УДК 548.31

_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ ____ СОЕДИНЕНИЙ

К МЕТОДУ ПОСТРОЕНИЯ ФУНКЦИИ РАДИАЛЬНОГО РАСПРЕДЕЛЕНИЯ В СТРУКТУРЕ АМОРФНЫХ ВЕЩЕСТВ ПО ДИФРАКЦИОННЫМ ДАННЫМ

© 2019 г. О. И. Васин¹, А. К. Кулыгин², В. В. Новикова², А. С. Авилов^{2,*}

¹ Краснодарское высшее военное училище им. генерала армии С.М. Штеменко, Краснодар, Россия ² Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

> * *E-mail: avilovanatoly@mail.ru* Поступила в редакцию 17.04.2019 г. После доработки 22.04.2019 г. Принята к публикации 06.05.2019 г.

Развит предложенный авторами ранее метод построения функции радиального распределения, включающий в себя способ расчета коэффициента нормировки и вычитания фона, связанного с некогерентным рассеянием в аморфном веществе. Разработано программное обеспечение, использующее предложенные алгоритмы. Приведенная методика обработки угловой зависимости интенсивности рассеянного излучения апробирована на хорошо изученном аморфном германии и триоксиде вольфрама WO_3 . Она позволяет надежно, с точностью до нескольких процентов, осуществить нормировку интенсивности и определить координационное число n_1 для произвольно заданной плотности вещества независимо от формы первого координационного пика. В итоге разработан универсальный программный инструмент, позволяющий исследовать структуру аморфных и поликристаллических веществ неорганических материалов методом построения функции радиального распределения, используя дифракцию излучения любого типа в таких веществах. Все вычисления проводятся в автоматическом режиме.

DOI: 10.1134/S0023476119050254

введение

Атомная структура является фундаментальной характеристикой вещества. В отличие от кристаллического состояния, когда присутствует "дальний порядок", в аморфных материалах, или так называемых стеклах, атомная структура описывается "ближним порядком", который приводит к возникновению широких максимумов типа "гало" на дифракционных картинах. Обычный путь структурного анализа: получение дифракционных картин, определение структурного фактора и построение функций радиального распределения (**ФРР**), из которых затем путем выделения парных корреляционных функций (**ПКФ**) или напрямую строят модель структуры.

В принципе, по дифракционной картине можно получить распределение расстояний между парами атомов в любом конденсированном материале. Это распределение отображается как последовательность пиков, начинающаяся с самого короткого и заканчивающаяся самым длинным расстоянием между парой атомов в материале. Области под пиками на графиках ПКФ пропорциональны числу пар атомов, находящихся на соответствующих расстояниях, а ширины пиков – среднеквадратичному отклонению $\langle \sigma^2 \rangle$ этих расстояний.

Анализ ПКФ широко используется для характеристики атомной структуры аморфных материалов. Впервые этот метод был применен к жидкостям и стеклам в [1]. Не так давно он был распространен на кристаллы с неупорядоченной структурой [2] и наноразмерные частицы [3]. Большое развитие структурные исследования аморфных объектов получили в 50–60-х годах прошлого столетия в работах русской школы [4– 8]. Изучали главным образом тонкие аморфные пленки методом дифракции электронов.

Вся совокупность методов, применяемых для структурного анализа некристаллических материалов, может быть условно разделена на две группы: "прямые" и "косвенные" методы. К "прямым" относятся дифракционные методы (дифракция электронов, рентгеновских лучей, нейтронов) [9], а также получивший в последние десятилетия широкое распространение метод EXAFS (протяженная тонкая структура поглощения рентгеновских лучей [10]). Параметры ближнего порядка в этих методах получают из ФРР атомов, которые вычисляют с использованием стандартного алгоритма фурье-преобразования экспериментальных данных. К "косвенным" относятся, в первую очередь, спектроскопические методы: электронный парамагнитный, ядерный магнитный, ядерный квадрупольные резонансы, а также другие спектроскопические методы (например, комбинационное рассеяние света). Применение "косвенных" методов вполне оправдано и в ряде случаев чрезвычайно плодотворно, что объясняется ограниченностью структурной информации, получаемой из "прямых" измерений образцов аморфных материалов. ФРР атомов дают одномерное отображение реальной трехмерной структуры и не содержат сведений об угловых координатах атомов, в связи с чем интерпретация пиков ФРР требует построения структурной модели и существенно зависит от ее выбора. Отметим, что соответствующие эффекты легко разделяются при использовании метода электронного парамагнитного резонанса [9].

В то же время применение косвенных методов не всегда возможно, что связано с трудностями экспериментального характера (сложным по составу образцом, небольшим объемом объекта и другими). Иногда требуется провести структурный анализ предельно быстро, и часто единственным способом изучить структуру ближнего порядка является получение дифракционной картины с последующим ее фурье-анализом и построением ФРР. Понятно, что качество и точность построения ФРР в значительной степени зависят от точности измерения интенсивностей и точности определения фона, связанного с неупругим рассеянием.

Основное уравнение, по которому рассчитывается ФРР аморфных веществ (например, [4, 6]), имеет следующий вид:

$$4\pi r^2 \rho(r) = 4\pi r^2 \rho_0 + \frac{2r}{\pi} \int_{s_1}^{s_2} si(s) \exp(-bs^2) \sin(sr) ds.$$
(1)

Здесь *r* — расстояние между атомами, $\rho(r)$ и ρ_0 — радиальная и средняя атомные плотности; $\rho_0 = d/Mm_0$, где *d* — массовая плотность, m_0 — масса атома водорода, *M* — относительная молекулярная масса вещества; *s* = $4\pi(\sin \theta/\lambda)$, где 2θ — угол рассеяния, λ — длина волны изучения, *i*(*s*) — интерференционная функция, определяемая из дифракционного эксперимента, $\exp(-bs^2)$ — температурный множитель, *b* — температурный коэффициент, характеризующий тепловое движение атомов.

Значения s_1 и s_2 определяются условиями эксперимента и соответствуют границам измерения дифракционных интенсивностей. От этих значений зависит качество построения ФРР. Например, значения s_2 сильно влияют на появление и величину ложных максимумов, а также на пло-

КРИСТАЛЛОГРАФИЯ том 64 № 5 2019

щадь под координационными пиками. Границу s_2 используют для выявления положения "ложных" максимумов, которые возникают из-за так называемого "эффекта обрыва" и неточностей экспериментальных измерений распределений интенсивностей на дифрактограммах. Параметр s_1 , определяющий нижнюю границу измерений, влияет на форму и положение координационных максимумов на ФРР.

В [11] разработана новая система измерения интенсивностей методом электронной дифракции на базе электронографа ЭМР-102, позволяющая существенно повысить статистическую точность измерения и на два порядка по сравнению, например, с Imaging plates или ПЗС-матрицами (ПЗС — прибор с зарядовой связью) повысить пространственное (угловое) разрешение при измерении. Эта система использована в настоящей работе.

Авторы рассмотрели новый алгоритм построения ФРР, позволяющий автоматически в процессе одного вычисления уточнить коэффициент нормировки и вычесть фон, вызванный неупругим рассеянием, всегда присутствующий на дифрактограммах, автоматически вычислять первые координационные числа (число ближайших соседей в первой координационной сфере и межатомные расстояния в ней). Алгоритм, в принципе, не зависит от типа излучения и в этом смысле является общим. Алгоритм проверен на хорошо изученном аморфном веществе - аморфном германии – и использован при уточнении структуры ближнего порядка в аморфном триоксиде вольфрама WO₃. Одновременно проверяли некоторые соотношения, связанные с процессом построения ФРР, необходимые при анализе качества построения. В работе использована дифракция быстрых электронов (100 кэВ) и усовершенствованная система измерения распределения интенсивностей на электронограммах [11].

МЕТОДИЧЕСКАЯ ЧАСТЬ

Для вычисления интеграла в (1) необходимо определить экспериментальную кривую рассеяния $I_{\ni}(s)$ и предельно точно оценить вклад фона, связанного с некогерентным рассеянием. Авторы [5] предложили метод учета фона, суть которого заключается в следующем. Используя закон сохранения интенсивности [4], они предложили наиболее обоснованный физически метод определения функции i(s), входящей в (1), через ненормированную интерференционную функцию $i_1(s)$, определяемую из эксперимента, из выражения:

$$i(s) = \alpha_0 \left[\frac{I_{\mathcal{I}}(s)}{f^2(s)} - \frac{I_{\rm C}(s)}{f^2(s)} \right] = \alpha_0 i_1(s),$$
(2)

где i(s) — нормированная интерференционная функция; α_0 – коэффициент нормировки; $I_C(s)$ – средняя плавная кривая, $I_{\ni}(s)$ — осциллирующая функция; f(s) — амплитуда атомного рассеяния. Средняя кривая $I_{C}(s)$ включает в себя как фон, вызванный неупругим рассеянием, так и суммарное молекулярное рассеяние, определяемое суммой рассеяния отдельных атомов $f^2(s)$ в соответствии с формулой молекулы. Этот прием использовался в большом количестве структурных исследований аморфных объектов [6-8]. Однако плохое согласие координационных чисел, полученных разными авторами для одного и того же вещества, несмотря на то что положения максимумов на кривых ФРР хорошо совпадают (табл. 1 в [7]), свидетельствует об отсутствии надежного способа нормировки интенсивности в методе ΦPP.

В [12] была высказана идея метода нахождения точного значения коэффициента нормировки, который не зависит от типа излучения. Суть метода заключается в следующем. При некотором значении коэффициента нормировки $\alpha = \alpha_0$ кривые ФРР, рассчитанные по (1), должны давать одинаковые значения координационных чисел при различных, но достаточно малых значениях температурного параметра b. Физически это означает, что структура аморфного или жидкого состояния стабильна в некотором температурном интервале, поскольку параметром b фактически задается приращение среднеквадратичного смещения атомов, а множителем $exp(-bs^2)$ в (1) учитывается влияние изменения температуры на $I_{\mathfrak{I}}(s)$ и в конечном счете на ФРР.

Также в [12] проведена оценка допустимых границ вариации теплового параметра с использованием соотношений, полученных в [13] на основе теории Дебая—Уоллера. Так, верхняя граница параметра b зависит от характера тепловых колебаний атомов, температуры исследуемого образца (T) и определяется областью температурной стабильности фазы, которая может быть определена теоретически, если известна температура кристаллизации или структурной перестройки исследуемой фазы (T*).

В изотропном дебаевском приближении для твердого тела интенсивность дифракционных отражений пропорциональна множителю $\exp(\langle \sigma^2 \rangle s^2)$, в котором среднеквадратичное смещение атома $\langle \sigma^2 \rangle$ при $T > \Theta$ определяется выражением [13]:

$$\left\langle \sigma^{2} \right\rangle = 3h^{2}T/4\pi m k \Theta^{2},$$
 (3)

где *m* — масса атома, *h* и *k* — постоянные Планка и Больцмана, Θ — характеристическая температура. Из условия стабильности фазы и (3) следует, что верхний предел параметра *b*, который приводит к так называемому "перегреву" фазы, $\Delta T = T^* - T$,

и не изменяет координационное число, может быть определен неравенством

$$b \le \left\langle \sigma^2 \right\rangle^* - \left\langle \sigma^2 \right\rangle = 3h^2 \Delta T / 4\pi m k \Theta^2.$$
(4)

Это выражение справедливо, когда i(s) в (1) рассчитано не при нулевой температуре, как это обычно делается, а при температуре опыта. В этом случае f(s) в (2) должна соответствовать температуре, равной нулю (0 К). Расчеты [12] показали, что при $T < \Theta$ выражение (4) дает ошибку определения *b* не более 5%.

Предложенная методика была апробирована на пленках германия, аморфная структура которого хорошо изучена [9]. Известно, что аморфные пленки Ge кристаллизуются при температуре около 750 K [14]. Поэтому даже при T = 0 K для Ge должно быть $b_{\text{max}} \le 0.015$ Å².

Значение верхней границы *b* для соединения WO_3 , для которого параметры ближнего порядка уточняли по новой методике, оценено по формуле (4). Минимальное значение параметра *b* следует выбирать таким образом, чтобы множитель $exp(-bs^2)$ "подавил" "ложные максимумы" на кривой ФРР в области координационного пика.

Для проведения расчетов была написана программа, блок-схема которой представлена на рис. 1. Программа позволяет в автоматическом режиме определить коэффициент нормировки и вычесть фон некогерентного рассеяния, построить ФРР и вычислить радиус первой координационной сферы и первое координационное число, определяемое площадью под первым координационным максимумом. По полученным оценкам точность расчета радиусов координационных сфер не хуже 1%, и точность расчета первого координационного числа около 5%.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Расчет ФРР для аморфного германия. Дифракционные исследования проводили в электронографе ЭМР–102 с использованием модифицированных систем позиционирования, регистрации и обработки данных (разработанных в [11]). В системе регистрации применен преобразователь напряжения измерительный E20-10 (производства ООО "Л-кард"; со специально разработанной для данной задачи прошивкой).

Тонкие пленки аморфного германия были получены методом вакуумного (~ 10^{-5} торр) распыления из вольфрамовой корзиночки на подложки из тонкой (~5 нм) пленки углерода, нанесенной на медные сеточки. Калибровочные образцы BaF₂ были получены по такой же методике.

Электронограммы измерены с помощью разработанной авторами системы [11] со статистической точностью не хуже 0.5% и разрешением при-

Рис. 1. Блок-схема программы расчета ФРР аморфного вещества, использующая разработанный авторами алгоритм: 1 – ввод экспериментальной кривой $I_{\Im}(s); 2 - форматирование исходной информации,$ ввод данных об объекте (химический состав, плотность); 3- вычисление интенсивности молекулярного рассеяния $\Sigma c f^2(s)$, где c – количество атомов данного сорта в молекуле; 4 – вычисление ненормированной функции интенсивности $i_1(s) = I_{\Im}(s)/\Sigma c f^2(s) =$ $i(s)/\alpha_0 + I_C(s); 5$ – вычисление ненормированной средней кривой $I_{C}(s)$ путем сглаживания $i_{1}(s); 6$ –вычисление ненормированной интерференционной функции $i(s)/\alpha_0$; 7 – расчет ФРР для серии значений атомного параметра b с ненормированной функцией $i(s)/\alpha_0$ в области первого координационного пика; 8вычисление первого координационного числа $n_1(\alpha)$ для каждого значения b; 9-вычисление нормированной интерференционной функции $i(s) = \alpha_0 [(I_{\Im}(s) - \alpha_0)]$ $I_{C}(s)]; 10$ – расчет ФРР при $\alpha = \alpha_0$ в интервале r = 0 – 5 Å; 11 – построение графиков; 12 – печать результатов.

мерно 0.6 угл. с. Фактически для каждой электронограммы было проведено несколько сотен независимых одномерных сканирований в течение 2-5 ч с автоматическим контролем воспроизводимости результатов. Интенсивность определяли путем подсчета единичных событий регистрации электронов фотоэлектронным умножителем ($\Phi \Theta Y$), что составляло от 10⁹ до 10¹⁰ таких событий на одну электронограмму. Временное разрешение ФЭУ – 18 нс. В процессе измерений опрос состояния ФЭУ проводился с частотой 60 МГц (т.е. с периодом 16.7 нс, что меньше 18 нс). Результаты измерения интенсивностей приведены в относительных единицах (равных отношению количества опросов ФЭУ с регистрацией срабатывания к обшему количеству опросов $\Phi \Theta Y$), которые соответствуют долям частоты 60 МГц. Значения интенсивности в этих единицах, существенно меньшие единицы, свидетельствуют о наличии в данных условиях экспериментов хорошего запаса как временного разрешения ФЭУ, так и частоты его опроса.

КРИСТАЛЛОГРАФИЯ том 64 № 5 2019

На рис. 2а представлена электрометрическая запись картины дифракции электронов в аморфном Ge. Для калибровки угла рассеяния использовали дифракционные картины пленок поликристаллического дифторида бария BaF_2 , структура и угловые положения дифракционных рефлексов которого хорошо известны. В эксперименте соблюдалось условие строгой идентичности параметров дифракции при регистрации электронограмм поликристаллических и аморфных пленок (один объект заменяли заранее подготовленным другим путем поворота кристаллодержателя).

К полученным в результате измерения кривым I(s) применяли фильтрацию с целью устранения высокочастотных помех различного происхождения, влияющих на регистрируемые значения I и s. Использовался двусторонний фильтр Баттерворта (функция filtfilt из пакета программ SciPy).

Нормировку интенсивности в работе осуществляли следующим способом. Угловую зависимость интенсивности делили на квадрат функции атомного рассеяния исследуемого вещества (германия). В общем случае она делится на сумму квадратов амплитуд атомного рассеяния всех атомов молекулы или сплава. Результат можно записать в виде ненормированной функции интенсивности $I_1(s)$ (рис. 2б):

$$I_1(s) = I_{\mathfrak{H}}(s) / f^2(s) = i(s) / \alpha_0 + J_{\mathfrak{C}}(s).$$
(5)

Функция $J_C(s)$ включает в себя молекулярное рассеяние $J_M(s)$ и некогерентный фон $J_{\Phi}(s)$. С помощью $J_C(s)$ можно описать все виды рассеяния квантовых частиц, не связанные с межатомной интерференцией в исследуемом веществе. Функция $J_M(s)$ вычисляется любым математическим методом при условии отсутствия осцилляций.

Из уравнения (5) следует, что нормированная интерференционная функция имеет вид

$$i(s) = \alpha_0 [I_{\Im}(s) / f^2(s) - J_{\rm C}(s)], \tag{6}$$

где $I_{\Im}(s)$ — экспериментальная кривая интенсивности; $f^2(s)$ — квадрат функции атомного рассеяния, который рассчитывался из данных [15], i(s) — интерференционная функция; α_0 — коэффициент нормировки; $J_{C}(s)$ — ненормированная средняя плавная кривая, вокруг которой осциллирует функция $i(s)/\alpha_0 = I_1(s) - J_C(s)$ (рис. 26). Кривую $I_C(s)/f^2(s)$ рассчитывали путем многократного сглаживания кривой $I_{\Im}(s)/f^2(s)$. На рис. 28 представлена нормированная на автоматически вычисленный коэффициент $\alpha_0 = 0.0153$ интерференционная функция аморфной пленки германия i(s).

Как говорилось выше, суть метода заключается в том, что при некотором $\alpha = \alpha_0$ кривые ФРР, рассчитанные по (1), должны давать одинаковые

Puc. 2. Аморфная пленка Ge: a – распределение интенсивностей дифракционных отражений (1 отн. ед. = 60 МГц); 6 – ненормированная интерференционная функция интенсивности $I_1(s) = I_9(s)/f^2(s)$ (1) и $J_C(s)$ (2); в – нормированная на автоматически вычисленный коэффициент $\alpha_0 = 0.0153$ интерференционная функция аморфной пленки германия *i*(*s*), соответствующая массовой плотности d = 5.46 г/см³; г – фрагмент зависимости первого координационного числа n_1 от коэффициента нормировки α при значениях параметра b = 0.0055 - 0.0100 Å² (0.0055 (1), 0.010 Å² (2)) в уравнении (1) в области пересечения кривых, шаг кривых b = 0.0005 Å².

координационные числа при различных, но малых значениях *b*. Поэтому следующим шагом было уточнение коэффициента нормировки и вычисление первого координационного числа с использованием ненормированной интерференционной функции. На рис. 2г показан фрагмент зависимости первого координационного числа n_1 от коэффициента нормировки α при различных значениях параметра *b* в уравнении (1) в области пересечения кривых. Определены их значения: $\alpha_0 = 0.0153$ при $n_1 = 3.89$.

На рис. 3 представлена зависимость ФРР атомной плотности $4\pi r^2 \rho(r)$ аморфного германия от расстояния между атомами *r* при различных значениях *b*. Хорошо видно, что при изменении теплового параметра *b* немного меняется ширина координационного пика, но не его положение на

ФРР. Из рис. З видно, что радиус первой координационной сферы соответствует $r_1 = (2.53 \pm 0.02)$ Å. Это хорошо согласуется с данными для аморфного Ge [6, 9]. Координационные числа $n_1(\rho_0, b)$ рассчитывали для каждого *b* как площадь под первым пиком между минимумами и (или) нулями ФРР справа и слева от максимума. В [16] теоретически показано, что координационное число, определенное по кривой ФРР, всегда завышено и стремится к истинному значению при $s_2 \rightarrow \infty$. То есть, экстраполируя зависимость n_1 от $(1/s_2)^2$ к значению $(1/s_2)^2 = 0$, можно получить близкое к более точному значение n_1 .

Расчет ФРР для аморфной пленки WO₃. Развитое для рассмотренного алгоритма программное обеспечение было использовано при уточнении

Рис. 3. Зависимости ФРР атомной плотности $4\pi r^2 \rho(r)$ аморфного германия от расстояния между атомами *r* при значениях *b*: 0.0055 (*I*), 0.0075 (*2*), 0.01 Å² (*3*), парабола $4\pi r^2 \rho_0(r)$ (*4*). Координационное число $n_1 = 3.89$ для плотности d = 5.46 г/см³, $\alpha_0 = 0.0153$. Радиус первой координационной сферы $r_1 = 2.53$ Å.

атомной структуры аморфного триоксида вольфрама, интерес к которому связан с проявлением в нем электрохромного эффекта. Этот эффект проявляется и в аморфном состоянии. Структура аморфных пленок была изучена в [17]. В работе для аморфных пленок, приготовленных методом пиролиза, было получено первое координационное число, равное 5.5, т.е. несколько меньшее по сравнению с кристаллическим состоянием (6). Координационные числа для аморфных пленок WO₃, приготовленных методами термического напыления и ВЧ-распыления, значительно отличались от этой величины. В настоящей работе было решено повторить структурные исследования аморфных пленок WO₃, полученных в процессе пиролиза, с помощью развитой методики.

Известно, что в кристаллическом состоянии при комнатной температуре это соединение имеет моноклинную структуру. Аморфные пленки триоксида вольфрама были получены методом пиролиза карбонила вольфрама W(CO)₆. В качестве подложек применяли свежие сколы NaCl. Полученные пленки отделяли в дистиллированной воде от подложек и наносили на медные сеточки. Далее проводилось исследование в электронографе ЭМР-102 при ускоряющем напряжении 100 кВ. Дифрактограммы измеряли прецизионным методом [11]. Дальнейшая обработка осуществлялась по описанной выше методике. На рис. 4 приведены последовательные результаты структурных расчетов. В результате расчетов были получены радиус первой координационной сферы 1.79 Å и первое координационное число 3.82.

Рис. 4. Аморфная пленка WO₃, полученная в процессе пиролиза: а – экспериментальная кривая интенсивности рассеяния (1 отн. ед. = 60 МГц); б – ФРР, построенная для параметра *b*: 0.0055 (*1*), 0.0075 (*2*), 0.010 Å² (*3*), парабола $4\pi r^2 \rho_0(r)$ (*4*).

В отличие от результатов [17], где первое координационное число 5.5, в настоящем исследовании оно существенно ниже (3.82). Хотя радиусы первой координационной сферы, соответствующие расстоянию между атомами вольфрама и кислорода, по результатам обеих работ достаточно близки: 1.95 [17] и 1.79 Å. Вторая координационная сфера по данным [17] имеет радиус 3.06 Å (в настоящей работе 2.95 Å), третье координационное расстояние в [17] 3.93 Å (в настоящей работе 3.72 Å). Последнее расстояние соответствует межатомному расстоянию атомов W.

Известно, что кристаллическая структура WO_3 построена из октаэдров WO_6 , соединенных между собой вершинами и образующих структуру типа ReO_3 . Небольшое уменьшение первого координационного числа 5.5 авторы [17] связывают с тем, что наиболее вероятный элемент структуры,

построенный на основании ФРР, представляет собой линейную ассоциацию, состоящую из трех элементов: лвух четырехугольных пирамил и олного октаэдра. Чередование таких полиэдров в структуре по мнению авторов [17] и приводит к уменьшению координационного числа металла до 5.5. В результате нарушения стехиометрии этого оксида образуются структуры сдвига, в которых помимо вершинных контактов октаэдров WO₆ появляются реберные контакты. Такой характер упаковки октаэдров наблюдается в кристаллических оксидах вольфрама при нарушениях стехиометрии и образовании структур сдвига. По-видимому, результаты настоящего исследования позволяют уточнить структуру аморфного WO₃, получаемого методом пиролиза, путем построения молели. включающей в себя изменения наиболее вероятного элемента структуры, полученного в [17] при сохранении стехиометрии.

ЗАКЛЮЧЕНИЕ

В работе развит предложенный авторами ранее метод построения функции радиального распределения, включающий в себя способ расчета коэффициента нормировки и вычитания фона, связанного с некогерентным рассеянием в аморфном веществе. Разработано программное обеспечение, использующее предложенные алгоритмы. Приведенная методика обработки угловой зависимости интенсивности излучения, рассеянного веществом, позволяет надежно, с точностью до нескольких процентов, осуществить нормировку интенсивности и определить координационное число *n*₁ для произвольно заданной плотности вещества независимо от формы первого координационного пика. В итоге разработан vниверсальный программный инструмент. позволяющий исследовать структуру аморфных и поликристаллических веществ методом ФРР, используя дифракцию излучения любого типа в таких веществах. Все вычисления проводятся в автоматическом режиме. Программа тестирована на аморфных пленках германия в условиях дифракции быстрых электронов с применением прецизионного метода измерения распределения интенсивностей на электронограммах при ускоряющем напряжении 100 кВ в электронографе ЭМР-102. Полученные для германия ФРР и координационные числа хорошо соответствуют литературным данным, что подтверждает правильность работы алгоритмов программы расчетов. Построена ФРР и проведено уточнение параметров ближнего порядка для аморфного WO₃. Сделан вывод о необходимости коррекции выведенной ранее модели структуры ближнего порядка на основе наиболее вероятного элемента структуры.

Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках Государственного задания ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Warren B.E. // Phys. Rev. B. 1934. V. 45. P. 657.
- 2. *Egami T., Billinge S.J.L.* Underneath the Bragg peaks: Structural Analysis of Complex Materials. New York: Pergamon Press, Elsevier Ltd., 2003. 513 p.
- 3. Petkov V. // Mater. Today. 2008. № 11. P. 28.
- 4. Вайнштейн Б.К. // Кристаллография. 1957. Т. 2. Вып. 1. С. 29.
- 5. Набитович И.Д., Стецив Я.И., Волощук Я.В. // Кристаллография. 1967. Т. 12. Вып. 3. С. 584.
- 6. *Татаринова Л.И.* Электронография аморфных веществ. М.: Наука, 1972. 104 с.
- 7. *Стецив Я.И.* // Кристаллография. 1973. Т. 8. Вып. 2. С. 257.
- 8. *Скрышевский А.Ф.* Структурный анализ жидкостей и аморфных тел. М.: Высш. шк., 1980. 328 с.
- Kliava X.J. // Phys. C: Solid State Phys. 1982. V. 15. P. 7017.
- 10. Gurman S.J. // J. Mater. Sci. 1982. V. 17. P. 1541.
- 11. *Кулыгин А.К., Кулыгин К.В., Авилов А.С. //* Кристаллография. 2020. Т. 65. № 1.
- 12. Васин О.И., Гладышева Г.И., Дагман Э.И. // Кристаллография. 1983. Т. 28. № 3. С. 446.
- 13. Джэймс Р. Оптические принципы дифракции рентгеновских лучей. М.: Изд-во иностр. лит., 1950. 572 с.
- 14. Захаров В.П., Герасименко В.С. Структурные особенности полупроводников в аморфном состоянии. Киев: Наукова Думка, 1976. 280 с.
- 15. International Tables for Crystallography. Second Ed. 1994. V. C. P. 257.
- 16. Андриевский А.И. // Укр. физ. журн. 1968. Т. 13. С. 1596.
- 17. Олевский С.С., Сергеев М.С., Толстихина А.Л. и др. // Докл. АН СССР. 1984. Т. 275. № 6. С. 1415.