энергии начальной и конечной структуры в локальных минимумах, *T* характеризует скорость процессов (переключения связей, диффузии и других). Это, по сути, параметр моделирования, и он не является температурой системы.

Если в случае $T < T_m$ аморфная фаза при моделировании превращается в кристаллическую (в случае $T > T_m$ наблюдается обратное), то при условии $T = T_m$ система в итоге через большое количество шагов придет к канонически равновесной структуре. В 1998 г. данный метод был применен в [2] для получения структуры аморфного SiO₂. Были найдены энтропия, энергия и свободная энергия, приходящаяся на атом, что позволило найти параметр T для генерирования данным методом структуры кварцевого стекла. Также было смоделировано влияние анизотропии на атомную структуру слоя, соединяющего кристаллическую фазу SiO₂ и аморфный SiO₂.

В 2000 г. данный метод был применен для моделирования атомной структуры, соединяющей кристаллическую фазу Si и аморфный SiO₂ [3], и энергии атомов, а в 2002 г. – при моделировании окисления кремния [4].

Для ускорения моделирования и нахождения ΔE в настоящей работе использован тип эмпири-

Рис. 1. Расположение связей в кристаллической кубической ячейке (а) и в новой структуре после переключения связей между атомами (б).

ческого потенциала, известный как second-generation reactive empirical bond order potential (**REBO2**), в котором энергия взаимодействия описывается следующим образом:

$$E_b = \sum_i \sum_{j \neq i} [V_R(r_{ij}) - \overline{B}_{ij} V_A(r_{ij})],$$

где $V_R(r_{ij})$, $V_A(r_{ij})$ отображает притяжение и отталкивание соответственно:

$$V_R(r_{ij}) = f_c(r_{ij})A(1 + Q/r_{ij})\exp(-\alpha r_{ij}),$$
$$V_A = f_c(r_{ij})\sum_{n=1}^3 B_n\exp(-\beta_n r_{ij}),$$

 $f_c(r_{ij})$ — функция, ограничивающая расстояние взаимодействия.

Данный тип потенциала выбран благодаря тому, что он успешно применялся для моделирования атомной структуры в 3C-SiC в [5], где параметры для потенциала C—C взяты из [6, 7], а параметры потенциала Si—Si, Si—C— из [8]. Также он использовался для моделирования гетероэпитаксиального роста алмаза на кремнии [9] и карбиде кремния [10] как с параметрами из [8], так и с параметрами потенциала Si—Si, Si—C из [11]. Одним из его недостатков является то, что он не описывает взаимодействия с недоокисленными атомами как на далеком, так и на близком расстоянии.

ЭМПИРИЧЕСКИЙ ПОТЕНЦИАЛ Si-O-C

Нахождение неизвестных параметров эмпирического потенциала для системы Si–O–C может помочь в описании свойств керамики SiOC, а также в создании механизма производства силовой микроэлектроники на базе SiC, в котором в качестве диэлектрика используют оксид кремния, получаемый окислением SiC.

В настоящей работе параметры для взаимодействий С-С взяты из [12], а С-О – из [13]. Параметры потенциала для взаимодействий Si–Si, Si–C, Si–O получены самостоятельно и представлены в табл. 1.

Функция \overline{B}_{ij} превращает потенциал 1REBO2 в многоатомный:

$$\overline{B}_{ij} = \frac{1}{2} [B_{ij}^{-\delta_i} + B_{ji}^{-\delta_i} + F_{ij}(N_{ij}^{\text{tot}}, N_{ji}^{\text{tot}}, N_{ij}^{\text{conj}})].$$

Слагаемое $F_{ij}(N_{ij}^{\text{tot}}, N_{ji}^{\text{tot}}, N_{ij}^{\text{conj}})$ учитывает зависимость энергии взаимодействия от количества связей. Однако в отличие от [11] в данном случае суммирование проходит не только по атомам C, но и по атомам Si как для $N_{ij}^{\text{tot}} = \sum_{k\neq i}^{\text{Si,C}_a\text{tom}} f_c(r_{ik}),$ так и для N_{ij}^{conj} .

КРИСТАЛЛОГРАФИЯ том 64 № 4 2019

Рассмотрим функцию B_{ii} в виде

$$B_{ij} = 1 + H_{ij}(N_{ij}^{Si}, N_{ij}^{O}, N_{ij}^{C}) + \sum_{k \neq i,j} g(\Theta_{ijk}) f_c(r_{ik}) \exp \alpha_{ijk},$$

где $H_{ij}(N_{ij}^{\text{Si}}, N_{ij}^{\text{O}}, N_{ij}^{\text{C}})$ — слагаемое, учитывающее количество соседних атомов и описывающее сопряжение различных связей, а функция $g(\Theta_{ijk})$ определяет зависимость энергии связи от угла между связями. Как видно из табл. 1, слагаемое $H_{ij}(N_{ij}^{\text{Si}}, N_{ij}^{\text{O}}, N_{ij}^{\text{C}})$ можно заменить на $H_{ij}(N_{ij}^{\text{Si}} + N_{ij}^{\text{O}}, N_{ij}^{\text{O}})$.

Чтобы улучшить описание аморфного оксида кремния, вклад слагаемого $g(\Theta_{ijk})$ для связи Si–Si, взятого из [8], для \angle Si–Si–O увеличен за счет увеличения соответствующего параметра $\alpha_{\text{Si-Si-O}} = 4$. С этой же целью введена новая функция $g(\Theta_{ijk})$ связи Si–O для угла \angle Si–O–Si, найденная из квантово-механических расчетов, с параметром $\alpha_{\text{O-Si-Si}} = 1$ (табл. 2).

Данный потенциал протестирован на параметрах систем, таких как постоянные решетки *a*, *b*, *c* и ее углы α , β , γ , энергия всех связей E_p , поверхностная энергия на ячейку E_s , равновесные расстояния r_0 , константы упругости *C* (табл. 3).

МЕТОД ПЕРЕКЛЮЧЕНИЯ СВЯЗЕЙ ДЛЯ МОДЕЛИРОВАНИЯ АМОРФНЫХ СТРУКТУР

Для тестирования метода переключения связей смоделирована структура аморфного кремния. В качестве начальной структуры взята кубическая ячейка, состоящая из 216 атомов кремния. Выявлено, что при использовании предложенного потенциала минимальная температура переключения связей T_m , при которой происходит аморфизация кремния, составляет 2000 ± 200 К. Аморфная структура Si получена при 10³ шагах, что соответствует 10² подтвержденным шагам метода Монте-Карло. График радиальной функции распределения атомов смоделированной структуры представлен на рис. 2.

Аналогично смоделирована структура аморфного SiO₂, состоящая из 243 атомов. В качестве начальной взята структура α -кварца. В этом случае переключение связей осуществляется поворотом связи Si–O–Si как целого. То есть атомы на рис. 1 – это атомы Si. А кислород расположен на связях между атомами. При моделировании сделано 20 случайных шагов, а затем 10² шагов Монте-Карло, что соответствует 10 подтвержденным шагам Монте-Карло при температуре процесса 4000 К. Температура взята в 2 раза больше из-за того, что в данном случае при переключении

Параметр	Единицы в системе СГС			
Взаимодействие	Si–S	i	Si–O	
A	2.99×10^{-9}		1.32×10^{-10}	
Q	0.0		2.13×10^{-9}	
α	2.47×10^{8}		1.78×10^{7}	
B_1	-8.72×10^{-10}		1.7×10^{-10}	
B_2	0.0		9.56×10^{-12}	
β_1	1.75×10^{8}		2.33×10^{7}	
β_2	0.0		2.25×10^{7}	
D_{\min}	1.7×1	0^{-8}	1.7×10^{-8}	
D_{\max}	1.8×10^{-8}		1.8×10^{-8}	
Взаимодействие	Si–C	2	0–0	
A	2.59 × 1	0 ⁻⁹	1.4×10^{11}	
Q	0.0		0.0	
α	2.93×10^{8}		1.66×10^{8}	
B_1	-7.01×10^{-10}		0.0	
β_1	1.97×10^{8}		0.0	
D_{\min}	1.7×1	0 ⁻⁸	1.75×10^{-8}	
D _{max}	1.8×1	0 ⁻⁸	2.05×10^{-8}	
Параметр		Значение		
$H_{C-C}(N^{Si}, N^{O} > 0, N^{C}), H_{C-O}(N^{Si}, N^{O}, N^{C}), H_{O-C}(N^{Si}, N^{O}, N^{C}), N^{C}), H_{O-C}(N^{Si}, N^{O}, N^{C})$		$H_{ij}(N^{ m Si}_{ij}+N^{ m C}_{ij},N^{ m O}_{ij})$ из [13]		
$H_{\mathrm{C-C}}(N^{\mathrm{Si}},0,N^{\mathrm{C}})$	$N^{\mathrm{Si}},0,N^{\mathrm{C}})$		$H_{ij}(0,N^{ m Si}_{ij}+N^{ m C}_{ij})$ из [12]	
$H_{\text{Si-C}}(N^{\text{Si}},0,N^{\text{C}}), H_{\text{Si-Si}}(N^{\text{Si}},0,N^{\text{C}}), H_{\text{C-Si}}(N^{\text{Si}},0,N^{\text{C}})$		$H_{ij}(0,N^{ m Si}_{ij}+N^{ m C}_{ij})$ из [11]		
$H_{\rm O-O}(N^{\rm Si} + N^{\rm C} = 2, N^{\rm O} = 2), H_{\rm O-O}(N^{\rm Si} + N^{\rm C} = 1, N^{\rm O} = 1),$		0.4		
$H_{\text{O-Si}}(N^{\text{Si}} + N^{\text{C}} = 0, N^{\text{O}} = 2), H_{\text{O-Si}}(N^{\text{Si}} + N^{\text{C}} = 1, N^{\text{O}} = 1)$				
$H_{\text{Si-Si}}(N^{\text{Si}} + N^{\text{C}} = 0, N^{\text{O}} = 5), H_{\text{Si-Si}}(N^{\text{Si}} + N^{\text{C}} = 1, N^{\text{O}} = 3),$		0.2		
$H_{\text{Si-Si}}(N^{\text{Si}} + N^{\text{C}} = 1, N^{\text{O}} = 4), H_{\text{Si-Si}}(N^{\text{Si}} + N^{\text{C}} = 1, N^{\text{O}} = 5),$				
$H_{\text{Si-Si}}(N^{\text{Si}} + N^{\text{C}} = 2, N^{\text{O}} = 2), H_{\text{Si-Si}}(N^{\text{Si}} + N^{\text{C}} = 2, N^{\text{O}} = 4)$	$^{1} + N^{C} = 2, N^{O} = 3),$			
$H_{\text{Si-Si}}(N^{\text{Si}} + N^{\text{C}} = 0, N^{\text{O}} = 6), H_{\text{Si-Si}}(N^{\text{Si}} + N^{\text{C}} = 1, N^{\text{O}} = 5)$		0.06		
$H_{\text{Si-Si}}(N^{\text{Si}} + N^{\text{C}} = 0, N^{\text{O}} = 4)$		10.0		
Для не определенных выше $H_{O-C}(N^{Si}, N^O, N^C)$, $H_{OO}(N^{Si}, N^O, N^C)$, $H_{O-Si}(N^{Si}, N^O, N^C)$		$0.17(N_{\text{tot}} - 1)^2, N_{\text{tot}} > 1$, где $N_{\text{tot}} = N_{ij}^{\text{Si}} + N_{ij}^{\text{O}} + N_{ij}^{\text{C}}$		
Для не определенных выше $H_{ij}(N^{Si}, N^O, N^C)$		$0.2(N_{\rm tot}-3)^2$,	$N_{\text{tot}} > 3$, где $N_{\text{tot}} = N_{ij}^{\text{Si}} + N_{ij}^{\text{O}} + N_{ij}^{\text{C}}$	

Таблица 1. Параметры потенциала для взаимодействий Si–Si, Si–C, Si–O, O–O

связей меняются энергии сразу у двух связей — SiO и OSi. График радиальной функции распределения атомов смоделированной структуры продемонстрирован на рис. 3. Значения среднего угла $\langle \Theta_{Si-O-Si} \rangle$ и среднеквадратичного отклонения $\sigma_{Si-O-Si}$ представлены в табл. 4.

O C INF P				
∠Si–O–Si, град	$g(\Theta_{ijk})$	∠Si–O–Si, град	$g(\Theta_{ijk})$	
0	0.207	96	0.018	
6	0.206	102	0.009	
12	0.202	108	0.001	
18	0.195	114	-0.004	
24	0.186	120	-0.009	
30	0.175	126	-0.011	
36	0.162	132	-0.013	
42	0.148	138	-0.014	
48	0.133	144	-0.014	
54	0.117	150	-0.013	
60	0.1	156	-0.013	
66	0.084	162	-0.012	
72	0.068	168	-0.011	
78	0.054	174	-0.011	
84	0.041	180	-0.011	
90	0.028	-	—	

Таблица 2. $g(\Theta_{iik})$ для угла Si-O-Si

МЕТОД ПЕРЕКЛЮЧЕНИЯ СВЯЗЕЙ ДЛЯ МОДЕЛИРОВАНИЯ ПЕРЕХОДНЫХ СЛОЕВ

Для моделирования атомной структуры переходного слоя между кристаллическим Si и аморфным SiO₂, состоящей из 440 атомов, добавлен процесс диффузии кислорода из связи Si-O-Si в связь Si-Si. В качестве начальной взята структура переходного слоя [3] между кристаллическим кремнием и сдавленным α -кристобалитом. Эта структура хороша тем, что в ней нет сильных искажений углов и длин связей, что должно минимизировать энергию взаимодействия атомов.

При моделировании выполнено 10^3 шагов, которые соответствуют 40 подтвержденным шагам Монте-Карло (32 переключения связей и восемь актов диффузии атома кислорода) при температуре процессов T = 4000 К. Заметим, что при этом моделировании переключали не только связи Si–O–Si, но и связи Si–Si с кислородом в ближайшем окружении.

Такое маленькое количество шагов Монте-Карло не привело к каноническому равновесию, но показало несколько протекающих процессов. Как видно из рис. 4, структура α-кристобалита

Таблица 3. Сравнение экспериментальных и расчетных данных с результатами расчетов, полученными с использованием предложенного потенциала

Фаза и ее параметры	Эксперименты и расчеты	Предложенный потенциал
Кубический кристаллический кремний, <i>E_p</i> , эВ [15]	4.63	4.63
Кубический кристаллический кремний, <i>a</i> , Å [15]	5.43	5.43
Si(001), <i>E_s</i> , эB [16]	2.5	2.28
Молекула Si ₂ , <i>E_p</i> , эВ [11, 17]	3.39	3.39
Молекула Si ₂ , <i>r</i> ₀ , Å [18]	2.24	2.2
β-карбид кремния, <i>E_p</i> , эВ [19]	6.34	6.37
β-карбид кремния, <i>a</i> , Å [19]	4.36	4.36
Si-терминированный β-SiC(001), <i>E_s</i> , эВ [20]	2.74	2.76
С-терминированный β-SiC(001), <i>E_s</i> , эВ [20]	2.70	2.74
Молекула SiO, <i>E_p</i> , эВ [21]	8.02	7.17
α-кварц, <i>E_p</i> , эВ [22, 23]	6.41	6.41
α-кварц, <i>a</i> , <i>b</i> , <i>c</i> , Å [24]	4.92, 4.92, 5.41	5.002, 5.002, 5.38
α-кварц, α, β, γ, град [24]	120, 90, 90	120, 90, 90
α-кварц, <i>C</i> ₁₁ , ГПа [25]	78.0	75.6
β-кварц, <i>E_p</i> , эВ [22, 23]	6.39	6.38
β-кварц, <i>a</i> , <i>b</i> , <i>c</i> , Å [26]	5.0, 5.0, 5.46	5.14, 5.14, 5.64
β-кварц, α, β, γ, град [26]	120, 90, 90	120, 90, 90
β-кристобалит, <i>E_p</i> , эВ [22, 23]	6.39	6.32
β-кристобалит, <i>a</i> , Å [23, 27, 28]	7.16	7.59

Рис. 2. Сравнение радиальной функции распределения атомов в полученном аморфном Si (*1*) с экспериментальными данными [31] (*2*).

становится аморфной. В правом нижнем углу рисунка расположены два атома кислорода, которые окислили кристаллический кремний, а вверху рисунка наблюдается переключение связи Si—Si вблизи продиффундировавшего атома кислорода, что в дальнейшем должно помочь окислению кристаллического кремния. Малое количество диффундирующих атомов кислорода связано с тем, что ΔE в случае диффузии в среднем в 3 раза больше, чем ΔE при переключении связей.

Изучение плотности энергии взаимодействия между материалами в структуре является ключом к пониманию свойств и определению стабильности структуры. Начальная структура состоит из 208 атомов Si с энергией взаимодействия 4.63 эВ в кристаллическом Si, 144 атомов О с энергией 7.67 эВ, 56 атомов Si с энергией взаимодействия 3.86 эВ в β -кристобалите и 32 атомов Si²⁺ с энергией взаимодействия 4.63 + 0.51 эВ. Добавка $0.51 \ ЭВ$ учитывает недоокисленние кремния Si²⁺. взята из [14]. Площадь поверхности соприкосновения материалов равна $2(2 \times 7.56)^2$ Å². При использовании потенциала Si-O-C была найдена взаимолействия начальной полная энергия структуры 2450.21 эВ. Поэтому плотность энергии взаимодействия между материалами в структуре равна: (2450.21 - 208 × 4.63 - 144 × 7.67 - $-56 \times 3.86 - 32(4.63 + 0.51))$ $\Im B/(2 \times 7.56)^2/2$ Å² = = 4.48 мэB/Å².

Полная энергия смоделированной структуры переходного слоя между кристаллическим Si и аморфным SiO₂ равна 2455.81 эВ. Модель включает в себя 202 атома Si с энергией взаимодействия 4.63 эВ в кристаллическом Si, 144 атома O с

Рис. 3. Сравнение радиальной функции распределения атомов в полученном аморфном SiO₂ (*1*) с экспериментальными данными [32, 33] (*2*).

энергией 7.63 эВ, 56 атомов Si с энергией взаимодействия 3.59 эВ в аморфном кремнии, 26 атомов Si^{2+} с энергией взаимодействия 4.63 + 0.51 эВ и 12 атомов Si⁺ с энергией взаимодействия 4.63 + + 0.47 эВ. Добавка 0.47 эВ учитывает недоокисленние кремния Si⁺, взята из [14]. Плотность энергии взаимодействия между материалами в структуре в этом случае равна (2455.81 - 202 × 4.63 - 144 × $\times 7.63 - 56 \times 3.59 - 26(4.63 + 0.51) - 12(4.63 +$ +0.+47))эB/ (2 × 7.56)²/2 Å² = 5.68 мэB/Å². То есть смоделированная переходная структура с точки зрения энергии взаимодействия более выгодна, чем начальная, что также полтверждается графиками энергии взаимодействия атомов (рис. 5, 6), из которых видно, что энергия атомов О меняется незначительно, а атомы Si в переходном слое в смоделированной структуре значительно стабильнее, чем в начальной структуре.

Для тестирования метода переключения связей в многокомпонентной системе в качестве начальной структуры, состоящей из 1296 атомов, взята структура кристаллического SiC и кристобалита SiO₂. Эта структура хороша тем, что в ней нет сильных искажений углов и длин связей и сохранено координационное число для всех атомов,

Таблица 4. Средний угол $\langle \Theta_{Si-O-Si} \rangle$ и среднеквадратичное отклонение $\sigma_{Si-O-Si}$ в сравнении с данными [29, 30]

$\langle \Theta_{Si-O-Si} angle$, град	$\sigma_{Si-O-Si}$	Литература
151.4	11.3	[29]
150.6	11.5	[29]
147.9	12.7	[30]
139.9	22.5	Настоящая работа

642

Рис. 4. Атомная структура переходного слоя: а – начальная между кристаллическим кремнием и сдавленным α-кристобалитом, б – смоделированная между кристаллическим Si и аморфным SiO₂. Темным цветом обозначены атомы кислорода, светлым – кремния.

что должно минимизировать энергию их взаимодействия. Осуществляется переключение окисленных связей и связей с атомом кислорода в ближайшем окружении.

Разработанный алгоритм переключения связей в многокомпонентной системе действует следующим образом. Предположим, что в первом приближении переключение связей — это в основном поворот связи 5-2, остальные сдвиги атомов могут быть получены в результате релаксации структуры в локальный минимум энергии. Поэтому достаточно знать положение атомов 2 и 5 после переключения связей. Атом 2 должен находиться рядом с атомами 3, 6, 4. То есть если известны характерные длины связей 2-3, 2-6, 2-4, то атом 2 должен находиться на пересечении трех сфер с радиусами 2-3, 2-6, 2-4 с центрами в атомах 3, 6, 4. Для окисленных связей 2-3, 2-6, 2-4 берут другие характерные длины. Аналогично можно найти расположение атома 5. Понятно, что пересечение трех сфер может дать два возможных варианта расположения атомов 2 и 5. Из этих четырех возможных вариантов выбирают те, которые ближе всего к характерной длине связи 2-5 и которые не приводят к изменению координационного числа атомов.

При моделировании выполнены 4 × 10² шагов, которые соответствуют 23 подтвержденным ша-

Рис. 5. Энергия взаимодействия атома Si в зависимости от координаты *z*: a – в структуре кристаллического кремния и сдавленного α -кристобалита, δ – в смоделированной структуре переходного слоя между кристаллическим Si и аморфным SiO₂.

гам Монте-Карло (19 переключений связей и четыре процесса диффузии атома кислорода) при температуре T = 4000 К. Малое количество продиффундировавших атомов кислорода связано с тем, что ΔE диффузии кислорода из связи Si-O-Si в связь Si-C в среднем в 5 раз больше, чем ΔE переключения связей. Выявлено, что предложенный алгоритм достаточен для моделирования методом переключения связей структур переходного слоя между кристаллическим SiC и аморфным SiO₂.

Рис. 6. Энергия взаимодействия атома О в зависимости от координаты *z*: a - в структуре кристаллического кремния и сдавленного α -кристобалита, $\delta - в$ смоделированной структуре переходного слоя между кристаллическим Si и аморфным SiO₂.

ЗАКЛЮЧЕНИЕ

Представлены параметры эмпирического потеншиала REBO2 для системы Si-O-C. Расчеты. полученные с использованием этого потенциала, показали хорошее совпадение с экспериментальными значениями параметров и углов элементарных ячеек, энергии связей и поверхностной энергии для Si, SiO₂ и SiC. Разработан и апробирован алгоритм переключения связей в многокомпонентной системе. Радиальная функция распределения атомов при моделировании методом переключения связей аморфного Si и SiO₂ с применением предложенного потенциала показала качественное совпадение с экспериментальными данными. Смоделированная структура переходного слоя между кристаллическим Si и аморфным SiO₂ с точки зрения энергии взаимодействия более выгодна, чем структура переходного слоя между кристаллическим кремнием и сдавленным α -кристобалитом.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (проект № НК 15-29-01291).

СПИСОК ЛИТЕРАТУРЫ

- Wooten F., Winer K., Weaire D. // Phys. Rev. Lett. 1985.
 V. 54. № 13. P. 1392.
- Tu Y., Tersoff J., Grinstein G., Vanderbild D. // Phys. Rev. Lett. 1998. V. 81. № 22. P. 4899.
- 3. Tu Y., Tersoff J. // Phys. Rev. Lett. 2000. V. 84. P. 4393.
- Tu Y., Tersoff J. // Phys. Rev. Lett. 2002. V. 89. P. 086102.
- Gao F., Weber W.J. // Nucl. Instrum. Method Phys. Res. B. 2002. V. 191. P. 504.
- 6. Brenner D.W. // Phys. Rev. B. 1990. V. 42. P. 9458.
- 7. Brenner D.W. // Phys. Rev. B. 1992. V. 46. P. 1948.
- 8. Dyson A.J. // Surf. Sci. 1996. V. 355. P. 140.
- 9. Dyson A.J. // Surf. Sci. 1997. V. 45. P. 375.
- 10. Dyson A.J. // Surf. Sci. 1998. V. 24. P. 396.
- 11. Dyson A.J. // Molec. Phys. 1999. V. 96. P. 1491.

- Brenner D. W. // J. Phys.: Condens. Matter. 2002. V. 14. P. 783.
- 13. *Ni B., Lee K.-H., Sinnott S.B.* // J. Phys.: Condens. Matter. 2004. V. 16. P. 7261.
- 14. Hamann D.R. // Phys. Rev. B. 2000. V. 61. P. 9899.
- Properties of Silicon. Emis Datareviews Ser. № 4. / Ed. Harriss G.L. London: INSPEC, 1988.
- 16. *Yin M.T., Cohen M.L.* // Phys. Rev. B. 1981. V. 24. P. 2303.
- 17. *Lide D.R.* Handbook of Chemistry and Physics. Boca Raton: CRC Press, 1991.
- Peyerimhoff S.D., Buenker R.J. // Chem. Phys. 1982.
 V. 72. P. 111.
- Lambrecht W.R.L., Segall B., Methfessel M., van Schilfgaarde M. // Phys. Rev. B. 1991. V. 44. P. 3685.
- Yan H., Smith A.P., Joinsson H. // Surf. Sci. 1995. V. 330. P. 265.
- Lambrecht W.R.L., Segall B., Methfessel M., van Schilfgaarde M. // Phys. Rev. B. 1991. V. 44. P. 3685.
- 22. Sanderson R.T. // J. Inorg. Nucl. Chem. 1968. V. 30. P. 375.
- 23. CRC Handbook of Chemistry and Physics. Boca Raton: CRC, 1983.
- Yu J., Phillpot S.R., Sinnott S.B. // Phys. Rev. B. 2007. V. 75. P. 233203.
- 25. Levien L., Prewitt C.T., Weidner D.J. // Am. Mineral. 1980. V. 65. P. 920.
- 26. Herrmann F. // Ultrasonics. 1999. V. 37. P. 335.
- 27. Wright A.F., Lehmann M.S. // J. Solid State Chem. 1981. V. 36. P. 371.
- 28. Wyckoff R.W.G. Crystal Structures. New York: Interscience, 1974.
- Wright A.F., Leadbetter A.J. // Philos. Mag. 1975. V. 31. P. 1391.
- Mauri F., Pasquarello A., Pfrommer B.G. et al. // Phys. Rev. B. 2000. V. 62. P. 4786.
- 31. Mozzi R.L., Warren B.E. // J. Appl. Cryst. 1969. V. 2. P. 164.
- 32. *Kugler S., Molnár G., Petö G. et al.* // Phys. Rev. B. 1989. V. 40. P. 8030.
- Susman S., Volin K.J., Price D.L. et al. // Phys. Rev. B. 1991. V. 43. P. 1194.
- 34. Susman S., Volin K.J., Montague D.G. et al. // Phys. Rev. B. 1991. V. 43. P. 11076.