УДК 548.736.6

_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ ____ СОЕДИНЕНИЙ

НОВЫЕ ДАННЫЕ ОБ ИЗОМОРФИЗМЕ В МИНЕРАЛАХ ГРУППЫ ЭВДИАЛИТА. IV. МОДУЛЯРНАЯ СТРУКТУРА ТИТАНОСИЛИКАТА С ЗАМЕЩЕНИЕМ Na HA Mn В АЛЛУАЙВИТОВОМ МОДУЛЕ

© 2019 г. Р. К. Расцветаева^{1,*}, К. А. Викторова¹, С. М. Аксенов¹

¹ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

**E-mail: rast@crys.ras.ru* Поступила в редакцию 18.10.2018 г. После доработки 18.10.2018 г. Принята к публикации 31.10.2018 г.

Методом рентгеноструктурного анализа исследован новый модулярный титаносиликат группы эвдиалита из Ловозерского массива. Параметры тригональной элементарной ячейки: a = 14.069(4), c = 60.63(1) Å, V = 10393(1) Å³. пр. гр. $R\overline{3}$ m. Кристаллическая структура уточнена до итогового фактора расходимости R = 5.6% в анизотропном приближении атомных смещений с использованием $1210F > 3\sigma(F)$. Идеализированная формула минерала (Z = 3): Na₂₈Ca₁₂[Na_{4.6}][Mn_{1.4}]Ti₆[Si₅₂O₁₃₂ (O,OH)₁₆](H₂O)_{3.5}Cl_{1.5}. Обсуждаются проблемы модулярных представителей группы при изоморфизме Zr–Ti в позиции каркаса и Na–Mn в M2-позициях аллуайвитового модуля.

DOI: 10.1134/S0023476119040179

ВВЕДЕНИЕ

Группа цирконосиликата эвдиалита охватывает свыше 30 минеральных видов и разновидностей. Наиболее распространены вилы с относительно низкоупорядоченной структурой, описываемой гексагональной решеткой с параметрами элементарной ячейки $a \sim 14$, $c \sim 30$ Å. В случае упорядочения катионов образуются сверхструктуры с удвоенным периодом $c \sim 60$ Å. Открытие А.П. Хомяковым в Ловозерском и Хибинском щелочных массивах целого семейства "мегаэвдиалитов" с предельно упорядоченными кристаллическими структурами [1] позволило пополнить группу эвдиалита четырьмя новыми минеральными видами. Среди них лабиринтит и расцветаевит, которые относятся к цирконосиликатам. и аллуайвит. являющийся титаносиликатом. Четвертый минерал дуалит может быть отнесен как к цирконо-, так и к титаносиликатам.

Эти уникальные представители минерального мира характеризуются объемом элементарной ячейки ~11000 Å³, а их гетерогенный каркас состоит из трех- и девятичленных кремнекислородных колец и шестичленных колец, образованных (Ca,O)-октаэдрами. Кольца объединены дискретными Zr(Ti)-октаэдрами в пакет толщиной ~20 Å, который размножается по закону *R*-решетки. В полостях каркаса размещаются щелочные, щелочноземельные катионы, а также примесные катионы переходных металлов и крупные дополнительные анионы.

Модулярный подход позволяет описать сложные 24-слойные минералы как состоящие из "простых" фрагментов [2]. Каждый модуль имеет свой состав, соответствующий составу какоголибо известного или потенциально нового "простого" эвдиалита. Наиболее часто прототипами становятся собственно эвдиалит [3], кентбруксит [4] и титаносиликат аллуайвит [5]. Особенностью аллуайвита является высокое содержание натрия, что приводит к заполнению не только *N*-позиций крупных катионов, но и позиций в *M*2-микрообласти (в центре плоского квадрата и прилегающих к нему с двух сторон полиэдров).

В настоящей работе исследована кристаллическая структура потенциально нового титаносиликата группы эвдиалита — аналога аллуайвита с замещением Na на Mn в *M*2-позиции (далее "Mnаллуайвит").

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Мп-аллуайвит обнаружен А.П. Хомяковым в пегматитах Ловозерского щелочного массива (Кольский п-ов) в виде бесцветных прозрачных кристаллов, которые находились в тесных срастаниях с типичным аллуайвитом. Это вторая наход-

Идеализированная формула (Z = 3)	$\begin{array}{c} Na_{28}Ca_{12}[Na_{4.6}][Mn_{1.4}]Ti_6\\ [Si_{52}O_{132}(O,OH)_{16}](H_2O)_{3.5}Cl_{1.5}\end{array}$
<i>a</i> , <i>c</i> , Å	14.069(4), 60.63(1)
<i>V</i> , Å ³	10393
D_x , г/см ³	2.79
Сингония, пр. гр., Z	Тригональная, $R\overline{3}$ m, 3
Размеры кристалла, мм	$0.2 \times 0.2 \times 0.3$
Дифрактометр	Smart 1000 CCD
Излучение; λ, Å	$MoK_{\alpha}; 0.71073$
Тип сканирования	Ω
Пределы h, k, l	-16 < h < 14, 0 < k < 16, 0 < l < 72
$(\sin\theta/\lambda)_{max}$	0.704
Число независимых отражений с <i>F</i> > 3σ <i>F</i>	1210
Метод уточнения	МНК по <i>F</i>
<i>R</i> , %	5.6
Программа	AREN [6]

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры

ка титаносиликатного минерала со структурным мотивом эвдиалита.

Химический состав образца, определенный методом электронно-зондового анализа и пересчитанный на сумму катионов, равную 108 (Z = 6), отвечает следующей эмпирической формуле (с учетом вариации состава отдельных зерен): Na_{17.2-18.6}K_{0.04-0.06}Ca_{4.31-4.68}Sr_{0.04-0.18}Ba_{0.01-0.03}Mn_{1.15-1.34} Ce_{0.19-0.23}Si_{25.4-26.7}Ti_{1.98-2.26}Zr_{0.03-0.14}Nb_{0.63-0.78}Cl_{0.62-0.7}. Для рентгеноструктурного анализа был выбран обломок монокристалла изометричной формы. Характеристика кристалла и данные эксперимента приведены в табл. 1.

Учитывая близость химического состава образца к составу аллуйвита, в качестве стартового набора для исследования структуры использовали координаты атомов каркаса аллуайвита [5]. Остальные позиции найдены из серии разностных синтезов электронной плотности. Ряд позиций уточняли с учетом смешанных кривых атомного рассеяния. Все расчеты выполнены по системе кристаллографических программ AREN [6]. Уточненные структурные параметры и характеристики координационных полиэдров приведены в табл. 2 и 3 соответственно.

Таблица 2. Координаты, кратность (Q) и заселенность (q) позиций и эквивалентные параметры атомных (
--

Атом	x/a	y/b	z/c	Q	q	$B_{_{ m ЭKB}}, { m \AA}^2$
Ti	0.1633(1)	0.3266(1)	0.0831(1)	18	1	0.85(4)
M 1.1	0.2620(1)	0.2620(1)	0	18	1	0.99(6)
<i>M</i> 1.2	0.3333	0.4060(1)	0.1667	18	1	1.04(6)
M2.1a	0	0.5	0	9	0.53(3)	6.3(8)
M2.1b	0.5580(5)	0.1156(7)	0.0019(1)	18	0.23(1)	2.2(3)
<i>M</i> 2.2	0.3333	0.1667	0.1667	9	1	3.2(3)
N1	0.2175(7)	0.1088(5)	0.0765(1)	18	1	3.9(2)
<i>N</i> 2	0.1083(6)	0.5542(4)	0.0893(1)	18	1	3.2(2)
<i>N</i> 3	0.0920(3)	0.1841(4)	0.1480(1)	18	1	2.7(2)
<i>N</i> 4	0.2172(3)	0.4344(4)	0.0282(1)	18	1	2.7(2)
<i>N</i> 5	0.5056(9)	0.2528(6)	0.0886(1)	18	0.70(1)	3.7(2)
<i>M</i> 3	0.6667	0.3333	0.1389(1)	6	1	1.9(2)
<i>M</i> 4	0.6667	0.3333	0.0449(1)	6	1	1.4(2)
Cl	0.3333	0.6667	0.0215(1)	6	0.73(1)	2.6(2)
OH1	0.6667	0.3333	0.0700(2)	6	1	2.0(6)
OH2	0	0	0.1706(6)	6	1	7(1)
H ₂ O1	0.3333	0.6667	0.1667	3	1	5(1)
H ₂ O2	0	0	0.1159(6)	6	1	9(1)
H ₂ O3	0.3333	0.6667	0.0507(9)	6	0.27(5)	6(1)

Примечание. Координаты атомов Si и O, входящих в каркас, аналогичны координатам аллуайвита [5] и здесь опущены.

Позиция Состав (Z = 3)	$C_{OCT2D}(Z=3)$	ĸu	Расстояния катион–анион, Å		
	КТ	Минимальное	Максимальное	Среднее	
Ti	4.2Ti + 1.8Nb	6	1.916(9)	1.965(3)	1.946
M 1.1	4.62Ca + 0.99Na + 0.21Ce + 0.18Sr	6	2.292(8)	2.36(1)	2.325
<i>M</i> 1.2	4.62Ca + 0.99Na + 0.21Ce + 0.18Sr	6	2.306(7)	2.404(5)	2.346
<i>M</i> 2.1a	1.59Na	4	2.195(7)	2.195(7)	2.195
<i>M</i> 2.1b	1.38Mn	7	2.42(1)	3.02(1)	2.78
<i>M</i> 2.2	3Na	4	2.269(7)	2.269(7)	2.269
М3	2Si	4	1.44(3)	1.66(1)	1.61
<i>M</i> 4	2Si	4	1.52(1)	1.58(1)	1.56
<i>N</i> 1	6Na	8	2.46(1)	2.75(1)	2.60
<i>N</i> 2	6Na	8	2.34(1)	2.79(1)	2.60
<i>N</i> 3	6Na	6	2.369(8)	3.28(1)	2.79
<i>N</i> 4	6Na	6	2.372(5)	2.75(1)	2.55
<i>N</i> 5	4Na + 2OH	8	2.26(1)	2.97(1)	2.73

Таблица 3. Характеристики координационных полиэдров

Примечание. SiO₄-тетраэдры опущены ввиду их стандартных значений.

ОПИСАНИЕ СТРУКТУРЫ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Хотя титаносиликатный минерал является структурным аналогом цирконосиликатов группы эвдиалита, замещение в его каркасе атома Zr меньшим по размеру атомом Ті, как и в аллуайвите, приводит к большей компактности структуры в целом. Параметр элементарной ячейки а = = 14.069 Å меньше, чем у цирконосиликатных минералов, в которых он изменяется в пределах 14.179–14.281 Å. Аналогично меньше и параметр c = 60.63 Å (пределы 60.67–60.969 Å). В связи с большей компактностью полостей размещенные в них атомы Na занимают свои позиции целиком, без расщепления на две или три подпозиции, как в случае циркониевых представителей группы. Можно предположить, что вынос Na из этих минералов затруднен, и замещение его крупными оксониевыми группировками или катионами К маловероятно.

Основные особенности состава и строения модулярной структуры минерала отражены в его кристаллохимической формуле (Z = 3): Na_{28.2}[Ca,Na]₆[Ca,Na]₆(Ti_{4.2}Nb_{1.8})[Na^[IV]₃][(Na^[IV]_{1.59}) (Mn^[V]_{1.38})][Si₂(OH)₂][Si₂(OH)₂][Si₃O₉]₄[Si₉O₂₄(O,OH)₃]₄ Cl_{1.46} · 3.54H₂O, где квадратными скобками обозначен состав "ключевых" позиций структуры, а цифры в надстрочных квадратных скобках соответствуют координационным числам катионов. Идеализированная формула (Z = 3): Na₂Ca₁₂[Na_{4.6}][Mn_{1.4}]Ti₆[Si₅O₁₃₂(O,OH)₁₆](H₂O)_{3.5}Cl_{1.5}.

По составу минерал близок к аллуайвиту: среднее содержание в нем CaO и MnO составляет 9.0 и 2.8 мас. % соответственно против 8.6 и 3.6 мас. % в аллуайвите. Однако распределение этих элементов существенно различается в обоих минералах, чем, вероятно, и обусловлен ряд особенностей Мп-аллуайвита. При 25%-ном дефиците Са в структуре аллуайвита Мп изоморфно замещает этот элемент в октаэдрах шестичленного кольца. В данном минерале подобный дефицит восполняется главным образом атомами Na (~1 атом) с небольшой примесью Се и Sr.

По содержанию SiO₂ Мп-аллуайвит отвечает эвдиалиту с максимальным содержанием кремния. Наличие дополнительных тетраэдров кремния, которые встраиваются в середину девятичленных колец $[Si_9O_{27}]$ (ключевые позиции *M*3 и М4), приводит к полной трансформации этих колец в десятичленные дисковые радикалы $[Si_{10}O_{28}]$. Аналогично аллуайвиту в структуре исследованного минерала установлены два типа таких дисков. В одном дополнительный тетраэдр вокруг позиции МЗ ориентирован так же, как и основные тетраэдры кольца, в другом (М4) – в противоположную по отношению к кольцевым тетраэдрам сторону. Упорядоченная ориентация *M*3- и *M*4-тетраэдров вдоль оси *z* является основной причиной удвоения периода с и центросимметричности структуры.

Аналогично упорядочены крупные катионы в позициях N1-N5. При высоком содержании натрия они целиком заполняют полости каркаса, размещаясь в позициях N1-N4, и на 2/3 позицию N5 из-за присутствия в полости ОН-группы — "носика" M4-тетраэдра кремния.

Рис. 1. Распределение Mn и Na в *M*2-микрообласти аллуайвитового модуля.

Одна из ключевых позиций (*M*2) находится в центре плоского квадрата, образуемого параллельными ребрами кальциевых октаэдров соседних шестичленных колец. При различных изоморфных замещениях эта позиция может быть сдвинута из центра квадрата, и тогда ее координация дополняется до квадратной пирамиды (или октаэдра) гидроксильными группами или молекулами воды.

В одном модуле "Мп-аллуайвита" позиция M2.2 в центре "квадрата" целиком занята натрием со средним расстоянием Na–O, равным 2.269 Å. Во втором модуле в позиции "квадрата" (M2.1a) находятся 1.59 атомов натрия со средним расстоянием Na - O = 2.195 Å, а по обе стороны квадрата в позициях M2.1b, связанных центром симметрии, суммарно находятся 1.38 атомов марганца. В этом модуле расстояния Mn-O до вершин квадрата составляют 2.42×2 и 2.78×2 Å, а атом Cl на оси 3 (расстояние Mn-Cl = 3.0 Å) достраивает эти полиэдры до пятивершинников (рисунок 1). С учетом еще двух атомов О с большими расстояниями Mn–O, равными 3.02(1) Å, Mn-полиэдры достраиваются до семивершинников. Связанные центром симметрии Мп-полиэдры реализуются одновременно, так как расстояние 2.82(1) Å между центрирующими их катионами допустимо при наличии у этих полиэдров общей квадратной грани. А катионы, координированные четырьмя, пятью (семью) атомами, чередуются статистически из-за укороченных расстояний 1.413(8) Å между ними.

Таким образом, в Mn-аллуайвите, как и в аллуайвите, статистически сохраняется линейная группировка из трех полиэдров (квадрат и два полиэдра на базе этого квадрата по обе стороны от него), но вместо группировки Na-семивершинник—Na-квадрат—Na-семивершинник в данном минерале чередуются Mn-семивершинник—Naквадрат—Mn-семивершинник. Возможность изоморфизма натрия и марганца в *M*2-модуле обсуждалась ранее на основе локального баланса зарядов при исследовании структуры аллуайвита [5], но он обнаружен в данном образце, поскольку недостающее количество Са в октаэдрах шестичленного кольца восполнено в основном за счет атомов Na, а высвободившийся Mn разместился в позициях Na-семивершинников. По-видимому, эта инверсия отразилась на оптических свойствах обоих минералов: средний показатель преломления Mn-аллуайвита отличается более низкой величиной (1.612 против 1.621 в аллуайвите).

выводы

Исследованный минерал близок по составу и свойствам к типичному аллуайвиту — безжелезистому титан-доминантному члену группы эвдиалита, найденному на Кольском п-ве в пегматитах Ловозерского щелочного массива, но существенно отличается от него составом и строением "приквадратного" модуля, что позволяет рассматривать его как потенциально новый минеральный вид. Замена Na-семивершинника в нем на пяти-, (семи)вершинник Mn сближает минерал с рядом цирконосиликатных представителей группы эвдиалита.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 16-05-00739) в части рентгеноструктурного анализа, (проект № 18-29-12005) в части сравнительного анализа микропористых минералов группы эвдиалита, а также при поддержке Министерства науки и высшего образования в рамках Государственного задания ФНИЦ "Кристаллография и фотоника" РАН в части кристаллохимического анализа.

СПИСОК ЛИТЕРАТУРЫ

- 1. Расцветаева Р.К., Хомяков А.П. // Кристаллография. 2003. Т. 48. № 6 (Приложение). С. S78.
- Расцветаева Р.К., Чуканов Н.В., Аксенов С.М. Минералы группы эвдиалита: кристаллохимия, свойства, генезис. Нижний Новгород: Изд-во НГУ, 2012. 229 с.
- 3. Расцветаева Р.К., Андрианов В.И. // Докл. АН СССР. 1987. Т. 293. № 5. С. 1122.
- Johnsen O., Grice J.D., Gault R.A. // Eur. J. Mineral. 1998. V. 10. P. 207.
- 5. Расцветаева Р.К., Хомяков А.П., Андрианов В.И., Гусев А.И. // Докл. АН СССР. 1990. Т. 312. № 6. С. 1379.
- 6. Андрианов В.И. // Кристаллография. 1987. Т. 32. Вып. 1. С. 228.