ПОВЕРХНОСТЬ, ТОНКИЕ ПЛЕНКИ

УДК 544.72.023.22[547.749]

ОКСОФОСФОРИЛЬНЫЕ КОМПЛЕКСЫ ДИПИРРИНОВ: СПЕКТРАЛЬНЫЕ И АГРЕГАЦИОННЫЕ ХАРАКТЕРИСТИКИ В РАСТВОРАХ И ТОНКИХ ПЛЕНКАХ

© 2019 г. Ю. С. Марфин^{1,*}, О. С. Водянова¹, С. Д. Усольцев¹, А. В. Казак¹, Е. В. Румянцев¹

¹ Ивановский государственный химико-технологический университет,

Научно-исследовательский институт наноматериалов Ивановского государственного университета,

Иваново, Россия * E-mail: marfin@isuct.ru Поступила в редакцию 14.05.2018 г. После доработки 14.05.2018 г. Принята к публикации 26.11.2018 г.

Исследованы спектральные характеристики представителя нового класса органических люминофоров – оксофосфорильного комплекса дипиррина (PODIPY) – в органических растворителях и тонких пленках. Исследуемое соединение обладает интенсивной флуоресценцией в растворах, сохраняющейся при переходе к тонким пленкам, полученным послойным нанесением на подложку методом Ленгмюра–Шеффера. PODIPY проявляет интенсивные сольватохромные свойства, связанные с перераспределением интенсивностей полос поглощения и флуоресценции, а также со смещением положения каждой из полос. Данный эффект обусловлен специфической сольватацией PODIPY при участии атомов кислорода оксофосфорильной группы. Переход от растворов к пленкам, а также увеличение количества переносов приводит к тушению флуоресценции без образования G-агрегатов в пленке.

DOI: 10.1134/S0023476119040143

введение

Значительный интерес для современной аналитической химии представляют молекулярные сенсоры, обеспечивающие, как правило, оптический сигнал, детектирующий анализируемые вещества в системе либо изменение характеристик системы. В этой связи разработка, синтез и исследование оптических свойств новых молекулярных сенсоров представляют значительный интерес как с точки зрения фундаментальной науки, так и для решения прикладных задач.

Наиболее быстро развивается химия флуоресцентных молекулярных сенсоров и индикаторов [1], среди которых особое место занимают борфторидные комплексы дипирринов (**BODIPY**) [2]. Этот класс соединений, сочетающий спектр практически полезных характеристик (узкие полосы поглощения и флуоресценции, устойчивость к протолитической и фотохимической диссоциации) с широкими возможностями синтетической и постсинтетической настройки спектральных свойств, используется в настоящее время при конструировании оптически активных материалов [3, 4], биологических меток [5], фотодинамических агентов [6], а также в качестве флуоресцентного молекулярного сенсора, позволяющего распознать широкий спектр катионов, анионов, молекул [7], в том числе биологически активных [8, 9]. Ранее [10, 11] были исследованы оптические характеристики ряда соединений BODIPY в растворах различной природы в присутствии биологических молекул и в модельных биосистемах. Показано, что ВОДІРУ могут быть использованы для определения полярности и вязкости жидкофазных систем [12]. Новым направлением развития BODIPY-сенсоров является их иммобилизация в полимерные матрицы органической и неорганической природы [13-15], а также формирование тонких пленок методами послойного нанесения, позволяющими контролировать изменение спектральных характеристик путем варьирования количества слоев [16].

Вместе с тем гидрофобный характер дипирринатов бора в значительной степени ограничивает возможности применения BODIPY в сенсорике живых систем. Существующие способы повышения растворимости в воде заключаются в функционализации дипирринового домена амино- и сульфогуппами [17, 18], введении стирильных заместителей [19] либо олиго-этиленгликоля [20]. Но данные заместители в значительной степени влияют на проявление соединениями сенсорных

Рис. 1. Структурная формула исследуемого оксофосфорильного комплекса дипиррина – PODIPY (4,4диоксо-8-пиренил-1,3,5,7-тетраметил- 2,6-диэтил-4фосфор-3а,4а-диаза-s-индацен).

свойств, а также затрудняют их иммобилизацию, в частности при послойном нанесении.

В этой связи чрезвычайно перспективным представляется переход от борфторидных комплексов дипирринов к оксофосфорильным аналогам (PODIPY), впервые полученным несколько лет назад [21]. Обладая большим дипольным моментом молекулы по сравнению с комплексами BODIPY [22] с аналогичной структурой лиганда, эти соединения демонстрируют приемлемую растворимость в воде, а наличие в структуре молекул лвух лонорных атомов кислорола обусловливает перспективы сенсорной активности соединений [23]. С учетом изложенного в рамках настоящей работы исследованы спектральные характеристики оксфофосфорильного комплекса дипиррина, имеющего амфифильную структуру, в растворах, а также тонких пленках, полученных методом Ленгмюра-Шеффера.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследуемый оксфофосфорильный комплекс дипиррина – **PODIPY** (рис. 1) – получен и очищен в соответствии со стандартными методиками [21]. Органические растворители – четыреххлористый углерод, хлороформ, дихлорметан, этанол, диметилсульфоксид, димитилформамид, гексан, циклогексан, бензол ("Химмед", Россия) классификации ХЧ, ОСЧ и ЧДА – использовали без дополнительной очистки.

Ленгмюровские слои формировали из раствора исследуемого соединения в хлороформе (C = 0.0033 мас. %, где C – массовая доля растворенного вещества) на установке фирмы NT-MDT (Россия). Скорость сжатия слоя составляла 55 см²/мин.

Тонкие пленки получали переносом слоев с поверхности воды на стеклянные подложки при комнатной температуре (293–295 К) и поверх-

ностном давлении $\pi = 0.7$ мН/м. Перенос слоев с поверхности воды осуществляли методом Ленгмюра—Шеффера (горизонтальный лифт), n = 1 - 10 слоев.

Электронные спектры поглощения растворов и тонких пленок регистрировали в диапазоне 400-700 нм на спектрофотометре СФ-104 ("Аквилон", Россия), управляемом с персонального компьютера при помощи программного комплекса UVWin 5.1. Исследования проводили в кварцевых кюветах с поглощающим слоем толщиной 10 мм. Спектры флуоресценции регистрировали в диапазоне 500-600 нм на спектрофлуориметре Carv Eclipse (Varian, Австралия), управляемом при помоши программного комплекса Cary Eclipse 1.1. При регистрации спектров флуоресценции кювету с образцом освещали в центре, монохроматор и детектор (ширина щелей 2.5 нм) располагали под прямым углом друг относительно друга. Спектры флуоресценции и возбуждения тонких пленок регистрировали, располагая образец под углом 45° относительно источника излучения и детектора. Для определения характеристик флуоресценции использовали разбавленные растворы ($c \sim 1 \times 10^{-6}$ моль/л) при длине волны возбуждающего света 470 нм либо длине волны флуоресценции 550 нм.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На первом этапе были определены спектральные характеристики исследуемых соединений в ряду органических растворителей, а также в воде. Показано, что, несмотря на наличие в молекуле исследуемого PODIPY объемного пиренильного заместителя, он демонстрирует частичную растворимость в воде в отличие от бордипирриновых люминофоров. Спектры поглощения и флуоресценции представлены на рис. 2 и в таблице 1. Обнаружено, что в ряде растворителей в спектрах поглощения и флуоресценции наблюдается по два максимума: коротковолновый, низкоинтенсивный и широкий пик в области 445-470 нм, а также длинноволновый максимум в области 515-520 нм в электронных спектрах поглощения и максимумы при 495-512 и 530-538 нм в спектрах флуоресценции. Большая интенсивность коротковолновых максимумов характерна для основных растворителей, в растворителях с большей кислотностью максимум интенсивности в спектрах смещается в область длинных волн. При рассмотрении каждого из наблюдаемых максимумов поглощения и эмиссии показано, что исследуемое соединение проявляет также сольватохромные свойства. Так, увеличение диэлектрической проницаемости либо параметра ориентационной поляризуемости растворителя приводит к длинноволновому смещению в спектрах, свидетельствуя о положительном сольватохромизме PODIPY. Та-

Рис. 2. Электронные спектры поглощения (а) и спектры флуоресценции (б) (длина волны возбуждения 460 нм, ширина щелей источника излучения 20 нм, ширина шелей детектора 20 нм): *1* – дихлорметан, *2* – этанол, *3* – бензол, *4* – хлороформ, *5* – четыреххлористый углерод, *6* – диметилсульфоксид, *7* – диметиллформамид, *8* – вода, *9* – циклогексан, *10* – гексан.

ким образом, в сольватацию PODIPY значительный вклад вносят специфические взаимодействия растворителя с растворенным вешеством. обусловленные, по всей видимости, возможностью кислотно-основного перехода за счет протонирования/депротонирования атомов кислорода оксофосфорильной группы, т.е. изменением химической формы соединения. Можно предположить усреднение расположения протона по энергии и длинам связей между двумя атомами кислорода (рис. 3). Еще одна гипотеза заключается в диссоциации комплекса до протонированного лиганда дипиррина, имеющего сходные спектральные характеристики. Однако замена растворителя, в частности бензола на дихлорметан и обратно, приводит к последовательным изменениям спектров - до характерных для данных растворителей. Подобный обратимый характер изменений не может быть связан с разрушением координационного соединения и свидетельствует в пользу первого предположения.

Рис. 3. Предполагаемая схема протонирования/депротонирования комплекса PODIPY.

Исследуемый PODIPY отличается амфифильной природой за счет наличия в его структуре оксофосфорильной группы, демонстрирующей сродство к воде и другим полярным растворителям, и неполярного объемного ароматического пиренильного заместителя. Подобное строение предполагает возможность образования упорядоченных структур на подложке при послойном переносе методом Ленгмюра–Шеффера. Также полуэмпирическим методом PM3 (Parameterized Model № 3) оценен дипольный момент исследуемого PODIPY, который оказался равен 5.57 Д. Дипольный момент BODIPY аналогичной структуры составляет 4.97 Д. Это позволило предполо-

Таблица 1. Спектральные характеристики исследуемого PODIPY в органических растворителях и воде (λ_{abs} – длина волны максимума поглощения, λ_{fl} – длина волны максимума испускания, $\Delta\lambda$ – стоксов сдвиг)

Растворитель	λ_{abs} , нм	λ _{fl} , нм	Δλ, нм
Четыреххлористый	521	537	16
углерод			
Хлороформ	516	541	25
Дихлорметан	477 (плечо)	512	35
	518	540	22
Вода	465 (плечо)	505	50
	521	541	20
Этанол	520	537	17
Диметилсульфоксид	469	510-517	
		(плечо)	
	523	535	12
Димитилформамид	462	495	
		535	
Гексан	450	491	41
	527	538	11
Циклогексан	464	510	46
	520	534	14
Бензол	470		
	505-522	540	18-35
	(плечо)		

Рис. 4. Спектры возбуждения (а) (длина волны флуоресценции 550 нм, ширина щелей источника излучения 2.5 нм, ширина щелей детектора 5 нм) и флуоресценции (б) (длина волны возбуждения 470 нм, ширина щелей источника излучения 5 нм, ширина щелей детектора 5 нм) тонких пленок PODIPY: 1 – один, 2 – три, 3 – пять, 4 – десять переносов.

жить формирование более упорядоченных слоев на подложке.

В качестве растворителя для PODIPY был использован хлороформ, субфаза для формирования пленок — вода. Высокая скорость испарения хлороформа и большая скорость поджатия плавающих слоев по сравнению с наиболее часто применяемыми скоростями в методике получения ленгмюровских слоев [24] обеспечивают возможность переноса соединения на подложку при минимизации его растворения в субфазе. Подтверждением существования сформированного плавающего слоя при переносе служило ненулевое поверхностное давление в момент переноса пленки на твердую подложку.

Полученные пленки исследованы методами электронной спектроскопии. Низкие коэффициенты молярного поглощения PODIPY не позволили зафиксировать электронные спектры поглощения пленок, поэтому далее приводятся и обсуждаются спектры возбуждения пленок PODIPY, которые по своим характеристикам идентичны спектрам поглощения (рис. 4а). Также были зафиксированы спектры флуоресценции (рис. 4б). Показано, что увеличение количества переносов приводит к уменьшению интенсивности флуоресценции соединений, незначительному гипсохромному смещению основного максимума испускания от 531 до 528 нм, а также исчезновению полосы сателлита при 545 нм. Максимум в спектрах возбуждения не смещается с ростом количества переносов. Эти результаты свидетельствуют о различном характере поведения пленок анализируемого PODIPY и BODIPY со сходной структурой лиганда, для которого увеличение количества переносов сопровождается батохромным смещением в спектрах за счет проявления эффекта реалсорбшии света и образования *G*-агрегатов при взаимодействии электронных систем соседних лигандов [16, 25]. С учетом больших значений дипольного момента молекулы PODIPY можно предположить изменение характера межслоевого взаимодействия - ослабляется преимущественное взаимодействие индуцированных π - π -стекингом пиренильных заместителей и усиливается электростатическое взаимодействие молекул в целом. Максимумы в спектрах пленок батохромно смещены в сравнении с растворами PODIPY. Показано, что с ростом количества переносов длинноволновый максимум в спектре флуоресценции уменьшается либо исчезает при пяти и более переносах. Это может быть обусловлено ростом доли "экранированных" молекул PODIPY, т.е. "защищенных" от непосредственного воздействия окружающей среды. Таким образом, сенсорные свойства РОДРУ будут выражены в меньшей степени в сравнении с жидкофазными системами. Однако для подтверждения данного факта необходимо проведение дальнейших исследований.

ЗАКЛЮЧЕНИЕ

Синтезирован и исследован оксофосфорильный комплекс дипиррина, содержащий объемный пиренильный заместитель. Установлено, что PODIPY обладает выраженными флуоресцентными и сольватохромными свойствами. В зависимости от растворителя происходит перераспределение интенсивности между максимумами в спектрах, обусловленное изменением химической формы соединения при взаимодействии растворителя с атомами кислорода оксофосфорильной группы. Важно отметить, что у BODIPY аналогичных свойств не наблюдается, что позволяет применять PODIPY в качестве молекулярного сенсора для детектирования характеристик сольватного окружения.

Спектральные характеристики PODIPY в моно- и многослойных пленках отличаются от характеристик в растворах. Рост количества пере-

носов приводит к тушению флуоресценции, сопровождающемуся незначительными сдвигами в спектрах флуоресценции, что свидетельствует о различии в механизмах агрегационного поведения соединения в сравнении со схожими по структуре борфторидными комплексами дипирринов. Обнаруженный эффект представляет интерес для дальнейшего использования в молекулярной сенсорике, так как позволяет стабилизировать соединения в твердой фазе при сохранении практически полезных оптических свойств мономерной формы люминофора. Вместе с тем требуются дальнейшие исследования флуоресцентных откликов тонких пленок PODIPY при использовании их в качестве вапо- и сольватохромных сенсоров.

Часть работы, посвященная анализу спектральных и фотофизических характеристик оксфосфорильного комплекса дипиррина в растворах, а также тонких пленках, выполнена при финансовой поддержке Российского научного фонда (грант № 17-73-10408). Часть работы по получению тонких пленок, содержащих полипиррольные координационные соединения, методом горизонтального лифта (Ленгмюра–Шеффера) выполнена при финансовой поддержке Министерства науки и высшего образования РФ в рамках государственного задания Ивановскому государственному университету для выполнения научно-исследовательских работ № 16.1037.2017/4.6.

СПИСОК ЛИТЕРАТУРЫ

- 1. Orellana G. // Opt. Chem. Sensors. 2006. V. 224. P. 99.
- Loudet A., Burgess K. // Chem. Rev. 2007. V. 107. № 11. P. 1.
- Costela A., Garcia-Moreno I., Gomez C. et al. // Appl. Phys. B. Lasers Opt. 2003. V. 76. P. 365.
- 4. *Ahmad M., King T.A., Ko D.K. et al.* // Opt. Commun. 2002. V. 203. P. 327.

- 5. Cheng M.H.Y., Savoie H., Bryden F. et al. // Photochem. Photobiol. Sci. 2017. V. 16. № 8. P. 1260.
- Kamkaew A., Lim S., Lee H. et al. // Chem. Soc. Rev. 2013. V. 42. P. 77.
- Ziessel R., Ulrich G., Harriman A. // New J. Chem. 2007. V. 31. № 4. P. 496.
- Marfin Y.S., Solomonov A.V., Timin A.S. et al. // Curr. Med. Chem. 2017. V. 24. P. 1.
- 9. *Okumoto S., Jones A., Frommer W.B.* // Annu. Rev. Plant Biol. 2012. V. 63. № 1. P. 663.
- Marfin Y.S., Aleksakhina E.L., Merkushev D.A. et al. // J. Fluoresc. 2016. V. 26. № 1. P. 255.
- 11. Aleksakhina E.L., Marfin Y.S., Merkushev D.A. et al. // Kazan. Meditsinskiy Zhurnal. 2015. V. 96. № 5. P. 792.
- 12. Vodyanova O.S., Kochergin B.A., Usoltsev S.D. et al. // J. Photochem. Photobiol. A Chem. 2018. V. 350. P. 44.
- 13. Vu T.T., Dvorko M., Schmidt E.Y. et al. // J. Phys. Chem. C. 2013. V. 117. № 10. P. 5373.
- 14. *Marfin Y.S., Rumyantsev E.V., Yutanova S.L. et al.* // Russ. J. Gen. Chem. 2013. V. 83. № 2. P. 381.
- Bobrov A.V., Usoltsev S.D., Marfin Y.S. et al. // J. Fluoresc. 2018. V. 28. P. 277.
- 16. *Marfin Y.S., Usoltsev S.D., Kazak A.V. et al.* // Appl. Surf. Sci. 2017. V. 424. № 2. P. 228.
- Xu J., Li Q., Yue Y. et al. // Biosens. Bioelectron. 2014. V. 56. P. 58.
- 18. Verbelen B., Valckenborgh M., Inclan M. et al. // RSC Adv. 2017. V. 7. № 6. P. 3066.
- Niu S.L., Ulrich G., Ziessel R. et al. // Org. Lett. 2009. V. 11. P. 2049.
- Zhu S., Zhang J., Vegesna G. et al. // Org. Lett. 2011.
 V. 13. № 3. P. 438.
- Jiang X.D., Zhao J., Xi D. et al. // Chem. Eur. J. 2015.
 V. 21. № 16. P. 6079.
- 22. Le Guennic B., Jacquemin D. // Phys. Chem. Chem. Phys. 2016. V. 18. № 14. P. 9358.
- 23. *Jiang X.D., Yu H.F., Zhao J.L. et al.* // Chinese Chem. Lett. 2015. V. 26. № 10. P. 1241.
- 24. *Borovkov N.Y., Kolker A.M.* // J. Phys. Chem. C. 2014. V. 118. № 26. P. 14403.
- 25. *Merkushev D.A., Usoltsev S.D., Marfin Y.S. et al.* // Mater. Chem. Phys. 2017. V. 187. P. 104.