_____ ФИЗИЧЕСКИЕ СВОЙСТВА <u>-</u> КРИСТАЛЛОВ

УДК 541.135.4; 546.161+546.663; 548.55

АНИЗОТРОПИЯ ИОННОЙ ПРОВОДИМОСТИ КРИСТАЛЛОВ ТbF₃

© 2019 г. Н. И. Сорокин^{1,*}, Д. Н. Каримов¹, Б. П. Соболев¹

¹ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

* *E-mail: nsorokin1@yandex.ru* Поступила в редакцию 25.09.2017 г. После доработки 25.09.2017 г. Принята к публикации 07.12.2017 г.

Проведены температурные (375–830 К) измерения ионной проводимости монокристаллов трифторида тербия (структурный тип β -YF₃) по трем кристаллографическим осям *a*, *b* и *c* элементарной ячейки. Обнаружено, что кристаллы TbF₃ (ромбическая сингония, пр. гр. *Pnma*) обладают слабой анизотропией электропроводности, которая составляет $\sigma_{\parallel b}/\sigma_{\parallel a} = \sigma_{\parallel b}/\sigma_{\parallel c} \approx 2$. Величина проводимости кристалла вдоль оси *b* равна $\sigma_{\parallel b} = 8 \times 10^{-6}$ См/см при 500 К. Обсуждается эффект анизотропии фтор-ионной проводимости в редкоземельных фторидах со структурами β -YF₃, LaF₃ (тисонита) и β -BaTm₂F₈ в связи с особенностями их атомного строения.

DOI: 10.1134/S0023476119040222

ВВЕДЕНИЕ

Эффект анизотропии ионной проводимости во фторидах, содержащих редкоземельные элементы (**P3Э**), представляет большой интерес для изучения механизма ионного переноса во фторпроводящих твердых электролитах (**ФТЭЛ**). Экспериментальные данные по электропроводности ФТЭЛ, измеренной в различных кристаллографических направлениях, позволяют выявить структурные пути ионного транспорта и изучить связь ионной проводимости с особенностями кристаллического строения. Однако исследования анизотропии ионного переноса во фторидных кристаллах малочисленны и затруднены рядом обстоятельств.

Для проведения таких экспериментов требуются крупные монокристаллы высокого качества, размеры которых должны превышать 3-5 мм. Отметим, что рост кристаллов фторидов осложняется их высокой реакционной способностью и пирогидролизом. Электрофизические измерения для определения статической электропроводности на постоянном токе (direct current conductivity – σ_{dc}) необходимо проводить методом импедансной спектроскопии в широком диапазоне частот. При этом особое внимание следует уделять разделению объемного импеданса и импеданса границы кристалл/электрод. К настоящему времени исследования анизотропии ионной проводимости (по ионам F⁻) проведены лишь для незначительного числа ориентированных монокристаллов РЗЭ-содержащих фторидов LaF₃ [1-4],

La_{1-y} Ba_yF_{3-y} [5, 6], R_{1-y} Sr_yF_{3-y} (R = Ce, Pr) [7], HoF₃ [8], Gd_{0.5}Y_{0.5}F₃ [9] μ Ba R_2 F₈ (R = Er_{0.945}Tm_{0.05} Ho_{0.005}) [10].

Трифторид тербия относится к группе трифторидов $P3\Im$ (TbF₃, DyF₃ и HoF₃) со структурой типа β -YF₃, которые не имеют полиморфных превращений вплоть до плавления. Кристаллы TbF₃ рассматриваются как перспективный материал для магнитооптических приборов и устройств [11]. В [12] получена лазерная генерация в кристалле TbF₃ в зеленой области спектра при диодной накачке.

Целью работы являются исследование температурных зависимостей ионной проводимости кристаллов TbF_3 по разным кристаллографическим направлениям и сравнение эффекта анизотропии ионного переноса в РЗЭ-содержащих фторидах в связи с особенностями их кристаллического строения.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рост кристаллов. Кристаллы TbF₃ выращены из расплава ($T_{fus} = 1166 \pm 10^{\circ}$ C) методом вертикальной направленной кристаллизации в графитовых тиглях во фторирующей атмосфере CF₄ [13]. В качестве исходного реактива использовали трифторид тербия, синтезированный из оксида тербия (99.998%) гидрофторидным методом. Процесс кристаллизации проводили с использованием ориентированных вдоль направления

Рис. 1. Температурные зависимости проводимости $\sigma_{dc}(T)$ монокристаллов TbF₃: $I - \sigma_{\parallel a}, 2 - \sigma_{\parallel b}$ и $3 - \sigma_{\parallel c}$.

[010] монокристаллических затравок TbF₃, предварительно полученных при спонтанной кристаллизации расплава. Скорость опускания тигля составляла 3 мм/ч при температурном градиенте в ростовой зоне 65°С/см. Скорость охлаждения кристаллов после завершения процесса кристаллизации составляла 50°С/ч. Потери вещества на испарение не превышали 0.5 мас. %. Получены кристаллические були диаметром 40 мм и длиной 30 мм. Некоторые були имели трещины вдоль плоскостей спайности (010), что учитывалось при ориентировке образцов. Содержание кислородных примесей в кристаллах не превышало 200 ррт (метод вакуумного плавления).

Кристаллы TbF₃ относятся к ромбической сингонии, пр. гр. *Pnma*, Z=4. Параметры элементарной ячейки a = 6.5109(3), b = 6.9482(3), c = 4.3886(2) Å (порошковый рентгеновский дифрактометр Rigaku MiniFlex 600, излучение Cu K_{α}) согласуются с [14, 15].

Измерение электропроводности. Статическую электропроводность σ_{dc} на постоянном токе определяли из спектров комплексного импеданса $Z^*(\omega)$ в диапазоне частот $5-5 \times 10^5$ Гц (прибор Tesla BM-507). Описание экспериментальной установки (собственная конструкция и изготовление СКБ ИК РАН) приведено в [16]. Для кондуктометрических измерений из кристаллической були вырезали плоскопараллельные образцы толщиной 2.2 мм, ориентированные по осям *a*, *b* и *с* ромбической элементарной ячейки (с точностью до 30'). В качестве электродов применяли графитовую пасту DAG-580, площадь электродов составляла 25–55 мм². Измерения импеданса

КРИСТАЛЛОГРАФИЯ том 64 № 4 2019

 $Z^*(\omega)$ электрохимической системы электрод Скристалл TbF₃—электрод С проводили в интервале температур 375—830 К в вакууме ~0.1 Па.

Наличие блокирующего эффекта от инертных (графитовых) электродов в спектрах импеданса $Z^*(\omega)$ свидетельствует об ионном характере электропроводности кристаллов TbF₃. Объемное сопротивление R_b монокристаллического образца определяли по пересечению годографа комплексного импеданса $Z^*(\omega)$ с осью активных сопротивлений Re [$Z^*(\omega)$]. Расчет удельной электропроводности образцов проводили с учетом их геометрических размеров:

$$\sigma_{dc} = (h/S)R_b^{-1},$$

где h — толщина, S — площадь электрода. Относительная погрешность измерений σ_{dc} не превышала 5%. Температурную зависимость $\sigma_{dc}(T)$ описывали уравнением Аррениуса—Френкеля:

$$\sigma_{dc}T = A\exp(-\Delta H_{\sigma}/kT),$$

где A — предэкспоненциальный множитель электропроводности, ΔH_{σ} — энтальпия активации процесса ионного переноса, k — постоянная Больцмана и T — температура.

Анизотропия ионной проводимости кристаллов TbF₃. Температурные зависимости проводимости TbF_3 по осям *a*, *b* и *c* элементарной ячейки показаны на рис. 1. Далее при обозначении проводимости по кристаллографическим осям индекс dc опустим. Максимальные значения σ_{dc} наблюдаются вдоль оси b. Температурные зависимости $\sigma_{\parallel b}(T)$ и $\sigma_{\parallel a}(T)$ разбиваются на два участка при $T_0 =$ = 550-600 К. На каждом участке зависимости $\sigma_{\parallel b}(T)$ и $\sigma_{\parallel a}(T)$ описываются уравнением Аррениуса-Френкеля. Излом при $T = T_0$ указывает на смену механизма ионного переноса в этой области температур. Зависимость $\sigma_{\parallel c}(T)$ удалось измерить только на высокотемпературном участке 599—744 К из-за частичного пирогидролиза образца.

Параметры ионного переноса вдоль направлений *a*, *b* и *c* приведены в табл. 1. Заметим, что для всех трифторидов РЗЭ со структурами β -YF₃ и LaF₃ выполняется неравенство $\Delta H_{\sigma,1} > \Delta H_{\sigma,2}$, обусловленное участием вакансий фтора различных кристаллографических позиций в механизме ионного переноса для низко- и высокотемпературных областей. Полученные значения высоко- и низкотемпературных энтальпий активации ионного переноса для кристалла TbF₃ близки к активационным энтальпиям $\Delta H_{\sigma,1} = 0.65-0.75$ эВ и $\Delta H_{\sigma,2} = 0.37-0.45$ эВ для изученных в [8, 9, 17] кристаллов *R*F₃ (*R* – РЗЭ) со структурой типа β -YF₃.

На рис. 1 видно хорошее совпадение кондуктометрических данных по осям *a* и *c*: $\sigma_{\parallel a}/\sigma_{\parallel c} \approx 1$.

Направ-	Низкотемпературная	Высокотемпературная
ление	область	область
[100]	$A_1 = 3.5 \times 10^3 \mathrm{CmK/cm}$	$A_2 = 7 \text{CmK/cm}$
ось а	$\Delta H_{\sigma,1} = 0.61 \pm 0.02 \ \Im B$	$\Delta H_{\sigma,2} = 0.31 \pm 0.03 \ B$
	$\sigma_{\parallel a} = 9.0 \times 10^{-8} \text{Cm/cm}$	$\sigma_{\parallel a} = 7.2 \times 10^{-5} \text{Cm/cm}$
	(385 K)	(744 K)
[010]	$A_1 = 6.1 \times 10^3 \text{CmK/cm}$	$A_2 = 10 \text{CmK/cm}$
ось <i>b</i>	$\Delta H_{\sigma,1} = 0.61 \pm 0.02 \text{>B}$	$\Delta H_{\sigma,2} = 0.31 \pm 0.04 \Im \text{B}$
	$\sigma_{\parallel b} = 1.5 \times 10^{-7} \text{См/см}$	$\sigma_{\parallel b} = 1.4 \times 10^{-5} \text{Cm/cm}$
	(390 K)	(830 K)
[001]		$A_2 = 3 \text{CmK/cm}$
ось с		$\Delta H_{\sigma,2} = 0.26 \pm 0.04 \Im B$
		$\sigma_{\parallel c} = 6.9 \times 10^{-5} \text{Cm/cm}$
		(744 K)

Таблица 1. Параметры ионного переноса в кристаллах TbF_3 по разным кристаллографическим направлениям

Кристаллы TbF₃ обладают незначительной анизотропией ионной проводимости $\sigma_{\parallel b}/\sigma_{\parallel a} = \sigma_{\parallel b}/\sigma_{\parallel c} \approx 2$ в интервале температур 375–830 К. В изовалентном твердом растворе $Gd_{0.5}Y_{0.5}F_3$ со структурой типа β -YF₃ она практически исчезает: $\sigma_{\parallel b}/\sigma_{\parallel a} = \sigma_{\parallel b}/\sigma_{\parallel c} = 1.1$ [9].

Ионная проводимость ромбических трифторидов РЗЭ обусловлена трансляционными перескоками ионов фтора в кристаллической решетке [18]. Незначительная величина анизотропии σ_{dc} трифторида TbF₃ указывает на то, что в его структуре нет выделенных каналов проводимости, поэтому наблюдается 3D-проводимость. Область растворимости гетеровалентных примесей в структуре типа β -YF₃ практически отсутствует [19], что не позволяет увеличивать значение σ_{dc} путем гетеровалентного легирования.

Эффект анизотропии ионной проводимости в РЗЭ-содержащих фторидах. Экспериментальные данные по анизотропии проводимости РЗЭ-содержащих фторидов даны в табл. 2. Видно, что анизотропный эффект ионного переноса в простых трифторидах РЗЭ является слабым. Это обусловлено близостью атомного строения трифторидов РЗЭ структурных типов β-YF₃ и LaF₃ (рис. 2) [20]. В структуре этих плотноупакованных трифторидов РЗЭ образуются дефекты (катионные и фторные вакансии) по механизму Шоттки. При этом подвижными являются вакансии фтора, определяющие природу ионной проводимости. Путь наивысшей проводимости в трифторидах РЗЭ имеет кристаллографическую направленность: ось b для структуры β -YF₃ и ось c для структуры LaF₃.

В структурном мотиве β -YF₃ [21] вдоль оси *b* чередуются анионные слои, образованные атомами F₁, и катион-анионные слои, содержащие атомы P3Э и F₂. Отношение анионов разных типов в элементарной ячейке β -YF₃ равно F₁: F₂ = 2 : 1. Согласно [8, 18] при $T < T_0$ анионный перенос происходит во фторной подсистеме F₁, при $T \approx T_0$ имеет место обмен вакансиями фтора между подсистемами F₁ и F₂, при $T > T_0$ анионный перенос происходит по всем фторным позициям.

Таблица 2. Анизотропия ионной проводимости фторидных кристаллов

Кристалл	Тип структуры	<i>Т</i> , К	σ _{<i>dc</i>} , См/см	Анизотропия	Литература
TbF ₃	β-YF ₃ , пр. гр. <i>Рпта</i>	500	$8 \times 10^{-6} (\sigma_{\parallel b})$	$\sigma_{\parallel b}/\sigma_{\parallel a}=2$	настоящая
				$\sigma_{\parallel b}/\sigma_{\parallel c}=2$	работа
HoF ₃		500	$5 \times 10^{-6} (\sigma_{\parallel b})$	$\sigma_{\parallel b}/\sigma_{\parallel a} = 1$	[8]
				$\sigma_{\parallel b}/\sigma_{\parallel c}=1$	
$Gd_{0.5}Y_{0.5}F_3$		500	$1.6 \times 10^{-5} (\sigma_{\ b})$	$\sigma_{\parallel b}/\sigma_{\parallel a} = 1.1$	[9]
				$\sigma_{\parallel b}/\sigma_{\parallel c} = 1.1$	
LaF ₃	LaF ₃ , пр. гр. <i>Р</i> <u>3</u> с1	500	$1.5 \times 10^{-3} (\sigma_{\parallel c})$	$\sigma_{\parallel c}/\sigma_{\perp c} = 1.6$	[1]
		500	$3 \times 10^{-4} (\sigma_{\parallel c})$	$\sigma_{\parallel c}/\sigma_{\perp c}=4$	[3]
		300	$1 \times 10^{-6} (\sigma_{\parallel c})$	$\sigma_{\parallel c}/\sigma_{\perp c} = 1.6$	[2]
		300	$7 \times 10^{-7} (\sigma_{\parallel c})$	$\sigma_{\parallel c}/\sigma_{\perp c}=2$	[4]
$Ce_{0.98}Sr_{0.02}F_{2.98}$		320	$1.7 \times 10^{-3} (\sigma_{\parallel c})$	$\sigma_{\parallel c}/\sigma_{\perp c} = 3-4$	[7]
$Pr_{0.98}Sr_{0.02}F_{2.98}$		320	$1.3 \times 10^{-3} (\sigma_{\parallel c})$	$\sigma_{\parallel c}/\sigma_{\perp c} = 3-4$	[7]
$La_{0.896}Ba_{0.104}F_{2.896}$	LaF ₃ , пр. гр. <i>Р</i> 6 ₃ / <i>mmc</i>	500	$1 \times 10^{-2} (\sigma_{\parallel c})$	$\sigma_{\parallel c}/\sigma_{\perp c} = 1$	[6]
$Ce_{0.92}Sr_{0.08}F_{2.92}$		320	$6 \times 10^{-4} (\sigma_{\ c})$	$\sigma_{\parallel c}/\sigma_{\perp c} = 1$	[7]
$Nd_{0.85}Sr_{0.15}F_{2.85}$		320	$1.1 \times 10^{-7} (\sigma_{\parallel c})$	$\sigma_{\parallel c}/\sigma_{\perp c}=1$	[7]
BaR_2F_8 , $R = Er_{0.945}Tm_{0.05}Ho_{0.005}$	β-BaTm ₂ F ₈ , пр. гр. <i>C2/m</i>	500	$1 \times 10^{-5} (\sigma_{\parallel a})$	$\sigma_{\parallel a}/\sigma_{\parallel b}=3$	[10]
			"	$\sigma_{\parallel a}/\sigma_{\parallel c} = 14$	

Рис. 2. Проекции ромбической структуры YF_3 вдоль оси *b* (а), тригональной структуры LaF_3 вдоль оси *c* (б) и гексагональной структуры LaF_3 вдоль оси *c* (в) [19].

Структура LaF₃ является диморфной [22]. Низкотемпературная форма относится к пр. гр. $P\overline{3}$ с1 (Z = 6), высокотемпературная – к пр. гр. $P6_3/mmc$ (Z = 2). Тригональная структура тисонита имеет три анионные подсистемы $F_1: F_2: F_3 =$ = 12 : 4 : 2. В тригональном мотиве LaF₃ [23] вдоль оси с чередуются чисто анионные слои, образованные атомами F₁, и катион-анионные слои, содержащие близкие по динамическим свойствам атомы F₂ и F₃. При совпадении структурных позиций $F_2 = F_3$ тригональная тисонитовая структура переходит в гексагональную модификацию [24], для которой выполняется соотношение $F_1: F_{2,3} = 2: 1.$ Введение гетеровалентных катионов M^{2+} стабилизирует гексагональную тисонитовую структуру в нестехиометрических фазах $R_{1-y}M_{y}F_{3-y}$ [25, 26]. Для тисонитовых кристаллов RF_3 и $R_{1-y}M_yF_{3-y}$ анионный перенос происходит сначала во фторной подсистеме F₁, затем наблюдается обмен вакансиями фтора между подсистемами F₁ и F_{2,3}.

Следует подчеркнуть сильное различие абсолютных величин σ_{dc} ромбических и тисонитовых трифторидов РЗЭ RF_3 , которое с кристаллохимических позиций объясняется понижением координационного числа (**KU**) катиона R^{3+} для структурного типа β -YF₃ по сравнению с типом LaF₃ (тисонита) [27, 28]. Типичным полиэдром редкоземельного катиона R^{3+} является тригональная призма, обеспечивающая минимальное KU = 6. Способ пространственного расположения таких призм приводит к увеличению KЧ = 9 для структуры β -YF₃ и KЧ = 11 для тисонитовых структур. В структуре β -YF₃ затруднено образование анион-дефицитных твердых растворов $R_{1-y}M_yF_{3-y}$ и, как следствие, появление анионных вакансий (носителей заряда).

Низкосимметричные моноклинные РЗЭ-содержащие соединения со структурой типа β-ВаТт₂F₈ обладают более сильной анизотропией ионной проводимости (табл. 2). В системах BaF₂- RF_3 (R = Dy-Lu) [19] морфотропный переход от нестехиометрических фаз BaR_2F_8 (BaF₂: RF₃ = = 1 : 2) типа тисонита к упорядоченным соединениям типа β -BaTm₂F₈ сопровождается кардинальными изменениями кристаллической структуры. В структурном мотиве β-ВаТm₂F₈ [29] катионы имеют различающиеся координации по фтору: KY = 12 для Ba^{2+} и KY = 8 для R^{3+} . Редкоземельные полиэдры образуют трехмерный каркас, построенный из перпендикулярных оси с слоев, составленных шестичленными кольцами из редкоземельных полиэдров, в пустотах которого расположены Ba²⁺. Редкоземельные полиэдры в слоях имеют только реберные связи F-F.

Направление реберных связей F–F редкоземельных полиэдров совпадает с осью *а* моноклинной ячейки. По-видимому, это обусловливает путь наивысшей проводимости вдоль оси *а* в структуре β -BaTm₂F₈. Однако значения ионной проводимости соединений типа β -BaTm₂F₈ являются низкими ($\sigma_{dc} = 10^{-6} - 10^{-5}$ См/см при 500 K [10, 30]). Область растворимости гетеровалентных примесей в структуре типа β -BaTm₂F₈ практически отсутствует.

Таким образом, эффект анизотропии фторионной проводимости в РЗЭ-содержащих фторидах довольно слабый и высокая проводимость у них реализуется при условии высокой координации фторами катионов, образующих структурный каркас.

ЗАКЛЮЧЕНИЕ

Проведены температурные измерения $\sigma_{dc}(T)$ кристаллов TbF₃ (структурный тип β -YF₃) по осям *a*, *b* и *c* ромбической элементарной ячейки. В интервале 375–830 К наблюдается слабая анизотропия анионной проводимости: $\sigma_{\parallel b}/\sigma_{\parallel a} =$ $= \sigma_{\parallel b}/\sigma_{\parallel c} \approx 2$ (для осей *a* и *b* кондуктометрические данные совпадают). Ромбические трифториды РЗЭ типа β -YF₃, так же как и тригональные трифториды РЗЭ типа LaF₃ ($\sigma_{\parallel c}/\sigma_{\perp c} = 2-4$ при 300– 500 K), обладают ионной 3D-проводимостью. Введение катионов M^{2+} в тисонитовые матрицы *R*F₃ подавляет эффект анизотропии. Моноклинные РЗЭ-содержащие фторидные соединения типа β -ВаТт₂F₈ имеют более выраженную анизотропию ионной проводимости ($\sigma_{\parallel a}/\sigma_{\parallel c} = 14$ при 500 K).

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию с использованием оборудования Центра коллективного пользования ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Chadwick A.V., Hope D.S., Jaroszkiewicz G., Strange J.H. // Fast Ion Transport in Solids / Eds. Vashishta P. et al. Amsterdam: Elsevier North-Holland, 1979. P. 683.
- Schoonman J., Oversluizen G., Wapenaar K.E.D. // Solid State Ionics. 1980. V. 1. P. 211.
- Hoff C., Wiemhofer H.D., Glumov O., Murin I.V. // Solid State Ionics. 1997. V. 101–103. P. 445.
- Sinitsyn V.V., Lips O., Privalov A.F. et al. // J. Phys. Chem. Solids. 2003. V. 64. P. 1201.
- Roos A., Buijs M., Schoonman J. // Rad. Eff. 1983. V. 75. P. 47.
- Roos A., van de Pol F.C.M., Keim R., Schoonman J. // Solid State Ionics. 1984. V. 13. P. 191.
- 7. *Сорокин Н.И., Соболев Б.П.* // Электрохимия. 2007. Т. 43. № 4. С. 420.
- Сорокин Н.И., Соболев Б.П., Брайтер М. // ФТТ. 2002. Т. 44. № 2. С. 272.
- Trnovcova V., Fedorov P.P., Valkovskii M.D. et al. // Ionics. 1997. V. 3. P. 313.
- Trnovcova V., Fedorov P.P., Bystrova A.A. et al. // Solid State Ionics. 1998. V. 106. P. 301.
- 11. Vsliev U.V., Karimova D.N., Burdick G.W. et al. // J. Appl. Phys. 2017. V. 121. № 24. P. 243105.
- 12. *Metz Ph.W., Marzahl D.T., Majid A., Krankel Ch.* // Laser Photonics Rev. 2016. V. 10. № 2. P. 335.
- Каримов Д.Н., Лисовенко Д.С., Сизова Н.Л., Соболев Б.П. // Кристаллография. 2018. Т. 63. № 1. С. 106.

- Zalkin A., Templeton D.H. // J. Am. Chem. Soc. 1953. V. 75. № 10. P. 2453.
- Greis O., Petzel T. // Z. Anorgan. Allgem. Chem. 1974.
 B. 403. № 1. S. 1.
- Иванов-Шиц А.К., Сорокин Н.И., Федоров П.П., Соболев Б.П. // ФТТ. 1983. Т. 25. С. 1748.
- Трновцова В., Федоров П.П., Соболев Б.П. и др. // Кристаллография. 1996. Т. 41. № 4. С. 731.
- Лившиц А.И., Бузник В.М., Федоров П.П., Соболев Б.П. // Ядерный магнитный резонанс в кристаллах. Красноярск: ИФ СО АН СССР, 1978. С. 90.
- 19. *Sobolev B.P.* The Rare Earth Trifluorides. The High Temperature Chemistry of the Rare Earth Trifluorides. Barcelona; Ed. Institute of Crystallography, Moscow and Institut d'Estudis Catalans. Pt. 1. 2000. 520 p.
- Гарашина Л.С., Соболев Б.П., Александров В.Б., Вишняков Ю.С. // Кристаллография. 1980. Т. 25. Вып. 2. С. 294.
- Zalkin A., Templeton D.H. // J. Am. Chem. Soc. 1953. V. 75. P. 2453.
- 22. Greis O., Cader M.S.R. // Thermochim. Acta. 1985. V. 87. P. 145.
- 23. *Mansmann M.* // Z. Kristallogr. 1965. B. 122. № 5–6. S. 375.
- 24. Schlyter K. // Arkiv Kemi. 1953. V. 5. № 1. P. 73.
- Отрощенко Л.П., Александров В.Б., Максимов Б.А. и др. // Кристаллография. 1985. Т. 30. Вып. 4. С. 518.
- 26. Болотина Н.Б., Черная Т.С., Калюканов А.И. и др. // Кристаллография. 2015. Т. 60. № 3. С. 391.
- Гарашина Л.С., Закалюкин Р.М., Кривандина Е.А. и др. // Тез. докл. II Нац. кристаллохим. конф. Черноголовка. 2000. С. 163.
- 28. Trnovcova V., Garashina L.S., Skubla A. et al. // Solid State Ionics. 2003. V. 157. P. 195.
- 29. Изотова О.Е., Александров В.Б. // Докл. АН СССР. 1970. Т. 192. С. 1037.
- Сорокин Н.И., Соболев Б.П., Брайтер М. // Электрохимия. 2002. Т. 38. № 5. С. 585.