____ РЕАЛЬНАЯ СТРУКТУРА __ КРИСТАЛЛОВ

УДК 548.4 : 621.771.2 : 538.945

ИССЛЕДОВАНИЕ МИКРОСТРУКТУРЫ ЛЕНТ Nb-Ti МЕТОДАМИ Электронной микроскопии

© 2019 г. А. В. Овчаров¹, И. А. Каратеев¹, К. Г. Каратеева¹, В. В. Гурьев¹, С. В. Шавкин¹, А. Л. Васильев^{1,2,3,*}

¹Национальный исследовательский центр "Курчатовский институт", Москва, Россия ²Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия ³Московский физико-технический институт, Долгопрудный, Россия

**E-mail: a.vasiliev56@gmail.com* Поступила в редакцию 02.04.2019 г. После доработки 25.04.2019 г. Принята к публикации 25.04.2019 г.

Представлены результаты исследования методами просвечивающей, просвечивающей растровой электронной микроскопии и микроанализа, в том числе в режиме отжига *in situ* в колонне электронного микроскопа, микроструктуры холоднокатаной ленты из сверхпроводящего сплава Nb–50 мас. % Ті до и после термообработки. Проведен расчет влияния термообработки на концентрацию и латеральные размеры частиц α-фазы Ті. После *in situ*-отжига в частицах α-фазы Ті обнаружены включения фазы Ті с ГЦК-решеткой.

DOI: 10.1134/S0023476119060146

ВВЕДЕНИЕ

Композиционные многоволоконные провода на основе сверхпроводящего сплава Nb-Ti (с критической температурой около 9.5 К) более 50 лет являются самыми востребованными техническими сверхпроводящими материалами. Они используются в магнитных системах современных медицинских ядерно-магнитных резонансных томографов, выпускаемых в количестве нескольких тысяч единиц в год, а также для создания сверхпроводниковых магнитных систем в научных приборах и в установках индустриальной физики: управляемого термоядерного синтеза (начиная с советского токамака Т-7 и заканчивая строящимся международным термоядерным реактором ИТЭР), в современных ускорителях Большой адронный (таких как коллайдер (ЦЕРН), Tevatron (США), НЕRA (Германия)) [1]. Несомненными достоинствами ниобий-титановых проводов являются высокая гибкость, прочность, технологичность при изготовлении и выполнении операций намотки, а также невысокая стоимость. Тонкие ленты на основе сплава Nb-Ti благодаря сильной анизотропии токонесущей способности используются для создания сверхпроводящих ключей [2, 3] и магнитных экранов [4-6]. Востребованность материала и широкая область применения обосновывают постоянный интерес к возможностям оптимизации производства, улучшению структуры материала и повышению токонесушей способности этого сплава. Основными центрами пиннинга, отвечающими за высокий критический ток в сплаве Nb-Ti, являются выделения наночастиц несверхпроводящей (при температуре T = 4.2 K) α -фазы Ti с ГПУ-решеткой, получаемые в ходе многостадийных термомеханических обработок. Размеры, форма и концентрация частиц α-фазы Ті являются основными факторами, влияющими на токонесущую способность материала. Как правило, чем меньше размер выделившихся частиц (он должен быть сравним с длиной когерентности, т.е. 5–10 нм [7, 8]) и выше их плотность, тем сильнее пиннинг магнитного потока. Мелкомасштабная гетерогенная микроструктура границ зерен, создаваемая в массиве материала при холодной деформации, способствует образованию мелкодисперсных выделений α-фазы Ті на границах зерен после термообработки (проводимой, как правило, в диапазоне 370-400°С). В то же время, как показало изучение литературы, процесс фазообразования в системе до конца не изучен.

В настоящей работе методами электронной микроскопии исследованы изменения микроструктуры образцов тонкой холоднокатаной ленты на основе сверхпроводящего сплава Nb– 50 мас. % Ti (**HT-50**), возникающие в ходе *ex situ*– термообработки в сравнении с высокотемпературным отжигом *in situ* в колонне электронного микроскопа.

Рис. 1. Схематическое изображение ленты Nb–Ti с обозначением областей, из которых получены поперечные срезы для проведения ПЭМ-исследований.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Исследована холоднокатаная лента толщиной 10 мкм, изготовленная из сплава HT-50, и та же лента, прошедшая вакуумную термообработку (остаточное давление 10⁻⁴ мбар) при температуре 385°С в течение 25 ч. Образцы для исследований приготовлены с использованием сканирующего электронно-ионного микроскопа Helios Nanolab 600i (Thermo Fisher Scientific, США) препарированием с помощью сфокусированного ионного пучка вдоль и поперек линии прокатки. Из каждой ленты вырезаны четыре ламели для дальнейших исследований: из центра ленты вдоль и поперек линии прокатки, с краю ленты вдоль и поперек линии прокатки (рис. 1).

Исследование полученных образцов проводили в сканирующем/растровом электронном микроскопе ($\Pi/PЭM$) Titan 80–300 (Thermo Fisher Scientific, США), снабженном корректором сферической аберрации пробы (Cs-корректор), в режимах светлого и темного полей, просвечивающей и просвечивающей растровой электронной микроскопии (ПЭМ и ПРЭМ соответственно). В проводимых исследованиях ускоряющее напряжение составляло 300 кВ. Также использовали специальный держатель, позволяющий нагревать образец in situ непосредственно в колонне микроскопа П/РЭМ вплоть до 900°С (Double Tilt Heating Holder Model 652, Gatan, США). При этом диапазон температур составлял 23-800°C с шагом 50°С.

При работе в режиме ПРЭМ для регистрации рассеянных электронов использовали высокоугловой кольцевой детектор темного поля (Fischione, США), регистрирующий неупруго рассеянные электроны, интенсивность которых пропорциональна Z^2 [9].

РЕЗУЛЬТАТЫ

Образцы холоднокатаной ленты Nb—Ti до и после ex situ-термообработки, вырезанные вдоль и поперек линии прокатки. На рис. 2 в одном масштабе представлены ПРЭМ-изображения поперечных

КРИСТАЛЛОГРАФИЯ том 64 № 6 2019

Рис. 2. ПРЭМ-изображения поперечных срезов, вырезанных из центра неотожженной ленты Nb–Ti вдоль (а) и перпендикулярно (б) направлению прокатки, и ленты после вакуумной термообработки вдоль (в) и перпендикулярно (г) направлению прокатки.

срезов, вырезанных из центра неотожженной ленты Nb-Ti и ленты после вакуумной термообработки вдоль и поперек направления прокатки. На изображениях отчетливо видны вытянутые в горизонтальном направлении слои Nb–Ті и темные выделения между ними – частицы α-фазы Ті (на изображениях отмечены белыми стрелками). Расчет концентрации выделений проводили методом секущих. Результаты расчета и аспектное отношение выделений приведены в табл. 1. Последующий анализ показал, что концентрация и аспектное отношение вдоль линии прокатки незначительно меняются от центра к краю ленты (для образцов до и после вакуумной термообработки). Это свидетельствует о хорошей однородности ленты по ширине. Термообработка способствует увеличению концентрации выделений и уменьшению их аспектных отношений. В табл. 2 приведены результаты расчета средних размеров выделений по трем осям. Видно, что в результате отжига латеральные размеры выделений увеличиваются. При сравнении размеров выделений в центре и с краю образцов после отжига разница также незначительная.

In situ-отжиг образца ленты Nb-Ti, вырезанного вдоль линии прокатки. На рис. 3 представлены ПРЭМ-изображения поперечного среза ленты в процессе *in situ*-отжига. Видимых изменений не происходит вплоть до температуры $T = 750^{\circ}$ С,

ОВЧАРОВ и др.

	До	термическ	ой обработ	ки	После термической обработки				
	центр		кр	ай	центр		край		
		T		Т		Т			
Концентрация, 1/мкм ²	64	49	56	53	80	103	77	101	
Отклонение	6	9	14	5	9	5	12	5	
Аспектное отношение	3.6	2.3	3.3	2.3	2.5	1.8	2.4	1.6	
Отклонение	2.6	1.1	1.8	1.0	1.0	1.1	0.9	1.1	

Таблица 1. Результаты расчета концентрации выделений α-Ті и аспектное отношение зерен вдоль и поперек линии прокатки (||, ⊥)

Таблица 2. Результаты оценки латеральных размеров выделений α-Ті

	До термической обработки						После термической обработки						
	центр			край			центр			край			
	x	У	Z.	x	у	z	x	У	Z.	x	У	z	
Размер, нм	91	48	18	82	58	20	112	62	28	106	90	37	
Отклонение	52	27	9	44	29	9	76	36	14	66	50	21	

при которой появляются эвтектоидные образования размером 100—200 нм. Существенные изменения происходят при температуре $T = 800^{\circ}$ С, при которой практически весь объем образца занимают эвтектоиды.

После охлаждения до температуры 36°С эвтектоилы, появившиеся при нагреве, сохраняются. На поперечном срезе также отчетливо видны эвтектоидные структуры (рис. 4а), напоминающие дендритные образования. Доступные литературные данные свидетельствуют о том, что таких образований не было обнаружено ни в холоднокатаной ленте, ни в ленте после вакуумной термообработки. Возможно, их присутствие связано со специфическими особенностями тонкого электронно-микроскопического образца, когда внешние поверхности образца оказывают сильное влияние на процессы движения дефектов, в том числе на межзеренные и межфазные границы. Нельзя исключить и влияние температурных нестабильностей при охлаждении образца [9] в колонне электронного микроскопа.

Результаты микроанализа от выделенных точек (рис. 4а) представлены на рис. 4б. Как и предполагалось, темные выделения соответствуют повышенному содержанию Ті, что соответствует полученным темнопольным ПРЭМ-изображениям с регистрацией электронов, рассеянных на большие углы. В светлых областях содержание Nb и Ті находится в стандартных пропорциях для сплава HT-50.

Дальнейшие исследования проводили с использованием ПРЭМ (рис. 5), включая ПРЭМ высокого разрешения (**ВРПРЭМ**) – рис. 6. На рис. 5 в частице с повышенным содержанием Ті отчетливо видны вертикальные плоские дефекты, проходящие через всю частицу (отмечены белыми стрелками). Изображение этого участка с высоким разрешением представлено на рис. 6а.

Рис. 3. ПРЭМ-изображения поперечного среза ленты Nb—Ti, вырезанного вдоль направления прокатки, во время температурного отжига *in situ* при 100°C (а) (белыми стрелками обозначены включения α -Ti), 700 (б), 750 (в), 800°C (г).

Рис. 4. ПРЭМ-изображение поперечного среза ленты Nb—Ti, вырезанного вдоль направления прокатки после охлаждения до 36°C; отчетливо видны эвтектоиды, которых не наблюдалось в холоднокатаной ленте (выделенные точки соответствуют точкам микроанализа) (a); энергодисперсионные спектры от выделенных точек (б).

Проведенная фильтрация Фурье от дефектного участка светлопольного ВРПРЭМ-изображения показала, что структурные дефекты представляют собой кристаллическую модификацию Ті с ГЦК-решеткой (пр. гр. $Fm\overline{3}m$, параметр решетки $a = 4.2 \pm 0.1$ Å). На рис. 6б, 6в представлены увеличенные изображения областей ГЦК-Ті и ГПУ-Ті с наложенными позициями атомов Ті, соответствующими ГЦК-решетке в проекции [101] и ГПУ-решетке в проекции [100].

ОБСУЖДЕНИЕ

Проведенные исследования демонстрируют динамику изменения структуры тонких лент Nb— Ті в результате термообработки, в том числе *in situ*-отжига в колонне микроскопа. В результате *ex situ*-вакуумной термообработки увеличиваются концентрация и латеральные размеры выделений α -фазы Ті в матрице, при этом аспектное отношение преципитатов уменьшается. Это указывает

Рис. 5. Увеличенные ПРЭМ-изображения частиц α-Ті: светлопольное (а) и темнопольное (б). Белыми стрелками обозначены включения ГЦК-фазы Ті в его ГПУ-модификацию.

КРИСТАЛЛОГРАФИЯ том 64 № 6 2019

на положительное влияние термообработки на образование центров пиннинга в виде частиц αфазы Ті. Незначительное изменение концентрации выделений и их аспектного отношения от центра к краям ленты указывает на хорошую однородность по ширине ленты.

При *in situ*-отжиге в колонне микроскопа, начиная с температуры 750°С, прослеживается активное выделение α -фазы Ti с последующим образованием эвтектоидных структур, которые сохраняются после охлаждения (рис. 3, 4). Известно, что образование на межзеренной границе выделений α -фазы Ti начинается при длительном (более 10 ч) *ex situ*-отжиге при температуре T = 375– 420°С [10, 11]. В настоящей работе показано, что активное фазообразование начинается с более

Рис. 6. Светлопольное ВРПРЭМ-изображение частицы α -Ті со структурными дефектами (а); увеличенное изображение кубической фазы Ті (пр. гр. *Fm* $\overline{3}$ m) с осью зоны B = [101] (б); увеличенное изображение α -Ті (пр. гр. $P6_3/mmc$) с осью зоны B = [100] (в).

высокой температуры. Впервые разницу в процессах рекристаллизации между объемными образцами и тонкими пленками наблюдали в [12]. В [13, 14] указано, что фронт рекристаллизации останавливается в областях лент, начиная с какого-то критического значения толщины. В [15] влияние толщины образца на движение границ зерен объясняется образованием тепловых канавок на поверхности лент. Образование канавок является результатом поверхностного натяжения, сдерживающего движение границ зерен.

Также показано, что после нагрева в колонне электронного микроскопа и последующего охлаждения слоистая микроструктура образца полностью исчезла. Эвтектоидные структуры состоят из α -фазы Ti (пр. гр. $P6_3/mmc$) и фазы Nb-50 мас. % Ti (рис. 4б) в соотношении ~ 50 : 50. Выделения α -фазы Ti по всему образцу также увеличились по сравнению с *ex situ*-термообработкой.

Отсутствие эвтектоидных структур в образцах после вакуумной термообработки связано с более длительным временем воздействия и более низкой температурой. С увеличением времени термообработки происходит укрупнение зерен α -фазы Ті и их дальнейшее разрастание. В результате сравнительно быстрого охлаждения после *in si-tu*-отжига в колонне микроскопа фактически происходит закалка образца. Это также способствует сохранению эвтектоидных структур. Отметим, что формирование подобных образований может негативно сказываться на сверхпроводящих свойствах лент.

В части образовавшихся после *in situ*-отжига частиц α -фазы Ti обнаружены включения фазы ГЦК-Ti. Образование кубической модификации Ti *Fm*3 m с параметром решетки 4.2 ± 0.1 Å в α -фазе Ti упоминается в [16, 17]. В [18] кубическая модификация обнаружена на тонких лентах после *ex situ*-отжига, подготовленных для ПЭМ. Отсутствие этой фазы в объемных образцах можно объяснить эффектами релаксации тонких лент и относительной стабильностью ГЦК-фазы по сравнению с ГПУ. Теоретическое обоснование возможности роста ГЦК-фазы в ГПУ при комнатной температуре дано в [16].

ЗАКЛЮЧЕНИЕ

Показано, что после *ex situ*-вакуумной термообработки увеличиваются концентрация и латеральные размеры выделений α -фазы Ti в матрице, при этом аспектное отношение преципитатов уменьшается — преципитаты приобретают более округлую форму. *In situ*-нагрев в колонне микроскопа позволил проследить динамику формирования эвтектоидных структур в образце и определить их состав. Сохранение эвтектоидных структур после их охлаждения в колонне электронного микроскопа предположительно связано с сильным влиянием поверхностей тонких электронномикроскопических образцов и относительно быстрым охлаждением. При исследованиях кристаллической структуры лент после *in situ*-нагрева в выделениях α-Ti обнаружены прослойки ГЦК-Ti.

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, а также в рамках Тематического плана НИЦ "Курчатовский институт" (в части изготовления лент). Часть работы выполнена на оборудовании Ресурсного центра зондовой и электронной микроскопии (Курчатовский комплекс НБИКС-пт, НИЦ "Курчатовский институт").

СПИСОК ЛИТЕРАТУРЫ

- 1. Andrews D.E. // Adv. Cryog. Eng. A. Cryog. Eng. Conf. Publ. V. 33. Springer US, 1988. P. 1.
- Shevchenko O.A., Mulder G.B.J., Markovsky N.V. et al. // Cryogenics. 1992. V. 32. Suppl. 1. P. 447.
- Mulder G.B.J., Shevchenko O.A., Fedorovsky M.A. et al. // Cryogenics. 1992. V. 32. Suppl. 1. P. 451.
- 4. *Ogawa S., Tada E., Toda H. et al.* // Proc. 11 Int. Cryog. Eng. Conf. Berlin, Germany, 22–25 Apr. 1986. P. 484.
- 5. Ogawa S., Yoshitake M., Nishigaki K. et al. // Science and Technology of Thin Film Superconductors. Springer US, 1989. P. 509.
- Sato S., Ikeuchi M., Iwata A. et al. // Proc. 9 Int. Cryog. Eng. Conf. Kobe, Japan, 11–14 May 1982. P. 115.
- Lee P.J., Larbalestier D.C. // Acta Metall. 1987. V. 35. P. 2523.
- Meingast C., Larbalestier D.C. // J. Appl. Phys. 1989. V. 66. P. 5971.
- 9. *Campbell F.C.* // Phase Diagrams: Understanding the Basics. ASM International, 2012. P. 106.
- Larbalestier D.C., West A.W. // Acta Metall. 1984.
 V. 32. P. 1871.
- Buckett M.I., Larbalestier D.C. // IEEE Trans. Magn. 1987. V. 23. P. 1638.
- 12. Bailey J.E. // Philos. Mag. 1960. V. 5. P. 833.
- Roberts W., Lehtinen B. // Philos. Mag. A. 1974. V. 29. P. 1431.
- Lehtinen B., Roberts W. // J. Microsc. 1973. V. 97. P. 197.
- 15. Mullins W.W. // Acta Metall. 1958. V. 6. P. 414.
- Wu H.C., Kumar A., Wang J. et al. // Sci. Rep. 2016. V. 6. P. 24370.
- Jing R., Liu C.Y., Ma M.Z. et al. // J. Alloys Compd. 2013. V. 552. P. 202.
- Sarkar R., Ghosal P., Prasad K.S. et al. // Philos. Mag. Lett. 2014. V. 94. P. 311.