ДИНАМИКА РЕШЕТКИ И ФАЗОВЫЕ ПЕРЕХОДЫ

УДК 541.138/546.56-121:539.2

СТРУКТУРА ЦИНКОВЫХ НАНОТРУБОК

© 2019 г. М. В. Здоровец^{1,2,3,*}, А. Л. Козловский^{1,2}

¹ Институт ядерной физики Министерства энергетики Республики Казахстан, Алматы, Казахстан ² Евразийский национальный университет, Астана, Казахстан ³ Уральский Федеральный университет имени первого Президента России Б.Н. Ельцина, Екатеринбург, Россия

> * *E-mail: mzdorovets@gmail.com* Поступила в редакцию 27.09.2017 г. После доработки 31.01.2018 г.

Принята к публикации 26.04.2018 г.

Рассмотрено получение нанотрубок на основе Zn путем электрохимического синтеза в поры шаблонных полимерных матриц. Установлено, что с уменьшением среднего размера кристаллитов в синтезированных нанотрубках снижается количество дефектов, а также происходит увеличение степени кристалличности. Количество дефектов напрямую влияет на структурные свойства Zn-нанотрубок. Однако при разности потенциалов 2.0 В наблюдается неконтролируемый процесс роста нанотрубок, в результате которого происходит формирование аморфных включений в кристаллическую структуру нанотрубок, что приводит к их частичному разрушению.

DOI: 10.1134/S0023476119040295

введение

В настоящее время значительные усилия исследовательских групп направлены на синтез и изучение свойств металлических одномерных материалов или металлических нанотрубок (HT)/нанопроволок [1–5]. Это связано с перспективностью их применения в оптоэлектронике, фотоэлектрохимии, катализе, медицине и т.д. Возможность контроля и регулирования физических и химических свойств таких наноструктур вызывает к ним все больший интерес, что способствует расширению области использования наноматериалов.

Одним из наиболее перспективных материалов для получения наноструктур является Zn, так как он относительно безопасен биологически, обладает низкой токсичностью и биосовместимостью. Поэтому он может применяться в различных конфигурациях наноструктур (нанопроволоки, наночастицы, HT) [6–14]. Также для Zn-наноматериалов характерны как полупроводниковые, так и пьезоэлектрические свойства. Это явление служит основой для создания электромеханически связанных датчиков и преобразователей. Практическое применение сенсоров на основе цинка или оксида цинка ограничивается лишь отсутствием метода, обеспечивающего возможность контролируемого получения НТ с кристаллической структурой стенок. Для получения наноструктур на основе Zn и ZnO используют в основном методы химического осаждения металлов из паровой фазы, дугового разряда, лазерного испарения и шаблонный синтез. Среди них самым привлекательным является шаблонный синтез из-за удовлетворения требований стабильности и химической инертности. Шаблонный синтез позволяет получать округлые поры одинакового диаметра от десятков до сотен нанометров в шаблонных матрицах, которые являются удобным материалом для получения структурно однородных нанореплик.

В данной работе описан метод синтеза HT на основе Zn путем электрохимического осаждения, а также изучена их морфология и проведена характеризация проводящих свойств. В качестве шаблона используется трековая мембрана на основе полиэтилентерефталата (ПЭТФ) толщиной 12 мкм с диаметрами пор 380 ± 10 нм. Успешное изготовление Zn-HT открывает возможность их полномасштабного применения в качестве новых материалов в электронных и оптоэлектронных схемах [13–15] благодаря большой ширине запрещенной зоны (3.37 эВ), пьезоэлектрическим свойствам и высокой энергии связи экситонов (60 МэВ).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез Zn-HT проводился в порах трековых мембран на основе ПЭТФ типа Hostaphan® производства фирмы Mitsubishi Polyester Film (Германия) толщиной 12 мкм с плотностью пор 4×10^7 см⁻² и диаметром 400 нм. Активирование связей с груп-

Рис. 1. Поверхность шаблонной матрицы после осаждения в условиях приложения разности потенциалов: 1.25 (а), 1.75 (б), 2.0 В (в).

пой СООН, образующихся на поверхности стенок пор в результате химического травления треков тяжелыми ионами, проводилось при УФ-сенсибилизации ПЭТФ-шаблонов. Эта процедура позволила создать на стенках пор локализованные заряженные состояния, которые способствовали получению трубчатой формы на этапе электрохимического осаждения.

Электрохимическое осаждение в треки шаблонной матрицы проводилось при разности потенциалов 1.25–2.0 В с шагом 0.25 В в потенциостатическом режиме. Состав электролита для получения Zn-HT: $ZnSO_4 \cdot 7H_2O - 360$ г/л; $NH_4Cl - 30$ г/л; $3H_2O \cdot CH_3COONa - 15$ г/л; аскорбиновая кислота – 120 г/л.

Структуру и характеристические размеры синтезированных НТ исследовали методом растровой электронной микроскопии (РЭМ) в микроскопе Hitachi TM3030 с системой энергодисперсионного анализа (ЭДА) Bruker XFlash MIN SVE при ускоряющем напряжении 15 кВ. Изучение диаметров пор и внутренних диаметров, находящихся в ПЭТФ-шаблонах HT, проводили манометрическим методом определения газопроницаемости, основанном на измерении изменения давления газа в замкнутой камере при давлении в интервале от 8 до 20 кПа с шагом 4 кПа. Рентгеноструктурный анализ (РСА) проводили на дифрактометре D8 ADVANCE ECO с использованием рентгеновской трубки с медным анодом и графитового монохроматора. Дифрактограммы записывали в диапазоне углов 20: 30°-110° с шагом 0.01°.

Для проведения эксперимента HT освобождали от полимерной матрицы путем растворения ее в щелочном растворе. Для стравливания пленки использовали 9 М раствор NaOH.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Немаловажную роль в процессе формирования наноструктур играет прикладываемая разность потенциалов, от которой напрямую зависят скорость образования ионов металла и скорость их диффузии в растворе. Изменение разности прикладываемых потенциалов влияет на скорость роста наноструктур. При разности потенциалов 1.25-1.5 В согласно двухкомпонентной модели формирования НТ преобладает поперечная составляющая скорости роста, которая отвечает за рост стенки. При увеличении разности потенциалов выше 1.5 В в процессе роста преобладает продольная составляющая скорости роста трубок, в результате чего трубки растут вдоль стенок пор быстрее, чем в ширину. Однако этот процесс сопровождается негативными факторами. При увеличении плотности тока за счет увеличения разности потенциалов на электродах в процессе роста наноструктур наблюдается адсорбция примесей водорода, анионов солей, а также гидроксидов, часть которых выпадает в осадок на поверхность шаблонной матрицы, но часть из образовавшегося осадка включается в кристаллическую структуру растущих в порах НТ. При этом с увеличением разности потенциалов в процессе электрохимического синтеза до 1.75 В и выше наблюдалось обильное выделение водорода, появление которого в растворе в процессе синтеза приводит к пассивированию анода. На рис. 1 представлены РЭМ-изображения поверхности шаблонной матрицы после осаждения при разных потенциалах осаждения.

При этом примеси, попавшие в структуру HT, способны деформировать решетку кристаллитов. Образовавшиеся примеси на поверхности мембраны блокируют движение ионов металлов и тем самым пассивируют катод. Так как при электрохимическом синтезе ионы металлов подводятся по нормали к поверхности катода, блокировка мест роста способна изменить движение ионов к

Рис. 2. РЭМ-изображения Zn-нанотрубок, синтезированных при различных значениях напряжения.

катоду и снизить скорость роста, что в свою очередь приводит к неравномерному заполнению пор металлом. Это подтверждается показанными на рис. 2 РЭМ-изображениями Zn-HT, полученных при разных условиях осаждения.

Исходя из РЭМ-изображений была определена высота HT, составившая 12 мкм, диаметры HT соответствовали диаметру пор шаблонных матриц. Как видно из представленных РЭМ-изображений, с увеличением разности потенциалов до 2.0 В наблюдается частичное разрушение HT, которое может быть обусловлено частичной аморфизацией структуры. При разности потенциалов 2.0 В в процессе синтеза наблюдается бурное выделение водорода, что препятствует полноценному формированию кристаллической структуры HT.

Для определения влияния разности потенциалов на элементный состав НТ был применен метод ЭДА. На рис. 3 представлены ЭДА-спектры Zn-HT, осажденных при различных разностях потенциалов.

Как видно из полученных данных, в результате процесса осаждения при разности потенциалов 1.25 В происходит образование оксидной фазы цинка с атомным соотношением Zn : O = 73 : 27. С увеличением прикладываемой разницы потенциалов происходит вытеснение оксидной фазы за счет преобладания полупотенциала восстановления Zn над образованием оксидной фазы ZnO. Однако при увеличении разности потенциалов до 2.0 В в структуре HT наблюдается резкий рост содержания кислорода. Результаты ЭДА представлены в табл. 1.

Наличие кислорода в структуре НТ подтверждает предположение о влиянии оксидных соединений на неравномерный рост НТ при разности потенциалов 2.0 В. Для подтверждения изменения кристаллической структуры и образования аморфных состояний в результате синтеза НТ при различных разностях потенциалов был про-

Рис. 3. ЭД-спектры Zn-нанотрубок: 1.25 (а), 1.5 (б), 1.75 (в), 2.0 В (г).

Таблица 1.	Результаты ЭДА
------------	----------------

Образец	Атомное соотношение
Zn 1.25 B	Zn ₇₃ O ₂₇
Zn 1.50 B	Zn ₈₆ O ₁₄
Zn 1.75 B	Zn ₁₀₀
Zn 2.00 B	$Zn_{62}O_{38}$

веден их РСА. На рис. 4 представлены рентгенов-

ские дифрактограммы Zn-HT. На дифрактограм-

мах 1, 2 и 4 наблюдается наличие рефлексов ок-

сидной фазы ZnO при 37° , 58° , 68° . С увеличением прикладываемой разности потенциалов в кристаллической структуре наблюдается уменьшение интенсивности пика оксидной фазы ZnO и при разности потенциалов 1.75 В на дифрактограмме *3* ZnO отсутствует, что также подтверждается данными ЭДА. Таким образом, при разности потенциалов 1.75 В методом электрохимического синтеза можно получить HT из чистого Zn, без примесей оксидных фаз. При этом при разности потенциалов 2.0 В наблюдается резкое увеличение пиков, характерных для оксидных соединений, а также снижение интенсивности пиков, ха-

Рис. 4. Рентгеновские дифрактограммы Zn-нанотрубок: полученных при различных значениях напряжении 1.25 (*1*), 1.5 (*2*), 1.75 (*3*), 2.0 В (*4*).

КРИСТАЛЛОГРАФИЯ том 64 № 4 2019

Образец	Параметры гексагональной ячейки образца, Å (фаза Zn)	Средний размер кристаллитов, нм
Zn 1.25 B	$a = 2.6650 \pm 0.0008,$ $c = 4.9273 \pm 0.0050$	41.52 ± 1.3
Zn 1.50 B	$a = 2.6648 \pm 0.0009,$ $c = 4.9289 \pm 0.0053$	37.15 ± 1.5
Zn 1.75 B	$a = 2.6655 \pm 0.0006,$ $c = 4.9231 \pm 0.0045$	16.22 ± 1.2
Zn 2.0 B	$a = 2.6837 \pm 0.0011,$ $c = 4.9567 \pm 0.0011$	65.13 ± 1.5

Таблица 2. Данные расчетов средних размеров кристаллитов

Примечание. Данные по базе JCPDS (№ карточки) -a = 2.665, c = 4.947 Å (№ 04-0831).

рактерных для Zn-фазы. В табл. 2 приведены рентгенометрические данные исследуемых образцов, параметры кристаллической решетки *a* и *c*, а также результаты расчетов средних размеров кристаллитов по уравнению Шеррера (1):

$$\tau = \frac{k\lambda}{\beta\cos\theta},\tag{1}$$

где k = 0.9 – безразмерный коэффициент формы частиц (постоянная Шеррера); $\lambda = 1.54$ Å – длина волны рентгеновского излучения; β – полуширина рефлекса на полувысоте (**FWHM**); θ – угол дифракции (угол Брегга).

Как видно из расчетов, при уменьшении размеров кристаллитов от 41.52 нм для 1.25 В до 16.22 нм для 1.75 В наблюдается снижение интенсивности линий оксидной фазы. Увеличение разности потенциалов до 2.0 В при синтезе приводит к резкому увеличению размеров кристаллитов до 65.13 нм, что обусловлено наличием оксидных соединений в структуре, которые приводят к ее аморфизации. Текстурные коэффициенты рассчитывались по формуле Харриса (2):

$$TC(hkl) = \frac{I(hkl)}{I_0(hkl)} / \frac{1}{n} \sum \frac{I(hkl)}{I_0(hkl)},$$
 (2)

где I(hkl) — экспериментально полученная относительная интенсивность; $I_0(hkl)$ — относительная интенсивность, соответствующая данной плоскости согласно базе JCPDS; n — количество плоскостей. Результаты расчетов приведены в табл. 3.

Как видно из расчетов текстурных коэффициентов НТ, при разности потенциалов 1.75 В текстура поликристаллов многокомпонентна (101), (112), (201), а при разности потенциалов 2.0 В вы-

Таблица 3. Данные расчетов текстурных коэффициентов

2 θ , град	(hkl)	Текстурный коэффициент (<i>hkl</i>)			
		Zn ₇₃ O ₂₇	$Zn_{86}O_{14}$	Zn ₁₀₀	Zn ₆₂ O ₃₈
36.296	002	0.840061	0.724619	0.703054	0.505704
38.992	100	1.045106	0.475531	1.047087	0.747537
43.231	101	3.408915	1.264461	3.278464	1.578647
82.102	112	0.535298	0.363604	1.083193	0.963223
83.765	200	0.356127		0.60911	0.674272
86.557	201	0.58458	0.218961	1.10919	0.764732
109.12	203			0.169913	0.154211

деленные направления текстурированности НТ отсутствуют. При аппроксимации линий на рентгеновских дифрактограммах необходимым числом симметричных функций псевдо-Войта определена ширина зарегистрированных линий FWHM, которая позволила охарактеризовать совершенство кристаллической структуры и оценить степень кристалличности. На рис. 5 представлена диаграмма изменения степени кристалличности полученных образцов в зависимости от условий синтеза.

Согласно полученным данным, с уменьшением оксидных соединений в кристаллической структуре наблюдается увеличение степени кристалличности НТ, что обусловлено уменьшением количества аморфных включений в кристаллическую структуру. При этом с увеличением разности потенциалов до 2.0 В наблюдается рез-

Рис. 5. Диаграмма изменения степени кристалличности HT.

Рис. 6. ЭД-спектры аморфных включений в структуре Zn-нанотрубок.

кая аморфизация кристаллической структуры НТ за счет образования оксидных соединений в структуре, что подтверждают РЭМ-изображения и результаты РСА. На рис. 6 представлены результаты детального изучения элементного состава аморфных областей в НТ, полученных при разности потенциалов 2.0 В.

Как видно из представленных данных, аморфные включения содержат большое количество кислорода, что приводит к неконтролируемому процессу аморфизации и частичному разрушению НТ. Также согласно литературным данным оксидные соединения Zn имеют большое количество собственных дефектов типа межузельных атомов Zn и вакансий кислорода, увеличение содержания которого может привести к сильной деформации кристаллической решетки [16, 17].

ЗАКЛЮЧЕНИЕ

Представлены результаты изучения влияния разности прикладываемых потенциалов на элементный состав и структурные свойства Zn-нанотрубок, полученных методом электрохимического осаждения. В результате проведенных исследований установлено, что изменение разности потенциалов приводит к изменению среднего размера кристаллитов и степени кристалличности HT. Однако при разности потенциалов 2.0 В наблюдается неконтролируемый процесс роста HT, в результате которого происходит формирование аморфных включений в кристаллическую структуру HT, что приводит к их частичному разрушению.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Shao P., Ji G., Chen P. //* J. Membr. Sci. 2005. V. 255. P. 1.
- Edmondson M.J., Zhou W.Z., Sieber S.A. et al. // Adv. Mater. 2001. V. 13. P. 1608.
- Nielsch K., Wehrspohn R.B., Barthel J. et al. // Appl. Phys. Lett. 2001. V. 79. P. 1360.
- 4. Murali K.R. // Mater. Lett. 2005. V. 59. P. 15.
- 5. *Beard M.C., Turner G.M., Schmuttenmaer C.A.* // Nano Lett. 2002. V. 2. № 9. P. 983.
- Ramanathan S., Patibandla S., Bandyopadhyay S. et al. // J. Mater. Sci. Mater. Electron. 2006. V. 17. P. 651.
- Han X.H., Wang G.Z., Tao Q. et al. // Appl. Phys. Lett. 2005. V. 86. P. 223106.
- Hui Kyung Park, Bong Seob Yang, Sanghyun Park et al. // J. Alloys Compd. 2014. № 605. P. 124.
- Park W.I., Kim J.S., Yi G.C., Lee H.J. // Adv. Mater. 2005. V. 17. P. 1393.
- Mofor A.C., Bakin A., Chejarla U. et al. // Superlattices Microstruct. 2007. V. 42. P. 415.
- Park D.J., Lee J.Y., Kim D.C. et al. // Appl. Phys. Lett. 2007. V. 91. P. 143115.
- 12. *Studenikin S.A., Golege N., Cocivera M.* // J. Appl. Phys. 1998. V. 83. № 4. P. 2104.
- Asomoza R., Malodonado H., Olvera M.D. // J. Mater. Sci. Mater. Electron. 2000. V. 11. № 5. P. 383.
- Fan Z.Y., Dutta D., Chien C.J. et al. // Appl. Phys. Lett. 2006. V. 89. P. 213110.
- Martinson A.B.F., Elam J.W., Hupp J.T., Pellin M.J. // Nano Lett. 2007. V. 7. P. 2183.
- Grundmann M., Zúñiga-Pérez J. // Phys. Status Solidi. B. 2016. V. 253. № 2. P. 351.
- 17. *Yan Q., Rinke P., Winkelnkemper M. et al.* // Appl. Phys. Lett. 2012. V. 101 № 15. P. 152105.