———— КРИСТАЛЛОХИМИЯ —

УДК 546.65; 541.27

К 150-летию Периодической системы элементов Д.И. Менделеева

ТРИФТОРИДЫ ИТТРИЯ, ЛАНТАНА И ЛАНТАНОИДОВ: ВНУТРЕННЯЯ ПЕРИОДИЧНОСТЬ ФАЗОВЫХ ПРЕВРАЩЕНИЙ

© 2019 г. Б. П. Соболев^{1,*}

¹Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

* *E-mail: sobolevb@yandex.ru* Поступила в редакцию 21.03.2019 г. После доработки 21.03.2019 г. Принята к публикации 02.04.2019 г.

Выявлена внутренняя периодичность фазовых превращений (плавление и полиморфизм) в трифторидах Y, La и 14 лантаноидов. Она определяется внутренней периодичностью заполнения электронной 4*f*-подоболочки редкоземельных элементов (P3Э – *R*), выделяющей цериевое ⁵⁸Ce⁻⁶⁴Gd и тербиевое ⁶⁵Tb⁻⁷¹Lu подсемейства. Лантаноидное сжатие ионных радиусов R^{3+} (15% к меньшему) вызывает образование трех типов структуры LaF₃, β-YF₃ и α-YF₃ (α-UO₃). Формульные объемы V_{form} трифторидов P3Э структурных типов LaF₃ и β-YF₃ с ростом *Z*лишь частично подчиняются внутренней периодичности лантаноидов. Внутренняя периодичность плавления и полиморфизма трифторидов P3Э (без ScF₃) делит *R*F₃ на четыре структурные подгруппы: *A* (*R* = La–Nd), *B* (*R* = Pm–Gd), *C* (*R* = Tb–Ho) и *D* (*R* = Er–Lu, Y), строго устанавливая численность и элементный состав каждой. Периодичность полиморфизма *R*F₃ в продуктах проявляется в кристаллизации расплавов, склонных к переохлаждению, в виде периодической смены монокристаллов крупно- или мелкокристаллическими блоками низкотемпературных форм.

DOI: 10.1134/S0023476119050199

ВВЕДЕНИЕ

Формулировка Периодического закона Д.И. Менделеева состоит из двух посылов. Первый определяет объекты: "Свойства простых веществ, а также формы и свойства соединений элементов", охватывая весь окружающий материальный мир. Второй включает в себя понятие "периодической зависимости от атомного веса", которая трактуется в широких пределах, порождая разные виды периодичности.

Теория строения атома подвела базу под закон периодичности химических элементов. Современная формулировка Периодического закона отличается от данной Д.И. Менделеевым тремя словами: зависимость от "атомного веса" заменена "зарядом ядер атомов" или атомным номером Z.

Базирование периодичности элементов на строении атома объяснило особое положение **РЗЭ** (редкоземельных элементов) как одного из двух семейств *f*-элементов с внутренней периодичностью (**BII**), задаваемой строением "глубинной" 4*f*-подоболочки, определило число элементов и место в Периодической таблице.

РЗЭ составляют 20% от металлических элементов Периодической системы. Трифториды РЗЭ (RF_3) – самый многочисленный гомологический ряд простых неорганических соединений из 17 RF_3 (cPm), свойства которых для 14 лантаноидов (Ln = Ce-Lu) изменяются в масштабе добавления электрона в "глубинную" 4*f*-подоболочку R^{3+} . Трифториды РЗЭ – компоненты 84% систем $MF_m - RF_n$ ($m \le n \le 4$) из 34 фторидов – научной основы фторидного материаловедения [1]. Они составляют ~60% от 27 фторидов MF_m ($m \le 4$), используемых в многокомпонентных фторидных материалах [2].

Трифториды РЗЭ – химически родственные соединения, уникальные для анализа в рамках Периодического закона взаимосвязи таких фундаментальных свойств, как плавление, полиморфизм и тип структуры. Слабое участие 4*f*-электронов в химической связи приводит тому, что свойства редкоземельных ионов и соединений при переходах от ⁵⁷La к ⁷¹Lu меняются в расчете на один элемент небольшими "порциями". На большой длине ряда РЗЭ они суммируются и дают качественные изменения свойств. Взаимодействие 4*f*-электронов с ядром порождает обратную зави-

	· ·	-			
5 период	³⁹ Y [Kr]4 <i>d</i> ¹ 5 <i>s</i> ²				
6 период	57 La [Xe]4 $d^{1}6s^{2}$	^{58}Ce [Xe]4 $f^25d^06s^2$	⁵⁹ Pr, ⁶⁰ Nd, ⁶¹ Pm, ⁶² Sm, ⁶³ Eu, ⁶⁴ Gd, ⁶⁵ Tb, ⁶⁶ Dy, ⁶⁷ Ho, ⁶⁸ Er, ⁶⁹ Tm, ⁷⁰ Yb	71 Lu [Xe]4 $f^{14}5d^{1}6s^{2}$	
	<i>d</i> -элементы	4 <i>f</i> -элементы			

Таблица 1. Элементы иттрий, лантан и лантаноиды в Периодической таблице элементов

симость радиусов R^{3+} — уменьшение с ростом Z (лантаноидное сжатие).

Реакция с парами воды при нагреве (пирогидролиз) искажает фазовые превращения (ФП) в RF_3 . Большой вклад в решение проблемы пирогидролиза RF_3 внес Институт кристаллографии РАН (ИК РАН), одним из первых получив бескислородные RF_3 и изучив их истинные ФП.

Фазовые превращения в трифторидах РЗЭ выбраны в качестве объекта анализа их внутренней (внутрипериодной) периодичности, связанной с ВП образующих катионов R^{3+} . При недоступности тяжелых актиноидов лантаноиды дают единственную возможность проследить ВП фазовых превращений RF_3 в зависимости от электронного строения РЗЭ всего семейства 4*f*-элементов.

Цель сообщения — изучить влияние внутренней периодичности заполнения 4f-подоболочки РЗЭ на внутреннюю периодичность фазовых превращений (плавление, полиморфизм, типы структур) гомологической серии из 16 трифторидов Y, La и лантаноидов. Анализ ВП фазовых превращений в RF_3 в свете Периодического закона Д.И. Менделеева делается впервые.

РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ

РЗЭ по систематической номенклатуре International Union of Pureand Applied Chemistry (**IUPAC**) – 17 элементов побочной подгруппы III группы: ²¹Sc (4 период), ³⁹Y (5 период) и 15 элементов ${}^{57}La - {}^{71}Lu$ (6 период), занимающих одну клетку Периодической таблицы.

Семейство РЗЭ включает в себя три d-элемента: Sc, Y, La и 14 лантаноидов (Ln) – 4f-элементов (Ce–Lu). Полная численность РЗЭ определена как 17, но для практических целей она не всегда используется. В [1–3] обсуждаются фториды 15 РЗЭ. Исключался полученный искусственно Рт. Его производство увеличилось, но исследований по химии PmF₃ не появилось, и доступных RF_3 остается 16.

Высокотемпературная химия ScF₃ в системах $MF_m - RF_3$ [1] резко отличается от других RF_3 . Ион Sc³⁺ один имеет координационное число (**KU**) по фтору 6 (тип ReO₃). Исключение ScF₃ из анализа RF_3 сокращает число структурных типов RF_3 до

трех. Химически родственных RF_3 (R = Y, La–Lu) остается 16 (15 + PmF₃). Фторид иттрия входит в них, так как лантаноидным сжатием тяжелые Ln^{3+} сближаются с Y^{3+} по размеру и свойствам фторидов.

В табл. 1 приведено размещение 16 элементов Y, La, *Ln* в Периодической таблице и электронная структура последних энергетических уровней атомов, дополняющих электронные оболочки благородных газов.

КЛАССИФИКАЦИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

Исторически первым было деление РЗЭ на иттриевые и цериевые "земли", основанное на концентрации в разных минералах. К нему приводят и процессы разделения РЗЭ в водных растворах. К цериевым относят: La, Ce, Pr, Nd, Pm, Sm, Eu; к иттриевым: Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. Граница между ними размыта, и иногда европий относят ко второй группе.

Классификация по структуре, охватившая около сотни соединений РЗЭ, привела к выделению областей "кристаллохимической нестабильности" – участков ряда РЗЭ, на которых у их соединений статистически чаще наблюдаются изменения структуры [4-6]. Спустя несколько лет число соединений, возросшее до 154 [7], подтвердило выводы. Первая область – соединения Pr, Nd, Sm; вторая – Gd и третья – Dy, Ho, Er. Они могут встречаться в разных химических классах соединений РЗЭ порознь или вместе. Трифториды РЗЭ в этих работах не обсуждались (ФП в них тогда дискутировались). Позднее было показано, что в RF₃ проявляются все три области кристаллохимической нестабильности. Авторы [4-6] объясняют образование этих областей конкуренцией 4f- и 5d-орбиталей, в результате чего лишь несколько легких РЗЭ используют 4f-орбитали в химических связях. Для эффекта предложен термин "f-вырождения" [8], сближающего 4f- с dэлементами с ростом Z.

В конце 70-х годов замечена периодичность, выделяющая четыре группы: La–Nd; Pm–Gd; Gd, Tb–Er; Tm–Lu, названная по числу групп тетрад-эффектом [9, 10]. Эффект отчетлив на атомных и ионных свойствах РЗЭ и соединений в

Подсемейства	Конфигурация 4 <i>f</i> -орбиталей лантаноидов						$5^{7}La$ $4f^{0}5d^{1}$
Церия	⁵⁸ Ce 4 <i>f</i> ²	⁵⁹ Pr 4f ³	⁶⁰ Nd 4f ⁴	⁶¹ Pm 4f ⁵	⁶² Sm 4f ⁶	⁶³ Eu 4f ⁷	^{64}Gd $4f^75d^1$
тербия	⁶⁵ Tb 4 <i>f</i> ⁷⁺²	⁶⁶ Dy4 <i>f</i> ⁷⁺³	⁶⁷ Ho 4 <i>f</i> ⁷⁺⁴	⁶⁸ Er 4 <i>f</i> ⁷⁺⁵	⁶⁹ Tm 4 <i>f</i> ⁷⁺⁶	70 Yb 4 f^{7+7}	71 Lu 4 $f^{14}5d^1$

Таблица 2. Заполнение 4*f*-орбиталей у элементов цериевого и тербиевого подсемейств лантаноидов

газовом состоянии и "размывается" в конденсированном.

Деление RF_3 на четыре структурные подгруппы (A: La–Nd; B: Sm–Gd; C: Tb–Ho; D: Er–Lu, Y) [11] близко к тетрад-эффекту, но не идентично ему. Классификации РЗЭ по свойствам соединений феноменологичны.

Строго обоснована классификация РЗЭ по электронной структуре *R*. Первично деление РЗЭ на две неравномерные части: *d*- и *f*-элементы. К первым относятся Sc, Y, La. На этом участке ряда РЗЭ проявляется вертикальная периодичность – основной вид периодичности элементов и соединений, объединяющий их в столбцы – группы Периодической системы.

Порядок заполнения электронных оболочек с ростом Z (правила Клечковского) нарушается при "перемещении" по III группе в 6 периоде с ⁵⁷La, не имеющего 4*f*-электронов. У ⁵⁸Ce на 4*f*-подоболочке появляются сразу два электрона — один за счет роста Z, а другой переходит с 5*d*. До ⁶⁴Gd число 4*f*-электронов растет до 7 (подоболочка заполнена наполовину) и появляется 5*d*-электрон ($4f^{7}5d^{1}6s^{2}$). У следующего ⁶⁵Tb аналогично ⁶⁴Ce один 5*d*-электрон переходит на 4*f*-уровень ($4f^{9}6s^{2}$). До ⁷⁰Yb число 4*f*-электронов растет до 14, а 5*d*-электрон появляется у ⁷¹Lu ($4f^{14}5d^{1}6s^{2}$). У трижды ионизированных атомов Ln^{3+} (основная валентность РЗЭ) удаляются валентные 5*d*¹6*s*² или 5*d*²6*s*¹ и остаются 4*f*-электроны.

Лантан открывает ряд РЗЭ, для которых V.M. Goldschmidt (1925) предложил термин "лантаноиды". С ним в литературу вошли сокращения: *Ln*, *TR*, *SE* (на разных языках). По этой классификации написание семейства РЗЭ громоздко: Sc, Y, La и *Ln*. Для сокращения обозначим совокупность РЗЭ (включая Sc, Y и La) или любую ее часть символом *R*. В последнем случае в скобках указываются РЗЭ, которые имеются в виду в контексте.

Классификация РЗЭ (положение лантана) до сих пор остается спорной, и в декабре 2015 г. IUPAC предложил проект ее уточнения.

ПЕРИОДИЧНОСТЬ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

La и 14 лантаноидов размещают в одной клетке Периодической таблицы, полностью разворачивая ряд внизу таблицы. Этим выражается химическая специфика РЗЭ, фториды которого здесь обсуждаются. На участке ⁵⁷La-⁷¹Lu проявляется ВП – немонотонность изменения свойств элементов и соединений в пределах периода, связанная с 4f-подоболочкой. Ее заполнение делит лантаноиды на два подсемейства: цериевое и тербиевое. Цериевое из семи элементов (⁵⁸Ce-⁶⁴Gd) легких лантаноидов – имеет на 4f-орбиталях максимальные числа неспаренных электронов (правило Хунда). У тербиевого подсемейства также из семи элементов (⁶⁵Tb-⁷¹Lu) – тяжелых лантаноидов – 4f-орбитали заполняются электронами с антипараллельными спинами. Расположение элементов в порядке деления Ln по подсемействам и конфигурациям 4f-орбиталей приведены в табл. 2.

Внутренняя периодичность РЗЭ заключается в том, что свойства соединений первого подсемейства (Ce–Gd) в известной мере повторяются во втором (Tb–Lu). Фазовые превращения в RF_3 (плавление, полиморфизм, морфотропия), немонотонно меняющиеся по ряду РЗЭ с ростом Z, до сих пор не связывались с ВП электронного строения РЗЭ.

ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В ТРИФТОРИДАХ РЗЭ И ПРИМЕСИ

Схема ФП в *R*F₃ искажается примесями. Получение индивидуальных РЗЭ очисткой от катионных примесей, прежде всего соседних РЗЭ, было проблемой. Только в 1971 г. [12] сообщили о фторидах Y, La, Pr, Nd, Gd, Ho, Lu с суммарными содержаниями примесей РЗЭ от 35 до 125 *рртw* и концентрацией других катионов 30–55 *рртw*.

Кислород — единственная изоморфная анионная примесь во фторидах. Замещение F^{1-} на O^{2-} в RF_3 (начальная стадия анионной нестехиометрии) дает оксофториды $RF_{3-2x}O_x$ с низкими (несколько мол. %) содержаниями R_2O_3 . Первый ок-

СОБОЛЕВ

Рис. 1. Полная схема фазовых превращений в трифторидах лантана, лантаноидов и иттрия.

софторид $GdF_{3-2x}O_x$ найден в системе GdF_3 - Gd_2O_3 [13].

Для реакции фторидов с парами воды (пирогидролиз [14]) достаточно их нагреть. Источники воды многочисленны и неконтролируемы, а сложность анализа на кислород затрудняет выявление пирогидролиза. В отличие от катионных анионная примесь не устранена. После советов по подавлению пирогидролиза (с 70-х гг.!) в 2008 г. [15] для изучения системы GdF₃–LuF₃ был использован GdF_{3–2x}O_x вместо GdF₃ (критика в [16]).

Частично гидролизованные " RF_3 " — оксофториды $RF_{3-2x}O_x$ — имеют другие температуры плавления, чем RF_3 , а с некоторыми РЗЭ еще и другую структуру. Разные авторы получали разные составы $RF_{3-2x}O_x$ в соответствии с глубиной пирогидролиза. В результате к середине 80-х годов для высокочистых по катионам RF_3 были получены четыре несовместимых схемы ФП.

Систематическое изучение начальной стадии пирогидролиза (анионной нестехиометрии) RF_3 проведено в ИК РАН методом дифференциально-термического анализа (ДТА) для 10 систем $RF_3-R_2O_3$ (R = La, Gd-Lu, Y). Пять из них (R == Gd, Tb, Ho, Er, Y) опубликованы [11, 17] вместе с температурами ФП в RF_3 . Немного ранее получены бескислородные RF_3 и изучены их температуры, энтальпии и энтропии ФП [12, 18]. Позже температуры превращений в RF_3 методом ДТА определили [19], обнаружив у RF_3 (R = La-Eu) "диффузный" переход.

К середине 80-х годов тремя группами ученых (F.H. Spedding, Ames Laboratory, Iowa State Uni-

versity, USA; автора настоящей статьи в ИК РАН и О. Greis, FRG) были разработаны методики получения бескислородных RF_3 , определены температуры их ФП, совпадающие в пределах ошибки, и создана схема их изменения по ряду РЗЭ (кроме Рm). Содержания кислорода, в пределах точности ДТА не отражающиеся на температурах ФП в RF_3 , согласованно оценены как 750–1500 *рртw*.

Вывод. Образование $RF_{3-2x}O_x$ искажает ВП термических и структурных характеристик RF_3 . Изучение периодичности ФП в RF_3 требует тщательного подавления пирогидролиза.

ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В БЕСКИСЛОРОДНЫХ RF_3 (R = La-Lu, Y)

На рис. 1 представлена схема ФП в бескислородных RF_3 . Для всех RF_3 (кроме PmF_3) она впервые была опубликована в [17]. Там же выделены четыре структурные подгруппы RF_3 : A (R = La– Nd, **Pm**), B (R = Sm-Gd), C (R = Tb-Ho) и D (R == Er-Lu, Y). В A входят RF_3 с одним структурным типом La F_3 ; в B – диморфные RF_3 с модификациями типов β-YF₃ и La F_3 ; в $C - RF_3$ типа β-YF₃; в D – диморфные RF_3 с формами типов β-YF₃ и α-YF₃ (α -UO₃). Схема, дополненная «диффузными» превращениями у RF_3 (R = La - Eu) по [19], публиковалась однажды в [1]. В [20] даны температуры превращений RF_3 , близкие, но не совпадающие с [12, 17–19].

Все варианты общей схемы содержали вопросы по PmF_3 . Ранее, опираясь на теоретическую оценку некорректно трактуемой тогда морфотропии RF_3 [21], PmF_3 был отнесен к подгруппе A.

КРИСТАЛЛОГРАФИЯ том 64 № 5 2019

В настоящей работе по изменениям V_{form} он помещен в подгруппу *B*. Впервые в схему внесены температуры переходов PmF₃. Из наклона участка 3 на рис. 1 вычислена температура плавления (1340°С), близкая к предлагаемым (1344°С [19] и 1332°С [20]). Вопрос о полиморфизме PmF₃ нерешаем из-за низкой температуры перехода. Экстраполяцией кривой 4 рис. 1 температура перехода $\alpha \leftrightarrow \beta$ -PmF₃ оценена как 140°С.

Температуры плавления RF_3 (рис. 1) отчетливо немонотонны, разделены наклонами на четыре участка: 1, 3, 5, 6. Они совпадают с делением ряда RF_3 на четыре структурные подгруппы *A*, *B*, *C*, *D* [17] (три штрихпунктирные вертикали). Различие наклонов для кривых плавкости RF_3 с разными типами структур естественно. Это относится к RF_3 подгрупп *B* (тип LaF₃) и *C* (тип β-YF₃), кривые *3* и *5* рис. 1. Объяснение не применимо к кривым *1* и *3*, описывающим плавкость изоструктурных RF_3 подгрупп *A* и *B* типа LaF₃. В *D* при переходе от типа β-YF₃, кривая 7, к типу α-YF₃ (α-UO₃), кривая 6, структура RF_3 меняется с сильным разупорядочением анионов.

Выводы. Впервые приведена полная уточненная схема $\Phi\Pi$ в 16 RF_3 с PmF_3 в подгруппе *B* диморфных RF_3 (даны температура его плавления по трем источникам и полиморфного перехода по экстраполяции автора статьи). Температуры $\Phi\Pi$ и смена типов структуры RF_3 меняются с ростом атомного номера РЗЭ *Z* немонотонно.

ИОННЫЕ РАДИУСЫ *R*³⁺ (ЛАНТАНОИДНОЕ СЖАТИЕ)

Фазовые переходы в RF_3 проходят на фоне изменения ионных радиусов r_R . Они меняют знак с положительного (рост r_R при ²¹Sc \rightarrow ³⁹Y \rightarrow ⁵⁷La по III группе) на отрицательный (лантаноидное сжатие по 6 периоду ${}^{57}La \rightarrow {}^{71}Lu$).

Подавляющее большинство систем радиусов имеет точность ± 0.01 Å, непригодную для анализа свойств РЗЭ и их соединений. При изменении *Z* РЗЭ на единицу Δr_R меняется в среднем на ~0.014 Å. В абсолютной шкале сомнителен и второй знак, но для анализа свойств РЗЭ по ряду нужна система относительных радиусов с точностью до ± 0.001 Å.

"Специализированная" система радиусов R^{3+} во фторидах для КЧ 9 получена [22] из прецизионных (±0.0005 Å) измерений параметров решеток RF_3 типов LaF₃ и β-YF₃. Использовав ее для анализа лантаноидного сжатия, установили, что оно монотонно уменьшает r_R ионов РЗЭ с ростом Z.

Вывод. Уменьшение радиусов R^{3+} при росте Z от 57 до 71 (лантаноидное сжатие) не обнаруживает периодичности, монотонно уменьшая r_R на 15% (от большего к меньшему).

ФОРМУЛЬНЫЕ ОБЪЕМЫ *V_{form}* ТРИФТОРИДОВ Y, La И *Ln*

Ионные радиусы — относительные величины. Формульный объем V_{form} — абсолютная величина, выявляющая изменения в структуре независимо от их причин. В V_{form} входят объем катиона (монотонно убывает по ряду РЗЭ), объем аниона (постоянен) и "рыхлость" упаковки структуры. В последнем вкладе в $V_{form} RF_3$ может быть заложена периодичность изменения свойств.

Переход в ряду RF_3 между тремя типами структур (LaF₃, β-YF₃ и α-YF₃) – морфотропное изменение со скачком V_{form} . Рассмотрим изменения V_{form} как функцию от Z. Проведем на рис. 2а

Рис. 2. Изменение V_{form} RF₃ по [22–24] (обозначения в тексте) (а), параметров решетки β-RF₃ типа β-YF₃ по [24] (б).

КРИСТАЛЛОГРАФИЯ том 64 № 5 2019

штрихпунктирные вертикали *I*, *II* и *III*, разделяющие структурные подгруппы *A*, *B*, *C*, *D*.

На рис. 2а не приведены $V_{form} RF_3$ из D(R = Er-Lu, Y) с типом α -YF₃ (α -UO₃). Переход β -YF₃ $\rightarrow \alpha$ -YF₃ (α -UO₃) сопровождается очень большим ростом V_{form} (на +22% к меньшему), определенным неточно, поэтому здесь не обсуждается.

На рис. 2а видно, что V_{form} по ряду РЗЭ разбивается на две зависимости по типу структур RF_3 .

Значения V_{form} фаз типа LaF₃ (R = La-Gd), включая α -PmF₃ (параметры решетки по [23]), хорошо ложатся на кривую *1*, объединяющую две подгруппы: RF_3 подгруппы *A* (R = La-Nd) и α - RF_3 подгруппы *B* (R = Pm-Gd). Переход от RF_3 подгрупп *A* к *B* на V_{form} не отражается. Для диморфных RF_3 (α -SmF_3, α -EuF₃, α -GdF₃ типа LaF₃) подгруппы *B* V_{form} , кривая *2*, получены экстраполяцией параметров решетки фаз $R_{1-y}M_yF_{3-y}$ (M = Ca, Sr) на чистые RF_3 [24]. Они близки к трем метастабильным α - RF_3 (R = Sm-Gd) на кривой *1*, выделенным из водных растворов [22].

Значения V_{form} фаз типа α -YF₃ (R =Sm-Lu, Y) описывают кривые *3*, *4*. По способу образования кристаллов они разбиваются на три участка, отвечающие подгруппами *B*, *C* и *D*. Первый – V_{form} низкотемпературных β -*R*F₃ (тип β -YF₃) – продуктов твердофазного перехода α -*R*F₃ типа LaF₃ $\rightarrow \beta$ -*R*F₃ (R =Sm-Gd) с ростом $\Delta V_{form} = 4.2\%$ (к меньшему), кривая *3а*.

Второй участок, кривая 36, продолжает предыдущий, но относится к RF_3 (R = Tb-Er), кристаллизующимся в структуре типа β -YF₃ из расплава. Кривые 3a, 36 не отражают перехода от RF_3 подгруппы $B \ltimes C$ (вертикаль II).

Рис. 3. Внутренняя периодичность температур плавления трифторидов Y, La и *Ln*.

Смену наклона V_{form} для фаз одного структурного типа β -YF₃ (R =Sm-Lu, Y) обнаруживают кривые 3 и 4 между HoF₃ и β -ErF₃. Причина этого выявлена [24] и состоит в нелинейности изменения параметров решетки β - RF_3 по ряду P3Э, рис. 26. Изменения параметра c ведут к изменению наклона зависимости V_{form} от Z. Оно отражает изменения в структуре, анализ которых показал [25], что в типе β -YF₃ KЧ R^{3+} непрерывно меняется с его радиусом.

Выводы:

 $-V_{form}$ у RF_3 типа La F_3 меняются монотонно в подгруппе A (R = La-Nd) и изоструктурных α - RF_3 диморфной B (R = Pm-Gd);

 $-V_{form} \beta - RF_3$ типа β -YF₃ диморфной подгруппы *B* (*R* = Pm, Sm–Gd) и *C* (*R* = Tb–Ho) не отражает способа образования кристаллов;

– изменения V_{form} фаз типа β -YF₃ подгруппы D(R = Er-Lu, Y) описывает кривая 4, продолжающая кривую 3 с другим наклоном. Изгиб возникает между HoF₃ и β -ErF₃ из-за изменения знака параметра ячейки c.

 V_{form} лишь частично отражает деление RF_3 на структурные подгруппы. Он не отмечает перехода между подгруппами A-B и B-C (штрихпунктирные вертикали I и II), но фиксирует переход между C и D (III).

ФАЗОВЫЕ ПРЕВРАЩЕНИЯ *R*F₃ И ВНУТРЕННЯЯ ПЕРИОДИЧНОСТЬ РЗЭ

Сложные изменения фазовых превращений RF_3 по ряду РЗЭ (рис. 1) могут определяться фундаментальной характеристикой лантаноидов — ВП заполнения 4*f*-подуровня *Ln*. Для выявления этой возможной связи построим зависимости термических свойств RF_3 от *Z*, разбив 14 RF_3 на две группы по семь элементов в соответствии с табл. 2. К характеристикам фазовых превращений RF_3 отнесем:

- температуры плавления;
- структурные подгруппы;
- расплавы и их переохлаждение;

 полиморфизм и вид продуктов кристаллизации.

Доказательство связи ВП свойств RF_3 с периодичностью электронной структуры РЗЭ будет состоять в том, что изменения свойств в первой группе LnF_3 (от Се до Gd) будут повторяться в известной мере во второй (от Ть до Lu).

ВП температур плавления RF_3 . Для выявления возможной связи температур плавления (T_{fus}) RF_3 с внутренней периодичностью заполнения 4*f*-подоболочки R^{3+} на верхней оси рис. 3 отложим Z цериевого подсемейства ⁵⁸Ce-⁶⁴Gd. Шкала начи-

A	Один тип La	структуры F ₃	B	Два типа структуры: LaF ₃ ↔ β-YF ₃		
4	LaF ₃	CeF ₃ PrF ₃ NdF ₃	4	PmF ₃ SmF ₃ EuF ₃ GdF ₃		
C 3	Один тип структуры β-YF 3		D 5	Два типа структуры: β-YF ₃ ↔ α-YF ₃		
	TbF ₃ DyF ₃ HoF ₃			ErF ₃ TmF ₃ YbF ₃ LuF ₃	YF ₃	

Таблица 3. Внутренняя периодичность структурных подгрупп *R*F₃: *A* (*R* = La–Nd); *B* (*R* = Pm, Sm–Gd); *C* (*R* = Tb–Ho); *D* (*R* = Er–Lu, Y) [11]

нается с d-элемента ⁵⁷La — первого в подгруппе A (отделен вертикалью I). Заканчивается верхняя ось Gd (подгруппа B) с наполовину заполненной 4f-подоболочкой.

На нижней оси — элементы тербиевого подсемейства 65 Tb— 71 Lu, охватывающего подгруппы *С* и *D*. В конце оси *d*-элемент 39 Y из *D*, фторид которого лантаноидным сжатием сближается с фторидами тяжелых *Ln*.

По вертикали под ⁵⁸Ce $(4f^2)$ должен находиться ⁶⁵Tb $(4f^{7+2})$, так как с них в порядке роста *Z* начинаются два подсемейства *Ln*, сравнение свойств соединений которых по вертикали дают информацию о периодичности.

На рис. З видно деление кривых плавкости RF_3 по температурному уровню (пунктирная горизонталь) на "высокотемпературное" цериевое подсемейство RF_3 – верхние кривые 1 и 3 (A и B), и "низкотемпературное" тербиевое подсемейство RF_3 – нижние кривые 2 и 4 (C и D). Каждая пара состоит из восьми R (7f + 1d).

Плавкости цериевого и тербиевого подсемейств делятся по вертикали штрихпунктиром *II* на пары кривых, имеющих разные наклоны.

Разделив фториды цериевого и тербиевого подсемейств по разной плавкости (пунктирная горизонталь) и каждое подсемейство по ВП изменения плавкости (пунктирная вертикаль *II*), перейдем к сравнению плавления расположенных друг под другом трифторидов РЗЭ.

Фториды подгрупп A и C (кривые 1 и 2) по плавлению повторяют друг друга: из расплава растут монокристаллы, не имеющие полиморфных превращений. Различаются подгруппы структурами: фториды A кристаллизуются в типе LaF₃, а C – в типе β -YF₃.

Фториды подгрупп *B* и *D* (кривые *3* и *4*) по процессам кристаллизации расплавов повторяют друг друга полиморфизмом: из расплава растут кристаллы высокотемпературных α -*R*F₃, которые при охлаждении переходят в β -*R*F₃. Подгруппы различаются структурами: фториды α -*R*F₃ из *B* имеют тип LaF₃ (кривая *3*), а фториды β -*R*F₃ из *D* (кривая *4*) – тип α -YF₃ (α -UO₃). Разрыв (пунктирная вертикаль II) на двух парах кривых 1, 2 и 3, 4 совпадает с делением RF_3 на четыре структурные подгруппы A (R = La-Nd) и C (R = Tb-Ho), повторяющие друг друга отсутствием полиморфизма, и RF_3 подгрупп B (R == Pm-Gd) и D (R = Er-Lu, Y), объединенных диморфизмом.

Таким образом, при сопоставлении плавления трифторидов двух подсемейств РЗЭ, выделяемых по заполнению 4*f*-орбиталей, изменения T_{fus} при росте Z дважды претерпевают скачки, связанные с изменениями типов структур и числа модификаций в структурных подгруппах. Внутренняя периодичность РЗЭ, "включенная" в графическое представление T_{fus} разделением осей Z для двух подсемейств РЗЭ, коррелирует с ВП фазовых превращений RF_3 ходом температур плавления.

Аналогичный характер изменений имеют температуры полиморфных превращений, которые обсудим ниже.

Вывод. Деление РЗЭ на два подсемейства по внутренней периодичности R^{3+} заполнения 4*f*-орбиталей выявляет корреляцию с ВП температур плавления RF_3 .

ВП структурных подгрупп RF_3 . Немонотонность изменения температур плавления RF_3 по ряду РЗЭ и полиморфизм стали основанием для выделения [17] четырех подгрупп A-D. Рассмотрим связь подгрупп с ВП Ln, расположив их в табл. 3 в две строки, отвечающие периодичности Ln в табл. 2 и на рис. 3.

По признаку отсутствия полиморфизма под подгруппой *A* из четырех фторидов (три 4*f*-фторида) расположена подгруппа *C* из трех фторидов (все 4*f*-фториды), полностью повторяющая верхнюю по кристаллизации расплава.

По признаку полиморфизма под четырьмя диморфными RF_3 из B (все 4f) располагаются повторяющие их пять диморфных RF_3 (четыре 4f-фторида) из D.

Числа RF_3 в структурных подгруппах однозначно задаются электронной структурой R^{3+} . По всем (*d* и *f*) фторидам она составляет 4*A*:4*B*:3*C*:5*D*, а только по 4*f*-фторидам 3*A*:4*B*:3*C*:4*D* или 7 + 7 =

Рис. 4. Разница ΔT температур плавления (T_{fus}) и полиморфного превращения (T_{trans}) для диморфных фторидов подгрупп *B* и *D*.

= 14 по двум горизонтальным строкам, отвечающим числу электронов в 4f-подоболочке.

Однозначность определения элементного состава и числа RF_3 структурных подгрупп отличает их от кристаллохимической нестабильности и тетрад-эффекта, в которых выделение РЗЭ носит статистический характер.

Выводы. Структурные подгруппы RF_3 подчиняются внутренней периодичности РЗЭ, расположенных попарно в соответствии с заполнением 4*f*-орбиталей у цериевого и тербиевого подсемейств. Численность RF_3 в подгруппах, сформированных из 4*f*-элементов, определяется суммой 7 + 7 и равна числу лантаноидов – 14. Таким образом, периодичность, элементный и численный состав структурных подгрупп совпадает с внутренней периодичностью R^{3+} по электронной структуре 4*f*-подоболочки.

Переохлаждение расплавов RF₃. Плавление RF₃ как фазовый переход специфичен: их расплавы, по крайней мере для фторидов тяжелых *Ln*, склонны к переохлаждению.

Получение из расплава кристаллов RF_3 в 70-е годы прошлого века было аргументом отсутствия полиморфизма у RF_3 подгруппы *D*. Некоторые полагали, что условием образования крупных блоков низкотемпературных β - RF_3 является переохлаждение расплава ниже температуры $\alpha \leftrightarrow \beta$ перехода.

Кристаллизация расплавов RF_3 разными методами в связи с полиморфизмом систематически изучена в [26]. Получена схема ФП, близкая к итоговой. Отличие было в отрицании диморфизма SmF₃ и наличии его у DyF₃ и HoF₃, что не подтвердили в [11, 12, 17–19, 27].

Образование крупных блоков низкотемпературных форм β - RF_3 (β -ErF₃- β -LuF₃, β -YF₃) может быть результатом трудноконтролируемых факторов: переохлаждения и скорости кристаллизации. Возможность переохладить расплав (помимо ряда второстепенных факторов) зависит от разницы ΔT температуры плавления T_{fus} и полиморфизма T_{trans} . На рис. 4 приведена ΔT диморфных RF_3 из B и D. Для $B \Delta T$ (кривая I) резко зависит от Z, уменьшаясь от SmF₃ к GdF₃ на ~700°C. Для $D \Delta T$ (кривая 2) близка для всех RF_3 и укладываются в ~200°C ($\Delta T = 23$ у ErF₃ и 227 ± ± 5°C у LuF₃).

Влияние скорости охлаждения на размер кристаллитов фаз типа β -YF₃ изучено в системе HoF₃—ErF₃ [27] (HoF₃ имеет одну форму, ErF₃ диморфен). Скорость охлаждения расплава ErF₃ 30 град/мин и выше приводит к слиянию термических эффектов плавления и $\alpha \leftrightarrow \beta$ -ErF₃-перехода, с чего начинается переохлаждение. Охлаждением получены кристаллы β -ErF₃ размером до 2 × × 4 × 30 мм³.

В [19] найдена зависимость переохлаждения от состава на 20–150°С. Верхний предел переохлаждения на рис. 4 обозначен горизонтальным пунктиром 3. Рядом находятся ΔT для ErF₃, TmF₃ и YF₃, близки для YbF₃, LuF₃ (все из *D*) и GdF₃ из *B*. Учитывая большие ошибки, можно считать расплавы всех этих фторидов склонными к переохлаждению.

Выводы. Величина $\Delta T = T_{fus} - T_{trans}$, определяющая возможность переохлаждения расплава, и ее составляющие распределяются по ряду RF_3 в соответствии с его делением на структурные подгруппы *B*, *C*, *D*. Если предположить переохлаждение расплава на ~200°C, возможен рост из расплава кристаллов GdF₃ из *B* и всех пяти фторидов (ErF₃-LuF₃, YF₃) из *D*. Получение из расплава крупных кристаллов (десятки мм³) диморфных RF_3 не служит доказательством отсутствия полиморфизма в равновесных условиях.

Полиморфизм RF_3 с реконструктивным характером (исключение — "диффузные" переходы у RF_3 с R = La-Eu) ограничивает получение кристаллов из расплава. ВП структурных подгрупп RF_3 вместе с переохлаждением расплава формирует внешний вид образцов.

ВП фазовых превращений в RF_3 и кристаллизация расплавов. Для проверки периодичности внешнего вида сформируем табл. 4. В клетках фото RF_3 , полученных из расплава. Кристаллы La F_3 , Ce F_3 , Pr F_3 , Nd F_3 и Ho F_3 выращены направленной кристаллизацией (метод Бриджмена) и обработа-

					$\beta^{-39} YF_3$		α β-YF ₃)
	структурная подгруппа <i>В</i> диморфных <i>R</i> F ₃ (<i>B</i> − тип LaF ₃ ↔ тип β-YF ₃)	β- ⁶⁴ GdF ₃		Структурная подгруппа <i>D</i> диморфных <i>R</i> F ₃ (<i>D</i> − тип β-YF ₃ ↔ тип α-YF ₃)	β- ⁷¹ LuF₃		Продукты кристаллизации твердой фазы: мелкокристаллическая (B) и блочная (D) формы eta - RF_3 (ти
		β- ⁶³ EuF ₃			β- ⁷⁰ ΥbF ₃		
и лаптаноидах		β- ⁶² SmF ₃			β- ⁶⁹ TmF ₃		
афторидах т, та т		(α- ⁶¹ PmF ₃)	Пурпурно- розовый, тип LaF ₃		β- ⁶⁸ ErF ₃		
стипиа		$^{60}\mathrm{NdF}_3$			⁶⁷ HoF ₃		a: β-YF ₃
	$^{59}\mathrm{PrF}_3$		подгруппа <i>С</i> -YF ₃)	$^{66}\mathrm{DyF}_3$		родукты кристаллизации расплав сристаллы A – тип LaF ₃ и <i>C</i> – тип	
	⁵⁸ CeF ₃	\bigcirc	Структурная (тип [65TbF3			
		⁵⁷ LaF ₃					Ш Ионок
	кристаллог	РАФИЯ	гом 64 № 5 2019				

Таблина 4. Внутренняя периодичность фазовых превращений в трифторидах Y. La и данганоидах

709

ны. Условия роста кристаллов типичны для фторидных материалов: скорости опускания тигля 5—14 мм/ч, температурный градиент 45— 100 град/см, скорость охлаждения 50—300 град/ч (до 600—800°С) [28—30]. Образцы других RF_3 участки буль из спонтанной кристаллизации.

Две горизонтальные строки табл. 4 по восемь RF_3 в каждой формируют сочетания фторидов из подгрупп A + B (верхняя строка: La–Gd) и C + D (нижняя строка: Tb–Lu, Y). Горизонтальные строки сдвинуты, чтобы ⁵⁸CeF₃ в верхней строке был над ⁶⁵TbF₃ в нижней (в соответствии с табл. 2).

Повторяемость подгрупп по признаку полиморфизма (вертикальное структурирование табл. 4) очевидна: фториды подгруппы *A* располагаются над фторидами *C*, а фториды подгруппы *B* над *D*. У фторидов первой пары подгрупп полиморфизма нет, а во второй паре он присутствует.

Если ВП фазовых переходов в RF_3 наследует периодичность электронной структуры РЗЭ, то внешний вид верхних образцов RF_3 (Ce–Gd) повторится в известной мере в нижних (Tb–Lu). Повторение заложено в периодичности структурных подгрупп (табл. 3), но она не учитывала переохлаждения и кинетики полиморфизма (рис. 4).

Вертикальная двойная линия делит табл. 4 на моно- (слева) и поликристаллическую (справа) формы образцов. Верх и низ каждой половины не идентичны по виду и делятся на левую и правую части, как делились ранее RF_3 на структурные подгруппы (табл. 3 и рис. 3).

В левой верхней половине RF_3 (R = La-Nd) образуют из расплава кристаллы. Их повторяют нижние RF_3 (R = Tb-Ho), растущие из расплава в виде кристаллов "ослаблено" (возникновение блочности). Можно получить крупные кристаллы всех RF_3 этой половины, разделяемой $\Delta Z = 65 - 57 = 8$.

В правой части верхней половины диморфные RF_3 при охлаждении расплава образуют мелкокристаллические образцы низкотемпературных форм β -SmF₃, β -EuF₃, β -GdF₃. Исключение PmF₃, сохраняющий кристаллы α -PmF₃ типа LaF₃ из-за низкой температуры перехода β -PmF₃ \leftrightarrow $\leftrightarrow \alpha$ -PmF₃.

Образцы правой верхней половины (*B*) меняют вид внутри строки: очень мелкокристалличен β -SmF₃, зерна увеличиваются у β -EuF₃ и становятся крупными блоками у β -GdF₃. Вид последнего близок к образцам нижней подгруппы *D* с очень крупными блоками. Причина видна на рис. 4: переход β -GdF₃ $\leftrightarrow \alpha$ -GdF₃ попадает в интервал переохлаждений ~150°C.

Нижняя часть β -*R*F₃ (β -ErF₃- β -LuF₃, β -YF₃) правой половины диморфна, чем повторяет верх-

нюю. Однако все β - RF_3 , кроме β - YF_3 — фторида d-элемента, образуют крупные кристаллические игольчатые блоки объемом до нескольких кубических миллиметров и длиной до нескольких сантиметров [27].

Внешний вид кристаллов диморфных подгрупп *B* и *D* сближается по мере уменьшения $\Delta T = T_{fus} - T_{trans}$. Гипотеза о росте кристаллов β-форм из переохлажденных расплавов весьма вероятна, но требует исследования.

Выводы. ВП фазовых превращений во фторидах Y, La и Ln определяется ВП структуры 4*f*-подоболочки. Она проявляется во внешнем виде образцов RF_3 , получаемых из расплава, в которых размеры кристаллитов периодически меняются по ряду Ln в последовательности перехода от Сек Tb-подсемейству.

ЗАКЛЮЧЕНИЕ

Внутренняя периодичность заполнения электронами 4f-подоболочки лантаноидов, выделяющая цериевое (⁵⁸Ce-⁶⁴Gd) и тербиевое (⁶⁵Tb-⁷¹Lu) подсемейства, описывает: ВП фазовых превращений (плавление и полиморфизм) в трифторидах Y, La и 14 лантаноидов; их деление на четыре структурные подгруппы: A (R = La-Nd), B (R == Pm-Gd), C(R = Tb-Ho) и D(R = Er-Lu, Y) со строго установленной численностью и элементным составом; переохлаждение расплавов, проявление полиморфизма и внешний вид получаемых образцов. По ВП фазовых превращений PmF₃ отнесен к структурной подгруппе В диморфных RF₃. Полиморфизм RF₃ подчинен ВП и визуализируется в продуктах кристаллизации расплавов в виде периодической смены монокристаллов крупно- или мелкокристаллическими блоками низкотемпературных форм.

Открытая ВП фазовых превращений RF_3 инициирует поиск периодических закономерностей изменения других свойств фторидов с высокими содержаниями РЗЭ, в частности нестехиометрических фаз $R_{1-y}M_yF_{3-y}$ типа LaF₃ с фтор-ионной проводимостью [31] и флюоритовых фаз $M_{1-x}R_xF_{2+x}$ с кластерами структурных дефектов [$M_{14-n}R_nF_{64+n}$] (M = Ca, Sr, Ba), концентрирующих R^{3+} [2].

Автор выражает благодарность П.В. Костоглодову и Н.И. Сорокину за полезные обсуждения, Д.Н. Каримову, Е.А. Кривандиной и З.И. Жмуровой за предоставленные кристаллы.

Работа выполнена при поддержке Министерства науки и высшего образования в рамках работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН. 2. *Sobolev B.P.* The Rare Earth Trifluorides. Part 2. Introduction to Materials Science of Multicomponent Metal Fluoride Crystals. Institute of Crystallography, Moscow, and Institut d'Estudis Catalans, Barcelona: Institut d'Estudis Catalans, 2001. 460 p. (www.books.google.ru/books/rare earth trifluorides).

СПИСОК ЛИТЕРАТУРЫ

1. Sobolev B.P. The Rare Earth Trifluorides. Part 1. The

High Temperature Chemistry of the Rare Earth Triflu-

orides. Institute of Crystallography, Moscow, and Institut d'Estudis Catalans, Barcelona: Institut d'Estudis

- 3. *Соболев Б.П.* // Кристаллография. 2012. Т. 57. № 3. С. 490.
- 4. Бандуркин Г.А. // Геохимия. 1964. Т. 1. № 1. С. 3.
- 5. Бандуркин Г.А. // Изв. АН СССР. Неорган. материалы. 1965. Т. 1. № 9. С. 1569.
- 6. Бандуркин Г.А., Джуринский Б.Ф., Тананаев И.В. // Докл. АН СССР. 1966. Т. 168. № 6. С. 1315.
- Бандуркин Г.А., Джуринский Б.Ф., Тананаев И.В. Особенности кристаллохимии соединений редкоземельных элементов. М.: Наука, 1984. 230 с.
- Бандуркин Г.А., Джуринский Б.Ф., Тананаев И.В. // Докл. АН СССР. 1969. Т. 189. № 1. С. 94.
- 9. Peppard F., Mason G.W., Lewey S. // J. Inorg. Nucl. Chem. 1969. V. 31. № 7. P. 2271.
- Fidelis I., Siekerski S. // J. Inorg. Nucl. Chem. 1971.
 V. 33. № 9. P. 3191.
- Sobolev B.P., Fedorov P.P., Steinberg D.V. et al. // J. Solid State Chem. 1976. V. 17. № 2. P. 191.
- Spedding F.H., Henderson D.C. // J. Chem. Phys. 1971. V. 54. № 6. P. 2476.
- Kozak A. de, Samouel M., Chretien A. // Rev. Chim. Miner. 1973. V. 10. № 1–2. P. 259.
- 14. Warf J.C., Cline W.D., Tevebaugh R.D. // Analyt. Chem. 1954. V. 26. № 2. P. 2342.
- Ranieri I.M., Baldochi S.L., Klimm D. // J. Solid State Chem. 2008. V. 181. P. 1070.

- 16. Fedorov P.P. // Mater. Res. Bull. 2012. V. 47. P. 2700.
- 17. Sobolev B.P., Fedorov P.P., Seiranian K.B. et al. // J. Solid State Chem. 1976. V. 17. № 2. P. 201.
- Spedding F.H., Beaudry B.J., Henderson D.C. et al. // J. Chem. Phys. 1974. V. 60. № 4. P. 1578.
- Greis O., Cader M.S.R. // Thermochim. Acta. 1985.
 V. 87. № 1. P. 145.
- Konings R.J.M., Kovacs A. // Handbook on the Physics and Chemistry of Rare Earths / Ed. Gscheidner K.A. Amsterdam; N.-Y.; Oxford. 2003. V. 334. Ch. 213. P. 147.
- Федоров П.П., Соболев Б.П. // Кристаллография. 1995. Т. 40. № 2. С. 315.
- 22. *Greis O., Petzel T.* // Z. Anorg. Allg. Chem. 1974. B. 403. № 1. S. 1.
- 23. Волков А.И., Жарский И.М. Большой химический справочник. Минск: Современная школа, 2005. 608 с.
- 24. Соболев Б.П., Гарашина Л.С., Федоров П.П. и др. // Кристаллография. 1973. Т. 18. Вып. 4. С. 751.
- 25. Гарашина Л.С., Соболев Б.П., Александров В.Б. и др. // Кристаллография. 1980. Т. 25. Вып. 2. С. 294.
- Jones D.A., Shand W.A. // J. Cryst. Growth. 1968. V. 2. № 2. P. 361.
- 27. Sobolev B.P., Ratnikova I.D., Fedorov P.P. et al. // Mat. Res. Bull. 1976. V. 11. № 8. P. 999.
- Соболев Б.П., Жмурова З.И., Карелин В.В. и др. // Сб. Рост кристаллов. Т. 16. М.: Наука, 1986. С. 58.
- Дешко В.И., Жмурова З.И., Калениченко С.Г. и др. // Кристаллография. 1994. Т. 39. Вып. 3. С. 547.
- Соболев Б.П., Каримов Д.Н., Сульянов С.Н. и др. // Кристаллография. 2009. Т. 54. № 1. С. 129.
- Sobolev B.P., Sorokin N.I., Bolotina N.B. Ch. 21 in "Photonic and Electronic Properties of Fluoride Materials". V. 1 in Ser. "Progress in Fluorine Science" / Eds. Tressaud A., Poeppelmeier K. Amsterdam–Boston– London–New York–Oxford–Tokio: Elsevier, 2016. P. 465.