_ ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ

УДК 541.135.4

ОПТИМИЗАЦИЯ СОСТАВОВ ТВЕРДЫХ ЭЛЕКТРОЛИТОВ $Cd_{1-x}R_xF_{2+x}$ (R = La - Lu, Y) СО СТРУКТУРОЙ ФЛЮОРИТА ПО ПРОВОДИМОСТИ И ТЕРМИЧЕСКОЙ УСТОЙЧИВОСТИ

© 2019 г. Н. И. Сорокин^{1,*}, Б. П. Соболев¹

¹ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

* *E-mail: nsorokin1@yandex.ru* Поступила в редакцию 07.05.2018 г. После доработки 07.05.2018 г. Принята к публикации 28.06.2018 г.

Оптимизация составов нестехиометрических фаз $Cd_{1-x}R_xF_{2+x}$ (тип CaF_2 , R – редкоземельные элементы) по ионной проводимости и термической устойчивости базируется на температурных измерениях электропроводности монокристаллов в зависимости от их ионного радиуса R^{3+} и содержания RF_3 и на исследовании фазовых диаграмм систем CdF_2-RF_3 . Показано, что из изученных 30 составов кристаллов $Cd_{1-x}R_xF_{2+x}$ проводимость двадцати превышает условный предел $\sigma_{500 \text{ K}} = 10^{-5} \text{ См/см}$, ниже которого применение твердых электролитов в электрохимических устройствах считается нежелательным из-за недостаточной проводимости. Максимальные значения проводимости $\sigma_{500 \text{ K}} = (3.0-3.2) \times 10^{-4} \text{ См/см и } \sigma_{293 \text{ K}} = (1.5-2.3) \times 10^{-8} \text{ См/см}$ имеют твердые электролиты с R = Ho, Er, Tm, Yb и x = 0.22-0.27.

DOI: 10.1134/S0023476119050205

введение

В [1, 2] был рассмотрен прием нарушения стехиометрии гетеровалентными изоморфными замещениями в катионном мотиве структурного типа флюорита (CaF₂, пр. гр. $Fm\overline{3}m$) ионов M^{2+} (*M* – щелочноземельные элементы Ca, Sr, Ba – **ШЗЭ**) на R^{3+} (R – редкоземельные элементы Sc, Y, La-Lu – P3Э) для оптимизации качественного и количественного состава фаз $M_{1-}R_xF_{2+x}$ (x – мольная доля RF₃) по максимальной величине ионной проводимости σ_{dc} (dc – direct current) и термической устойчивости монокристаллов. Полученные значения σ_{dc} при 500 K для наиболее проводящих составов флюоритовых фаз $M_{1-x}R_xF_{2+x}$ c M = Sr, Ba, R = La-Nd $\mu x = 0.3-0.5$ достигают $\sigma_{500 \text{ K}} = 10^{-4} - 10^{-3} \text{ См/см} [3-7], и их$ можно отнести к среднетемпературным (200-500°С) фторпроводящим твердым электролитам (ФТЭЛ).

В настоящей работе продолжено изучение оптимизации состава флюоритовых ФТЭЛ $M_{1-x}R_xF_{2+x}$ по проводимости и термической устойчивости для кристаллов еще одного семейства нестехиометрических фаз $Cd_{1-x}R_xF_{2+x}$ на основе кристаллической матрицы CdF_2 флюоритовой структуры со свойствами, отличающимися от дифторидов ЩЗЭ. Во всех 16 системах CdF₂–*R*F₃ (R = 16 P3Э: Sc, Y, La–Lu, без учета Pm), сводка фазовых диаграмм которых содержится в [8], образуются области гомогенности флюоритовых нестехиометрических фаз Cd_{1-x} R_x F_{2+x}. Они различаются по составу, термическому поведению (характеру плавления и температурной зависимости растворимости *R*F₃ в CdF₂) и другим физико-химическим характеристикам.

До наших работ электропроводность флюоритовых фаз $Cd_{1-x}R_xF_{2+x}$ практически всегда исследовалась на поликристаллических образцах, полученных методом твердофазного синтеза [9, 10]. В этих исследованиях необходимое для поликристаллов разделение вкладов внутризеренной (объемной) и межзеренной (поверхностной) проводимостей, как правило, не делалось.

Поскольку основной компонент CdF₂, входящий в состав нестехиометрических фаз, обладает высоким давлением паров, это затрудняет рост кристаллов Cd_{1-x} R_x F_{2+x} из расплава. Критическими факторами получения таких монокристаллов также являются загрязнение кислородом исходных RF₃ и пирогидролиз компонентов (изоморфное вхождение кислорода) в процессе роста кристаллов.

Систематическое выращивание монокристаллов $Cd_{1-x}R_xF_{2+x}$ [11, 12] из расплава методом направленной кристаллизации Бриджмена было проведено только в Институте кристаллографии РАН в рамках программы по получению многокомпонентных фторидных материалов и исследованию их структуры и свойств.

Проведенные температурные кондуктометрические исследования флюоритовых фаз $Cd_{1-x}R_xF_{2+x}$ [6, 13–16] базируются на измерениях монокристаллов из областей гомогенности этих фаз. Полученные кондуктометрические результаты на монокристаллах (характеризующие истинную ионную проводимость нестехиометрических фаз) позволили предпринять оптимизацию составов флюоритовых ФТЭЛ на основе матрицы CdF₂, обладающих высокими значениями σ_{dc} .

Целью работы является оптимизация состава кристаллов семейства флюоритовых нестехиометрических фаз $Cd_{1-x}R_xF_{2+x}$ по проводимости и термической стабильности для выбора перспективных ФТЭЛ для полностью твердотельных электрохимических устройств.

ФЛЮОРИТОВАЯ МАТРИЦА CdF₂

Катионы в MF₂ со структурой флюорита не ограничиваются ЩЗЭ. В этом типе структуры кристаллизуется также фторид кадмия CdF₂. Кадмий отличается от стронция (ШЗЭ, предшествующего ему во II группе Периодической системы) принадлежностью к побочной подгруппе этой группы. Это выражается в появлении между орбиталями $4s^2p^6$ (оболочка криптона) и $5s^2$ еще десяти ($4d^{10}$) электронов. Рост заряда ядра от Sr к Cd на 10 единиц вызывает сжатие остова атома. В результате размеры иона Cd²⁺ существенно меньше размеров Sr²⁺, несмотря на рост общего числа электронных оболочек. Следствием этого является более высокое поляризующее действие ионов побочной подгруппы, чем главной. Возникает направленность валентных связей, уменьшается степень ее ионности, растет склонность к образованию слоистых структур и другие нетипичные для химических соединений элементов главной подгруппы эффекты.

Одним из таких эффектов, который непосредственно проявляется на фазовых диаграммах систем CdF_2-RF_3 , является резкое уменьшение температуры плавления CdF_2 (1075 ± 5°C) по сравнению с CaF_2 (1418 ± 5°C) и SrF_2 (1464 ± 5°C) – самого тугоплавкого из фторидов ЩЗЭ. Падение температуры плавления CdF_2 почти на 400°C – свидетельство того, что структурный тип флюорита резко теряет термическую стабильность при переходе от фторидов ЩЗЭ (II группа, главная подгруппа Периодической системы элементов) к фториду кадмия (II группа, побочная подгруппа). По геометрии решеток базовых компонентов $MF_2 ф торид кадмия имеет самый малый параметр решетки (<math>a = 5.388$ Å) среди всех флюоритовых дифторидов и наиболее близок к параметру CaF₂ (a = 5.463 Å). Можно полагать, что фазовый состав продуктов взаимодействия с RF_3 будет близок для рядов систем CdF₂– RF_3 и CaF₂– RF_3 .

Положение кадмия в побочной подгруппе Периодической системы элементов и специфические характеристики иона Cd^{2+} (и соответственно CdF_2) среди флюоритовых MF_2 с ЩЗЭ должны проявиться в дефектной структуре и свойствах нестехиометрических флюоритовых фаз $Cd_{1-x}R_xF_{2+x}$, остающихся, несмотря на сказанное выше, основными продуктами взаимодействия CdF_2 с RF_3 .

Если опираться на геометрический фактор при изоморфных замещениях, есть все основания полагать дефектное (кластерное) строение нестехиометрических флюоритов $Cd_{1-x}R_xF_{2+x}$ и $Ca_{1-x}R_xF_{2+x}$ одинаковым. Однако это не так, хотя размеры Ca^{2+} и Cd^{2+} практически равны. Это видно из структурных исследований $Cd_{1-x}Y_xF_{2+x}$ [17] и $Ca_{1-x}Y_xF_{2+x}$ [18], обладающих разной дефектной структурой.

Химическая специфика кристаллической матрицы CdF_2 представляет интерес для установления связи свойств нестехиометрических флюоритов с ионной проводимостью как наиболее "чувствительным" к нарушениям стехиометрии свойством. Уникальной особенностью CdF_2 (единственного из флюоритовых MF_2), важной для электрохимических применений, является приобретение кристаллами полупроводниковых свойств (*n*-тип электронной проводимости) при обработке их парами металлов [19]. В этой же работе получены нестехиометрические фазы $Cd_{1-x}R_xF_{2+x}$ с R = La-Lu, Y, Sc и показано, что получение электронной проводимости возможно не со всеми R.

Кристаллы фторидов с ионно-электронной проводимостью встречаются редко. Одним из них является найденный авторами $Cd_{0.95}In_{0.05}F_{2.05}$ [13]. Такие кристаллы представляют интерес как фторные электроды в полностью твердотельных химических источниках тока.

Температура – фактор, в сильной степени влияющий на ионный перенос. Транспорт ионов в объеме кристаллов становится эффективным после их нагрева до температуры, ниже которой объемная диффузия "заморожена". С уменьшением температуры плавления порог активации объемной диффузии (электропроводности) в ионных кристаллах снижается. Поиск новых фторпроводящих кристаллических матриц следует вести среди относительно низкоплавких фторидов, которым принадлежит CdF₂. Низкой величине температуры плавления матрицы CdF_2 соответствуют и более низкие характеристики плавкости для фаз $Cd_{1-x}R_xF_{2+x}$ (по сравнению с их ЩЗЭ-аналогами).

ОПТИМИЗАЦИЯ ПО ТЕРМИЧЕСКОЙ СТАБИЛЬНОСТИ И ПРОВОДИМОСТИ ФТЭЛ Cd_{1 – x}R_xF_{2 + x}

Для анализа термической стабильности фаз $Cd_{1-x}R_xF_{2+x}$ необходимо использовать фазовые *Т*-*х*-диаграммы систем CdF₂-*R*F₃. Полный ряд фазовых диаграмм систем $CdF_2 - RF_3$ со всеми РЗЭ, кроме Рт и Еu, приведен в [8, 20]. Флюоритовые нестехиометрические фазы $Cd_{1-x}R_xF_{2+x}$ образуются во всех системах CdF₂-RF₃. Области гомогенности фаз и их температурное поведение меняются по ряду РЗЭ. Эти изменения прослеживаются по фазовым диаграммам, однако приводить их здесь полностью нецелесообразно, поскольку доступен ограниченный объем информации об объектах электрофизических исследований изученных кристаллах $Cd_{1-x}R_xF_{2+x}$. Они характеризуются прежде всего составами, которые приведены в таблице 1.

На рис. 1а исследованным составам кристаллов соответствуют точки *I*. На рис. 16 схематически представлена типичная фазовая диаграмма системы CdF₂—YF₃. На ней номерами показаны точки в областях гомогенности флюоритовых фаз, изменения составов которых по ряду РЗЭ прослеживаются на рис. 1а.

Изменение максимальных содержаний RF_3 по ряду РЗЭ, соответствующих эвтектическим температурам, показано на рис. 2а точками 2 (перечеркнутые кружки). Характер изменения по ряду РЗЭ предельных растворимостей RF_3 в матрице CdF₂ отличается от наблюдавшегося для флюоритовых фаз на основе MF_2 с катионами ЩЗЭ.

В нестехиометрических кристаллах $Cd_{1-x}R_xF_{2+x}$ фиксируется предел насыщения флюоритовой структуры ионами РЗЭ, зависящий от ионных радиусов R^{3+} . Такого поведения растворимости по ряду РЗЭ не наблюдалось ни в одном ряду систем MF_2-RF_3 (M = Ca, Sr, Ba). Как видно из рис. 1a, ширина областей гомогенности фаз $Cd_{1-x}R_xF_{2+x}$ при эвтектических температурах изменяется с уменьшением ионного радиуса R^{3+} , от лантана до лютеция, проходя через максимум (34 мол. % RF_3) для R = Tb, Dy (рис. 1a). Предельная растворимость уменьшается от максимальной до 13 и 28 мол. % для фторидов лантана и лютеция соответственно.

Термическая стабилизация структурного типа флюорита у CdF_2 введением гетеровалентных катионов R^{3+} намного ниже такого эффекта для

Таблица 1. Зн	ачения	Аи	ΔH_{σ}	для	монокриста	аллов
$\operatorname{Cd}_{1-x}R_{x}F_{2+x}$	в ур	авнен	нии .	Appe	ниуса–Френ	акеля
$\sigma_{dc}T = A\exp(-\Delta t)$	$\Delta H_{\sigma}/kT$)				

	-			
Обра-	Состав	ΤV	А,	ΔH_{σ} ,
зец	кристалла	1, К	См/см К	эВ
1	CdF ₂	553-675	5×10^{12}	1.6
2	$Cd_{0.9}La_{0.1}F_{2.1}$	425-726	3.3×10^{6}	0.89
3	$Cd_{0.9}Ce_{0.1}F_{2.1}$	420-703	2.9×10^{6}	0.89
4	Cd _{0.89} Ce _{0.11} F _{2.11}	388-467	4.0×10^{5}	0.755
5	Cd _{0.9} Pr _{0.1} F _{2.1}	453-703	2.0×10^6	0.87
6	$Cd_{0.9}Nd_{0.1}F_{2.1}$	446-650	5.4×10^6	0.92
7	$Cd_{0.78}Nd_{0.22}F_{2.22}$	376-468	4.1×10^{5}	0.759
8	$Cd_{0.9}Sm_{0.1}F_{2.1}$	449–648	2.3×10^6	0.85
9	$Cd_{0.9}Gd_{0.1}F_{2.1}$	446-650	5.5×10^{6}	0.89
10	$Cd_{0.82}Gd_{0.18}F_{2.18}$	375-467	5.5×10^5	0.714
11	$Cd_{0.9}Tb_{0.1}F_{2.1}$	449-726	5.5×10^{6}	0.87
12	$Cd_{0.75}Tb_{0.25}F_{2.25}$	335-468	1.5×10^5	0.648
13	$Cd_{0.9}Dy_{0.1}F_{2.1}$	412-729	4.7×10^{6}	0.85
14	Cd _{0.78} Dy _{0.22} F _{2.22}	366-470	3.2×10^{5}	0.646
15	Cd _{0.98} Ho _{0.02} F _{2.02}	323-723	4.5×10^5	0.813
16	Cd _{0.97} Ho _{0.03} F _{2.03}	323-573	3.9×10^5	0.78
17	Cd _{0.96} Ho _{0.04} F _{2.04}	323-573	6.8×10^5	0.80
18	Cd _{0.9} Ho _{0.1} F _{2.1}	449-726	4.7×10^{6}	0.83
19	Cd _{0.89} Ho _{0.11} F _{2.11}	323-573	3.5×10^5	0.747
20	Cd _{0.78} Ho _{0.22} F _{2.22}	335-468	3.6×10^{5}	0.634
21	Cd _{0.97} Er _{0.03} F _{2.03}	323-573	3.8×10^{5}	0.863
22	Cd _{0.9} Er _{0.1} F _{2.1}	434-626	2.3×10^{6}	0.77
23	$Cd_{0.8}Er_{0.2}F_{2.2}$	323-523	1.6×10^{5}	0.644
24	$Cd_{0.73}Er_{0.27}F_{2.27}$	335-468	4.2×10^5	0.637
25	$Cd_{0.9}Tm_{0.1}F_{2.1}$	438-726	1.8×10^{6}	0.77
26	$Cd_{0.78}Tm_{0.22}F_{2.22}$	366-470	2.7×10^{5}	0.617
27	$Cd_{0.9}Yb_{0.1}F_{2.1}$	520-648	1.2×10^7	0.86
28	$Cd_{0.75}Yb_{0.25}F_{2.25}$	333-467	3.4×10^{5}	0.627
29	$Cd_{0.9}Lu_{0.1}F_{2.1}$	554-725	5.4×10^6	0.82
30	$Cd_{0.83}Lu_{0.17}F_{2.17}$	354-467	1.1×10^{6}	0.638
31	$Cd_{0.9}Y_{0.1}F_{2.1}$	293-489	2.8×10^6	0.78

флюоритовых фаз на основе фторидов ЩЗЭ. По данным дифференциально-термического анализа максимумы на кривых плавкости флюоритовых фаз $Cd_{1-x}R_xF_{2+x}$ наблюдаются для R = Sm—Er, Y (рис. 1а, точки *3* — наполовину зачерненные треугольники). Превышение температуры максимума над температурой плавления CdF_2 составляет всего 5°C, что сравнимо с погрешностью эксперимента.

Равновесные при эвтектических температурах фазы $Cd_{1-x}R_xF_{2+x}$ с понижением температуры частично распадаются. Составы насыщенных

Рис. 1. Флюоритовые нестехиометрические фазы $Cd_{1-x}R_xF_{2+x}$ в системах CdF_2-RF_3 (а): 1 – составы с изученными электрофизическими характеристиками (таблица); 2 – области гомогенности фаз $Cd_{1-x}R_xF_{2+x}$ при эвтектических температурах; 3 – составы с конгруэнтным плавлением (R = Tb–Er, Y); 4 – составы флюоритовых фаз, насыщенные при 700°C [8, 20]. Цифрами I–IV обозначены морфотропные подгруппы RF_3 . Система CdF_2 –YF₃ (схематически) с указанием составов, отвечающих точкам 2–4 на рис. а (б).

флюоритовых фаз при 700°С, полученные для всех систем, показаны точками 4 на рис. 1а. Это поведение типично для твердых растворов $M_{1-x}R_xF_{2+x}$ (M = Ca, Sr, Ba. Cd, Pb). Однако его изменение по ряду РЗЭ не всегда выражено так

Рис. 2. Зависимость проводимости $\sigma_{500 \text{ K}}$ от энтальпии активации ионного переноса ΔH_{σ} для флюоритовых ФТЭЛ Cd_{1 – x} R_x F_{2 + x}. Квадратами показаны значения собственной проводимости флюоритовых матриц *M*F₂ (*M* = Ca, Sr, Ba, Cd, Pb) [13, 21–24].

отчетливо, как наблюдается у фаз $Cd_{1-x}R_xF_{2+x}$. На рис. 1а можно видеть, что распад фаз $Cd_{1-x}R_xF_{2+x}$ при фиксированной температуре ярко выражен для фаз с РЗЭ цериевой подгруппы и заторможен для РЗЭ второй половины ряда. Это налагает ограничения на возможность применения кристаллов $Cd_{1-x}R_xF_{2+x}$.

В системах с R = La - Pr (первая морфотропная подгруппа P3Э, обозначение I на рис. 1а) фазы $Cd_{1-x}R_xF_{2+x}$ практически полностью распадаются при 700°С (точки 4 рис. 1а). При 600°С (при этой температуре исследованы не все системы) в системах с YbF₃ и YF₃ зафиксирован полный распад фаз $Cd_{1-x}R_xF_{2+x}$.

Наблюдается корреляция между максимальной растворимостью RF_3 в CdF₂ (точки 2 рис. 1а) и ростом термической устойчивости фаз Cd_{1-x} R_xF_{2+x} к распаду при охлаждении (точки 4 на рис. 1а). Обе характеристики приходятся на фазы с РЗЭ второй (обозначение II на рис. 1а) морфотропной подгруппы РЗЭ (R =Tb-Ho).

Максимальная термическая устойчивость (составы с конгруэнтным плавлением — точки 3 на рис. 1а) наблюдается в системах с R = Tb-Er, Y. Как и растворимость RF_3 в CdF₂, она приходится на РЗЭ середины ряда (третья и начало четвертой морфотропных подгрупп, обозначение III и IV на рис. 1а).

В [6, 13–16] было обнаружено, что при T > 500 К без принятия специальных мер предосторожности из-за протекания реакции пирогидролиза на поверхности монокристаллов образовывалась электропроводящая пленка, затрудняю-

КРИСТАЛЛОГРАФИЯ том 64 № 5 2019

щая определение объемного сопротивления. К образованию проводящего слоя CdO на поверхности кристаллов приводят мельчайшие следы воды в окружающей атмосфере. Очистка поверхностей образцов $Cd_{1-x}R_xF_{2+x}$ ультразвуком, предварительное механическое удаление проводящего слоя с поверхности монокристаллов, измерения в потоке очищенного азота, использование широкого диапазона частот (для разделения вкладов объемного сопротивления монокристалла и сопротивления пленки) и некоторые другие специальные меры позволили впервые получить надежные данные по электрофизическим свойствам монокристаллов $Cd_{1-x}R_xF_{2+x}$ в широком диапазоне температур (20–800°C) [14].

В табл. 1 приведены составы изученных кристаллов. На рис. 1а они показаны точками 1 - черными кружками. Можно видеть, что составы $Cd_{0.9}R_{0.1}F_{2.1}$ (или близкие к ним) изучены для всего ряда РЗЭ. Концентрационные зависимости проводимости более детально исследованы для фаз $Cd_{1-x}Ho_xF_{2+x}$ и $Cd_{1-x}Er_xF_{2+x}$. Для большинства РЗЭ имеются составы с высокими содержаниями RF_3 (20–27 мол. %).

В табл. 1 приведены также значения предэкспоненциального множителя *A* и энтальпии активации ионного переноса ΔH_{σ} для монокристаллов $Cd_{1-x}R_xF_{2+x}$, в уравнении Аррениуса–Френкеля $\sigma_{dc}T = Aexp(-\Delta H_{\sigma}/kT)$. В ряду кристаллов $Cd_{0.9}R_{0.1}F_{2.1}$ (10 мол. % *R*F₃) при переходе от La до Lu, Y множитель *A* практически не изменяется, а энтальпия активации ΔH_{σ} уменьшается от 0.9 до 0.8 эВ. Это обусловливает рост $\sigma_{500 \text{ K}}$ от (6 ± 1) × × 10⁻⁶ до (7 ± 1) × 10⁻⁵ См/см (в пределах одного порядка).

Концентрационная зависимость $\sigma_{500 \text{ K}}$ для нестехиометрических фаз $Cd_{1-x}Ho_xF_{2+x}$ и $Cd_{1-x}Er_xF_{2+x}$ является нелинейной (в виду близости ионных радиусов Ho³⁺ и Er³⁺ экспериментальные данные для этих фаз можно обрабатывать совместно). В области концентраций от 3 до 27 мол. % (Ho,Er)F₃ значения $\sigma_{500 \text{ K}}$ возрастают в 200 раз, достигая $\sigma_{500 \text{ K}} = 3.2 \times 10^{-4}$ См/см для состава $Cd_{0.73}Er_{0.27}F_{2.27}$.

На рис. 2 показаны изменения $\sigma_{500 \text{ K}}$ двухкомпонентных кристаллов $\text{Cd}_{1-x}R_x\text{F}_{2+x}$ с разным качественным (*R*) и количественным составом (*x*) в координатах "lg $\sigma_{500 \text{ K}}$ — ΔH_{σ} ". Пунктирная горизонталь отмечает условную границу lg[σ_{dc}] = -5, ниже которой применение ФТЭЛ в электрохимических устройствах считается нежелательным изза их недостаточной проводимости. На рис. 2 для сравнения также приведены значения $\sigma_{500 \text{ K}}$ для собственной проводимости предельно чистых флюоритовых матриц CaF₂, SrF₂, BaF₂, флюоритовой модификации α -PbF₂ [21–24] и номиналь-

КРИСТАЛЛОГРАФИЯ том 64 № 5 2019

но чистого кристалла CdF_2 [13]. Отметим, что электропроводность кристаллов CdF_2 может содержать наряду с ионной составляющей значительную долю электронной составляющей [25, 26].

Из изученных 30 составов $Cd_{1-x}R_xF_{2+x}$ проводимость двадцати превышает условный предел $\sigma_{500 \text{ K}} \approx 10^{-5} \text{ См/см}$ (рис. 3). Максимальные значения $\sigma_{500 \text{ K}} = (3.0-3.2) \times 10^{-4} \text{ См/см}$ имеют твердые электролиты $Cd_{1-x}R_xF_{2+x}$ с R = Ho, Er, Tm, Yb и x = 0.22-0.27.

Ионная проводимость при комнатной (293 K) температуре для всех кристаллов низкая и не превышает $\sigma_{293 \text{ K}} < 2 \times 10^{-8} \text{ См/см.}$

Таким образом, по величине σ_{dc} нестехиометрические фазы $Cd_{1-x}R_xF_{2+x}$ на основе флюоритовой матрицы CdF_2 являются среднетемпературными ФТЭЛ, перспективными для использования в диапазоне температур 200–500°С. Однако следует заметить, что они легко гидролизуются в атмосферах, содержащих пары воды: $CdF_2 + H_2O \rightarrow CdO + 2HF$.

ЗАКЛЮЧЕНИЕ

Во флюоритовой матрице CdF_2 дефектность проводящей анионной подрешетки задается термическими дефектами (антифренкелевские пары вакансия фтора—межузельный фтор) и зависит от термической предыстории исследуемых образцов. В нестехиометрических кристаллах $Cd_{1-x}R_xF_{2+x}$ (на фоне термостимулированных дефектов) дефектность задается изменением состава гетеровалентными изоморфными замещениями в катионном мотиве. Концентрация "конституционных" дефектов на порядки выше концентрации термостимулированных дефектов, и конституционный тип дефектов может стабилизироваться по температуре (сохраняться при охлаждении кристалла).

Для практических целей важны следующие рекомендации. Нарушения стехиометрии флюоритовой матрицы CdF₂ на уровне ~1 мол. % основного компонента RF_3 и выше вызывают рост σ_{dc} , нивелирующий влияние неконтролируемых примесей и термостимулированных дефектов. Высокая чистота (по примесным элементам) реактивов RF_3 не критична при производстве ФТЭЛ на основе Cd_{1-x} R_xF_{2+x} .

Использование в качестве матрицы CdF₂ вместо матриц CaF₂, SrF₂, BaF₂ приводит к снижению температур, при которых реализуется высокая ионная проводимость. При поиске составов кристаллов Cd_{1-x} R_x F_{2+x} со значениями $\sigma_{dc} > 10^{-5}$ Cм/см свою эффективность показал метод "конституционных" изменений стехиометрии (катионных изоморфных замещений) в структурном типе флюорита. Оптимизация по термической стабильности на основе фазовых диаграмм систем CdF_2-RF_3 включает в себя в качестве ФТЭЛ все фазы $Cd_{1-x}R_xF_{2+x}$ с R = La-Lu, Ү. Флюоритовые фазы $Cd_{1-x}R_xF_{2+x}$ могут быть получены в монокристаллической форме.

Изменение качественного катионного состава привело к росту проводимости кристаллов $Cd_{1-x}R_xF_{2+x}$ (по сравнению с матрицей CdF_2), позволившему выполнить оптимизацию составов новых ФТЭЛ для среднетемпературной области (200–500°С). Из изученных 30 составов $Cd_{1-x}R_xF_{2+x}$ проводимость двадцати превышает условный предел $\sigma_{500 \text{ K}} \approx 10^{-5} \text{ См/см}$ для их применения как твердых электролитов в электрохимических устройствах. Максимальные значения $\sigma_{500 \text{ K}} = (3.0-3.2) \times 10^{-4} \text{ См/см}$ имеют твердые электролиты $Cd_{1-x}R_xF_{2+x}$ с R = Ho, Er, Tm, Yb и x = 0.22-0.27.

Максимальная величина $\sigma_{293 \text{ K}} = 2 \times 10^{-8} \text{ См/см}$ кристаллов $\text{Cd}_{1-x} R_x \text{F}_{2+x}$ находится существенно ниже условного предела ~ 10^{-5} См/см для ФТЭЛ, работающих при комнатных температурах.

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Соболев Б.П., Сорокин Н.И. // Кристаллография. 2014. Т. 59. № 6. С. 891.
- Сорокин Н.И., Голубев А.М., Соболев Б.П. // Кристаллография. 2014. Т. 59. № 2. С. 275.
- Ivanov-Shits A.K., Sorokin N.I., Fedorov P.P., Sobolev B.P. // Solid State Ionics. 1989. V. 31. № 4. P. 253.
- Ivanov-Shits A.K., Sorokin N.I., Fedorov P.P., Sobolev B.P. // Solid State Ionics. 1989. V. 31. № 4. P. 269.
- Ivanov-Shits A.K., Sorokin N.I., Fedorov P.P., Sobolev B.P. // Solid State Ionics. 1990. V. 37. № 1–2. P. 125.
- 6. *Сорокин Н.И.* // Электрохимия. 2006. Т. 42. № 7. С. 828.
- Sobolev B.P., Sorokin N.I., Bolotina N.B. // Photonic & Electronic Properties of Fluoride Materials. V. 1.

Междунар. сб. Progress in Fluorine Science / Eds. Tressaud A., Poeppelmeier K. Amsterdam: Elsevier, 2016. P. 465.

- 8. *Sobolev B.P.* The Rare Earth Trifluorides. Part 1. The High Temperature Chemistry of Rare Earth Trifluorides, Institute of Crystallography, Moscow, and Institut d'Estudis Catalans, Barcelona: Institut d'Estudis Catalans, Spain, 2000. 520 p.
- El Omari M., Reau J.M., Senegas J. // Phys. Status Solidi. A. 1990. V. 121. P. 415.
- Hairetdinov E.F., Uvarov N.F., Reau J.M., Hagenmuller P. // Physica. B. 1998. V. 244. P. 201.
- 11. Sobolev B.P. The Rare Earth Trifluorides. Part 2. Introduction to Materials Science of Multicomponent Metal Fluoride Crystals, Institute of Crystallography, Moscow, and Institut d'Estudis Catalans, Barcelona: Institut d'Estudis Catalans, Spain, 2001. 460 p.
- Бучинская И.И., Рыжова Е.А., Марычев М.О., Соболев Б.П. // Кристаллография. 2004. Т. 49. № 3. С. 544.
- 13. Сорокин Н.И., Бучинская И.И., Сульянова Е.А., Соболев Б.П. // Электрохимия. 2005. Т. 41. № 5. С. 627.
- Сорокин Н.И., Соболев Б.П., Брайтер М. // ФТТ. 2002. Т. 44. № 8. С. 1506.
- Сорокин Н.И., Федоров П.П., Иванов-Шиц А.К., Соболев Б.П. // ФТТ. 1988. Т. 30. № 5. С. 1537.
- Сорокин Н.И., Сульянова Е.А., Бучинская И.И., Соболев Б.П. // Кристаллография. 2005. Т. 50. № 4. С. 750.
- 17. *Сульянова Е.А., Шербаков А.П., Молчанов В.Н. и др. //* Кристаллография. 2005. Т. 50. № 2. С. 235.
- Отрощенко Л.П., Александров В.Б., Быданов Н.Н. и др. // Кристаллография. 1988. Т. 33. Вып. 3. С. 764.
- 19. Weller P.F. // Inorg. Chem. 1965. V. 4. № 11. P. 1545.
- 20. Федоров П.П., Саттарова М.А., Жмурова З.И. и др. // Кристаллография. 1986. Т. 31. Вып. 1. С. 194.
- 21. Bollmann W., Reimann R. // Phys. Status Solidi. A. 1973. V. 16. P. 187.
- 22. Schoonman J., den Hartog H.W. // Solid State Ionics. 1982. V. 7. P. 9.
- Figueroa D.R., Chadwick A.V., Strange J.H. // J. Phys. C. 1978. V. 11. P. 55.
- Bonne R.W., Schoonman J. // J. Electrochem. Soc. 1977. V. 124. P. 28.
- Tan Y.T., Kramp D. // J. Chem. Phys. 1970. V. 53. № 9. P. 3691.
- Obershmidt J., Lazarus D. // Phys. Rev. B. 1980. V. 21. № 12. P. 5823.