_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ ___ СОЕДИНЕНИЙ

УДК 546.161; 548.73; 548.313.2; 661.843

НАНОСТРУКТУРИРОВАННЫЕ КРИСТАЛЛЫ ФЛЮОРИТОВЫХ ФАЗ $Sr_{1-x}R_xF_{2+x}$ (R – РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ) И ИХ УПОРЯДОЧЕНИЕ. 15. КОНЦЕНТРАЦИОННАЯ ЗАВИСИМОСТЬ ДЕФЕКТНОЙ СТРУКТУРЫ НЕСТЕХИОМЕТРИЧЕСКИХ ФАЗ $Sr_{1-x}R_xF_{2+x}$ (R = Sm, Gd) AS GROWN

© 2019 г. Е. А. Сульянова^{1,*}, Д. Н. Каримов¹, Б. П. Соболев¹

¹ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

* *E-mail: sulyanova@gmail.com* Поступила в редакцию 11.03.2019 г. После доработки 11.03.2019 г. Принята к публикации 17.03.2019 г.

Методом рентгеноструктурного анализа изучена дефектная структура монокристаллов *as grown* $Sr_{1-x}Sm_xF_{2+x}$ (x = 0.14, 0.26) и $Sr_{1-x}Gd_xF_{2+x}$ (x = 0.12, 0.19, 0.30), выращенных в идентичных условиях. Все кристаллы относятся к структурному типу CaF_2 , пр. гр. Fm3m. Во всех фазах установлено присутствие межузельных ионов фтора в позиции 48i и вакансий в основном анионном мотиве. В $Sr_{0.70}Gd_{0.30}F_{2.30}$ межузельные анионы фтора обнаружены также в позиции 4b, а в $Sr_{0.88}Gd_{0.12}F_{2.12}$ в позиции 32f. В $Sr_{0.86}Sm_{0.14}F_{2.14}$ наблюдается релаксация – смещение части анионов $F_{(8c)}$ в позицию 32f. Во всех изученных фазах есть смещение катионов в позицию 24e, а в фазах с R = Gd – также в позицию 32f. Предложена модель дефектного строения фаз $Sr_{1-x}R_xF_{2+x}$ (R = Sm, Gd), согласно которой межузельные анионы R^{3+} группируются в кластеры [$Sr_{14-n}R_nF_{64+n}$] октаэдро-кубической конфигурации. Количество R^{3+} , в среднем приходящееся на один кластер, уменышается от 6 до 4.5 при увеличении x, объем ядра кластера увеличивается от 61.2(1) до 63.9(2) Å³, а объем, приходящийся на один кластер, уменьшается от 2419.9(5) до 783.5(2) Å³.

DOI: 10.1134/S0023476119050230

ВВЕДЕНИЕ

Работа продолжает серию публикаций [1–14], посвященных получению монокристаллов флюоритовых нестехиометрических фаз $Sr_{1-x}R_xF_{2+x}$ (R = 16 редкоземельных элементов) и упорядоченных фаз $Sr_mR_nF_{2m+3n}$ (R = Gd–Lu, Y), изучению их дефектной структуры и выявлению ее связи с некоторыми структурно-чувствительными свойствами (ионной проводимостью, механическими, оптическими и др.).

Целью настоящей работы является изучение концентрационной зависимости дефектной структуры кристаллов нестехиометрических фаз $Sr_{1-x}Sm_xF_{2+x}$ и $Sr_{1-x}Gd_xF_{2+x}$ в состоянии *as grown* (без дополнительной термической обработки после выращивания), полученных в одинаковых условиях.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Кристаллы $Sr_{1-x}Sm_xF_{2+x}$ (x = 0.14, 0.26) и $Sr_{1-x}Gd_xF_{2+x}$ (x = 0.12, 0.19, 0.30) получены из расплава методом Бриджмена в одном ростовом эксперименте в многоячеистом тигле. Режим

охлаждения ~100°С/ч [1]. Процесс пирогидролиза при выращивании кристаллов подавлялся введением CF_4 в качестве фторирующего агента. Составы кристаллов определяли по параметрам элементарных ячеек с использованием зависимостей [15].

Изученные кристаллы не подвергались дополнительной термической обработке и находятся в состоянии *as grown*. Это "замораживает" дефектное состояние кристалла, соответствующее области температур, в которой блокируется объемная диффузия. Для рентгеноструктурного анализа отбирались оптически однородные участки из центральных по длине участков кристаллов.

Параметры дифракционных экспериментов для каждого кристалла приведены в табл. 1. Анализ полученных дифракционных данных показал принадлежность всех изученных кристаллов к структурному типу CaF₂.

Уточнение структуры проводили в рамках пр. гр. $Fm\overline{3}m$ с использованием программы Jana2006 [16]. В процессе уточнения в экспериментальный массив интенсивностей вводилась поправка на

R	Sm		Gd							
<i>x</i>	0.14	0.26	0.12	0.19	0.30					
Сингония, пр. гр., Z	Кубическая, <i>Fm</i> 3 <i>m</i> , 4									
* <i>a</i> , Å	5.7921(7)	5.7850(5)	5.7849(4)	5.7750(6)	5.7606(4)					
$V, \mathrm{\AA}^3$	194.32(5)	193.60(5)	193.59(5)	192.60(5)	191.16(5)					
D_x , г/см ³	4.6850(5)	5.0388(5)	4.6748(5)	4.9001(5)	5.2627(5)					
Излучение, λ, Å	Mo K_{α} , 0.71073									
<i>Т</i> , К	295									
μ, мм ⁻¹	27.745	28.158	28.268	28.797	29.669					
T_{\min}, T_{\max}	0.094, 0.1682	0.0445, 0.138	0.1021, 0.1766	0.0998, 0.1731	0.0791, 0.151					
Диаметр образца, мм	0.150	0.176	0.140	0.140	0.156					
Дифрактометр	CAD4 Enraf Nonius									
Тип сканирования	$\omega/2\Theta$									
θ _{max} , град	76.12	73.65	76.70	75.50	75.89					
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-15 \le h \le 15, -15 \le k \le 15, -15 \le l \le 15$									
Число отражений:	4121/131, 0.0249	4412/133, 0.0546	3846/135, 0.0272	4068/135, 0.0268	3786/137, 0.0244					
измеренных/незави-										
симых с $I > 3\sigma(I)$, R_{int}										
Метод уточнения	МНК по F^2									
Число уточняемых параметров	13	12	16	14	17					
Весовая схема	$\omega = 1/(4F^2[\sigma^2(F) + (0.008 \cdot F)^2)])$									
<i>R/wR</i> , %	0.65/1.95	1.48/3.86	0.82/2.03	0.67/1.49	0.77/1.94					
S	1.03	1.06	1.08	0.81	0.91					
$\Delta \rho_{min} / \Delta \rho_{max}, 3 / \text{\AA}^{-3}$	-0.31/0.33	-0.46/0.38	-0.26/0.32	-0.33/0.27	-0.26/0.24					
Использованные	Jana2006									
программы										

Таблица 1. Данные дифракционных экспериментов и параметры уточнения структуры кристаллов $Sr_{1-x}R_xF_{2+x}$ (R = Sm, Gd)

* Параметр ячейки рассчитан по рентгенограмме порошка.

изотропную экстинкцию в приближении Беккера—Коппенса [17] (І тип, угловое распределение блоков мозаики по закону Гаусса). При уточнении ангармонических компонент тензора тепловых колебаний атомов использовалось разложение температурного множителя в ряд Грама— Шарлье [18].

Разностные синтезы электронной плотности (ЭП) в плоскости (110) для исследованных кристаллов показаны на рис. 1а. Синтезы построены после вычитания катионов (Sr²⁺, R^{3+}), занимающих в структуре позицию 4*a*, для которых задана смешанная кривая рассеяния, и матричных анионов $F_{(&c)}$, занимающих в структуре изученных фаз позицию 8*c*, для которых уточнена заселенность.

На разностных синтезах всех кристаллов присутствует ЭП в позиции 48*i*. На синтезе фазы $Sr_{0.86}Sm_{0.14}F_{2.14}$ присутствует ЭП вблизи матричного аниона в позиции 32*f*, на синтезе фазы

КРИСТАЛЛОГРАФИЯ том 64 № 6 2019

 $Sr_{0.88}Gd_{0.12}F_{2.12}$ – вблизи центра кубической пустоты в позиции 32f, а для состава $Sr_{0.70}Gd_{0.30}F_{2.30}$ – в центре кубической пустоты {F₈} в позиции 4b. Анионы в данных позициях обозначены как $F_{int(48i)}$, $F_{int(32f)1}$, $F_{int(32f)4}$ и $F_{int(4b)}$ соответственно. Характер распределения ЭП вблизи позиции матричного аниона $F_{(&c)}$ на синтезах всех изученных фаз говорит о его динамических смещениях (ангармонизм тепловых колебаний). Остаточная ЭП на синтезе фазы $Sr_{0.86}Sm_{0.14}F_{2.14}$ в позиции 32f после учета ангармонизма свидетельствует о наличии статических смещений (релаксации) аниона $F_{(&c)}$ – $F_{int(32f)1}$ в кристалле.

Распределение ЭП вокруг позиции катиона характерно для статического смещения части катионов из своих позиций вдоль осей 3 и 4 порядка [7]. Учет смещений привел к устранению на разностных синтезах всех изученных фаз неоднород-

СУЛЬЯНОВА и др.

Рис. 1. Разностные (а) и нулевые разностные (б) синтезы электронной плотности $Sr_{1-x}R_xF_{2+x}$ (R = Sm, Gd) в плоскости (110). Шаг изолиний 0.1 э/Å³.

ностей распределения ЭП вблизи позиции 4*a* (рис. 16).

На последнем этапе уточнения суммарное количество анионов было зафиксировано в соответствии с составом каждого кристалла. Координатные и эквивалентные параметры атомных смещений в изученных фазах приведены в табл. 2. Параметр атомного смещения аниона $F_{int(48i)}$ в фазе $Sr_{0.70}Gd_{0.30}F_{2.30}$ уточнен в анизотропном приближении, катиона Sr2 в фазе $Sr_{0.74}Sm_{0.26}F_{2.26}$ – в ангармоническом приближении. Стандартные отклонения для заселенностей позиций каждого атома рассчитаны при фиксированном значении всех остальных уточняемых параметров. Нулевые синтезы ЭП для изученных кристаллов показаны на рис. 16.

МОДЕЛЬ СТРОЕНИЯ ФАЗ $Sr_{1-x}R_xF_{2+x}$ (R = Sm, Gd)

Известно, что дефекты, образующиеся в нестехиометрических флюоритовых фазах $M_{1-x}R_xF_{2+x}$ в результате гетеровалентного замещения катионов M^{2+} на R^{3+} , группируются в кластеры, анионное ядро которых составляют межузельные анионы фтора. Согласно принципу локальной компенсации заряда вокруг анионного ядра располагаются примесные катионы R^{3+} [19–21], образуя катион-анионные кластеры. Во всех изученных в настоящей работе фазах $Sr_{1-x}R_xF_{2+x}$ (R == Sm, Gd) обнаружены межузельные анионы $F_{int(48i)}$ в позиции 48*i*, которые формируют кубооктаэдрические группировки { F_{12} }, образующие анионное ядро октаэдро-кубических кластеров (**OKK**) [$Sr_{14-n}R_nF_{64+n}$] [22]. Концентрационные зависимости размера ребра анионного ядра OKK $F_{int(48i)}$ - $F_{int(48i)}$ и расстояния $F_{int(48i)}$ - $F_{int(48i)}$ до ближайших матричных анионов, нормированные на расстояние $F_{(8c)}$ - $F_{(8c)}$ бездефектной матрицы флюорита (δ_1 и δ_2 соответственно), представлены на рис. 2а. С увеличением содержания $RF_3 \delta_1$ увеличивается, а δ_2 уменьшается:

$$\delta_1 = (F_{int(48i)} - F_{int(48i)}) / (F_{(8c)} - F_{(8c)}), \tag{1}$$

$$\delta_2 = (F_{int(48i)} - F_{int(8c)}) / (F_{(8c)} - F_{(8c)}).$$
(2)

Объем ядра ОКК ($V_{\rm R}$), представляющего собой анионный кубооктаэдр { F_{12} }, вычисляется по формуле

$$V_{\mathfrak{A}} = (5\sqrt{2}/3)(F_{int(48i)} - F_{int(48i)})^3.$$
(3)

КРИСТАЛЛОГРАФИЯ том 64 № 6 2019

R	x	Атом*	q^*	x/a	y/b	z/c	$\beta_{_{ m 3KB}}$
Gd	0.12	(Sr1) _(32f)	0.005(3)	0.032(5)	0.032(5)	0.032(5)	0.69(9)
	0.19		0.003(1)	0.041(5)	0.041(5)	0.041(5)	0.357(9)
	0.30		0.005(1)	0.0382(6)	0.0382(6)	0.0382(6)	0.36(5)
Sm	0.14	$(Sr2)_{(4a)}$	0.841	0	0	0	0.596(3)
	0.26		0.721	0	0	0	0.382(4)
Gd	0.12		0.837	0	0	0	0.586(3)
	0.19		0.764	0	0	0	0.673(3)
	0.30		0.567	0	0	0	0.782(3)
Sm	0.14	$(Sr3, R)_{(24e)}$	0.003(1) + 0.023	0.0231(5)	0	0	1.08(6)
	0.26		0.003(1) + 0.043	0.0309(9)	0	0	1.6(2)
Gd	0.12		0 + 0.020	0.026(1)	0	0	0.57(6)
	0.19		0.003(1) + 0.032	0.0252(7)	0	0	0.599(6)
	0.30		0.016(1) + 0.050	0.0305(9)	0	0	0.76(8)
Sm	0.14	F _(8c)	0.789	1/4	1/4	1/4	0.899(8)
	0.26		0.845	1/4	1/4	1/4	1.29(2)
Gd	0.12		0.916	1/4	1/4	1/4	0.991(4)
	0.19		0.876	1/4	1/4	1/4	1.072(4)
	0.30		0.754	1/4	1/4	1/4	1.338(4)
Sm	0.14	F _{int(32f)1}	0.033(2)	0.2703(9)	0.2703(9)	0.2703(9)	1.1(1)
Sm	0.14	F _{int(48i)}	0.025(1)	0.134(6)	0.134(6)	1/2	2.9(6)
	0.26		0.048(2)	0.129(5)	0.129(5)	1/2	2.9(5)
Gd	0.12		0.020(1)	0.138(6)	0.138(6)	1/2	2.2(4)
	0.19		0.037(2)	0.133(3)	0.133(3)	1/2	2.3(2)
	0.30		0.066(2)	0.133(2)	0.133(2)	1/2	2.9(1)
Gd	0.12	F _{int(32f)4}	0.006(1)	0.449(8)	0.449(8)	0.449(8)	1.1(5)
	0.30	F _{int(4b)}	0.023(9)	1/2	1/2	1/2	2.6(9)

Таблица 2. Координаты атомов, заселенности позиций (q) и эквивалентные параметры атомных смещений в структуре $Sr_{1-x}R_xF_{2+x}$ (R = Sm, Gd)

* Здесь и далее $q(F_{(8c)})$ и q(Sr2) для $Sr_{1-x}R_xF_{2+x}$ определяются по формулам:

 $Q_{F(8c)} = [4(2 + x) - Q_{Fint(32f)1} - Q_{Fint(32f)4} - Q_{Fint(48i)} - Q_{Fint(4b)}]/8$, $Q(Sr2) = [4(1 - x) - Q_{Sr1} - Q_{Sr3}]/4$, где $Q_{Fint(32f)1}$, $Q_{Fint(32f)4}$, $Q_{Fint(48i)}$, $Q_{Fint(4b)} -$ количество атомов фтора в позициях (32f)1, (32f)4, 48i, 4b соответственно, Q_{Sr1} , Q_{Sr3} - количество атомов Sr в позициях 32f и 24e соответственно.

При увеличении содержания R^{3+} (доли *x*) объем ядра ОКК фаз Sr_{1-x} R_x F_{2+x} (R = Sm, Gd) увеличивается от 61.2(1) до 63.9(2) Å³ (рис. 26).

Заселенность позиции, занимаемой анионами $F_{int(48i)}$ ($Q_{Fint(48i)}$), и количество вакансий (V_F) в позиции, занимаемой матричными анионами $F_{(\delta c)}$, увеличиваются с ростом *x* (рис. 2в). Соотношение $Q_{Fint(48i)}/V_F \sim 1.5$ во всех изученных в настоящей работе кристаллах, что подтверждает предположение об образовании в их структуре ОКК.

На основе полученных структурных данных для $Sr_{1-x}R_xF_{2+x}$ (R = Sm, Gd) рассчитаны усредненный объем кластера (m) и усредненное количество в нем катионов R^{3+} (n). Объем, приходящийся на один ОКК, в среднем составляет m =

КРИСТАЛЛОГРАФИЯ том 64 № 6 2019

 $= p/Q_{Fint(48i)}$ элементарных ячеек, где p – количество межузельных анионов в одном кластере. В этом объеме (исходя из состава кристалла) содержится в среднем $n = 4 \cdot px/Q_{Fint(48i)}$ катионов R^{3+} .

Количество R^{3+} , в среднем приходящееся на один кластер, с ростом *х* уменьшается от 6 до 4.5 (рис. 2г), а объем V_k , приходящийся на один ОКК, уменьшается от 12.5V = 2419.9(5) до 3.8V = 783.5(2) Å³, где V – объем элементарной ячейки (рис. 2б).

ОКК $[Sr_{14-n}R_nF_{64+n}]$ является структурной единицей упорядоченной фазы $M_4R_3F_{17}$ (M – щелочноземельные, R – редкоземельные элементы). В структуре фазы $Sr_4Lu_3F_{17}$ [2] ОКК присутствует в искаженном виде: все катионы Lu^{3+} смещены

Рис. 2. Концентрационные зависимости относительных размеров ОКК $\delta_1 - 1$, $2 \text{ и } \delta_2 - 3$, 4 (a); объема (V_k) ОКК - 1, 2 и 0 объема (V_k) анионного ядра ОКК - 3, 4 (б); количества $F_{int}(48i) - 1$, 2, доли вакантных кубооктаэдрических полостей $V_F - 3$, $4 \text{ и количества анионных вакансий в SrF}_2 - 5$ [13] (в); усредненного объема m - 1, $2 \text{ и числа } R^{3+}(n) - 3$, 4, приходящихся на один кластер в Sr $_{1-x}R_xF_{2+x}$ (R = Sm, Gd) (г).

вдоль оси $4_{\rm куб}$ от центра ОКК, а часть катионов ${\rm Sr}^{2+}$ – вдоль оси $3_{\rm куб}$ к центру ОКК. Предположительно, в катионном мотиве всех изученных в настоящей работе фаз реализуются смещения, аналогичные таковым в упорядоченной фазе ${\rm Sr}_4$. Lu₃F₁₇: все катионы ${\rm Sm}^{3+}$ (Gd³⁺) и часть катионов ${\rm Sr}^{2+}$ (Sr3) смещаются вдоль оси 4 в позицию 24e, а часть катионов ${\rm Sr}^{2+}$ (Sr1) – вдоль оси 3 в позицию 32f. Катионы Sr1 присутствуют только в кристаллах с $R = {\rm Gd}$.

В кристаллах фаз Sr_{0.88}Gd_{0.12}F_{2.12} и Sr_{0.70}Gd_{0.30}F_{2.30} установлено присутствие межузельных анионов в позициях $32f(F_{int(32f)4})$ и $4b(F_{int(4b)})$ соответственно. Известно, что в упорядоченных фазах $M_4R_3F_{17}$ анионы $F_{int(32f)4}$ находятся внутри ядра ОКК, а анионы $F_{int(4b)}$ занимают кубические пустоты за пределами ОКК. Вероятно, данная схема размещения межузельных анионов реализуется и в исследованных разупорядоченных фазах.

Во всех исследованных фазах обнаружено динамическое смещение матричных анионов $F_{(8c)}$ к центру кубической пустоты в структуре флюорита, обусловленное тепловыми колебаниями. Статическое смещение $F_{int(8c)} \rightarrow F_{int(32f)1}$ на расстояние 0.169(5) Å, названное релаксацией анионной подрешетки [24], обнаружено только в фазе $Sr_{0.26}Sm_{0.14}F_{2.14}$.

ЗАКЛЮЧЕНИЕ

Установлено, что все изученные фазы $Sr_{1-x}R_xF_{2+x}$ (R = Sm, Gd) принадлежат структурному типу CaF₂ (пр. гр. $Fm\overline{3}m$). Во всех кристаллах найдены вакансии в основном анионном мотиве и межузельные анионы фтора в позиции 48*i*. В фазах $Sr_{0.88}Gd_{0.12}F_{2.12}$ и $Sr_{0.70}Gd_{0.30}F_{2.30}$ установлено присутствие межузельных анионов в позициях 32*f* ($F_{int(32f)4}$) и 4*b* ($F_{int(4b)}$) соответственно. В фазе $Sr_{0.26}Sm_{0.14}F_{2.14}$ обнаружена релаксация анионной подрешетки $F_{int(8c)} \rightarrow F_{int(32f)1}$ на расстояние 0.169(5) Å.

Предложена модель дефектного строения фаз $Sr_{1-x}R_xF_{2+x}$ (R = Sm, Gd), согласно которой межузельные анионы фтора и примесные катионы R^{3+} группируются в кластеры [$Sr_{14-n}R_nF_{64+n}$] октаэдро-кубической конфигурации, которые присутствуют во всех изученных фазах. Ядро кластера { F_{12} } образовано анионами в позиции 48*i* ($F_{int(48i)}$). Установлено, что при увеличении *х* количество R^{3+} , приходящееся в среднем на один кластер, уменьшается от 6 до 4.5, объем ядра кластера $V_{\rm g}$ фаз Sr_{1-x} $R_{\rm x}$ F_{2+x} (R = Sm, Gd) увеличивается от 61.2(1) до 63.9(2) A³, а объем V_k , приходящийся на один кластер, уменьшается от 2419.9(5) до 783.5(2) Å³.

Анализ ангармонических параметров атомных смещений в исследованных фазах показал, что динамическое тепловое смещение матричных анионов происходит в направлении [111] к центру кубической пустоты.

Данные о кристаллической структуре исследованных фаз депонированы в Банк данных неорганических соединений (ICSD № 1919553 – $Sr_{0.86}Sm_{0.14}F_{2.14}$, 1919581 – $Sr_{0.74}Sm_{0.26}F_{2.26}$, 1919749 – $Sr_{0.88}Gd_{0.12}F_{2.12}$, 1919751 – $Sr_{0.81}Gd_{0.19}F_{2.19}$, 1919767 – $Sr_{0.70}Gd_{0.30}F_{2.30}$).

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 17-00-00118) в части выращивания кристаллических образцов и Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию в части исследования структурных характеристик кристаллов с использованием оборудования Центра коллективного пользования ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Соболев Б.П., Каримов Д.Н., Сульянов С.Н. и др. // Кристаллография. 2009. Т. 54. № 1. С. 129.
- 2. Сульянова Е.А., Молчанов В.Н., Верин И.А. и др. // Кристаллография. 2009. Т. 54. № 3. С. 554.
- 3. Глушкова Т.М., Каримов Д.Н., Кривандина Е.А. и др. // Кристаллография. 2009. Т. 54. № 4. С. 642.
- Федоров В.А., Каримов Д.Н., Комарькова О.Н. и др. // Кристаллография. 2010. Т. 55. № 1. С. 1225.

- 5. Сорокин Н.И., Каримов Д.Н., Сульянова Е.А. и др. // Кристаллография. 2010. Т. 55. № 4. С. 708.
- 6. Грязнов М.Ю., Шотин С.В., Чувильдеев В.Н. и др. // Кристаллография. 2011. Т. 56. № 6. С. 1169.
- 7. Сульянова Е.А., Верин И.А., Соболев Б.П. // Кристаллография. 2012. Т. 57. № 1. С. 79.
- 8. *Сульянова Е.А., Каримов Д.Н., Соболев Б.П.* // Кристаллография. 2013. Т. 58. № 5. С. 667.
- 9. Сульянова Е.А., Каримов Д.Н., Сульянов С.Н. и др. // Кристаллография. 2014. Т. 59. № 1. С. 19.
- 10. Сульянова Е.А., Каримов Д.Н., Сульянов С.Н. и др. // Кристаллография. 2015. Т. 60. № 1. С. 159.
- 11. *Сорокин Н.И., Соболев Б.П.* // Кристаллография. 2015. Т. 60. № 6. С. 976.
- 12. Сорокин Н.И., Каримов Д.Н., Сульянова Е.А. и др. // Кристаллография. 2018. Т. 63. № 1. С. 133.
- 13. *Сульянова Е.А., Болотина Н.Б., Калюканов А.И. и др. //* Кристаллография. 2019. Т. 64. № 1. С. 47.
- 14. *Сульянова Е.А., Болотина Н.Б., Каримов Д.Н. и др. //* Кристаллография. 2019. Т. 64. № 2. С. 196.
- 15. Sobolev B.P., Seiranian K.B., Garashina L.S. et al. // J. Solid State Chem. 1979. V. 28. № 1. P. 51.
- Petricek V., Dusek M., Palatinus L. // Z. Kristallogr. 2014. B. 229. № 5. S. 345.
- Becker P.J., Coppens P. // Acta Cryst. A. 1974. V. 30. № 2. P. 129.
- International Tables for Crystallography VC / Ed. Wilson A.J.C. Dordrecht; Boston; London: Kluwer Acad. Publ., 1992.
- Cheetham A.K., Fender B.E.F., Cooper M.J. // J. Phys. C. 1971. V. 4. № 18. P. 3107.
- 20. *Hull S., Wilson C.C.* // J. Solid State Chem. 1992. V. 100. № 1. P. 101.
- 21. *HofmannM., HullS., McIntyre G.J. et al.* // J. Phys.: Condens. Matter. 1997. V. 9. № 4. P. 845.
- 22. Сульянова Е.А., Молчанов В.Н., Соболев Б.П. // Кристаллография. 2008. Т. 53. № 4. С. 605.
- 23. Александров В.Б., Гарашина Л.С. // Докл. АН СССР. 1969. Т. 189. № 2. С. 307.