_____ СТРУКТУРА ОРГАНИЧЕСКИХ ____ СОЕДИНЕНИЙ

УДК 539.26 + 547.81 + 547.815

ОСОБЕННОСТИ МОЛЕКУЛЯРНОГО И КРИСТАЛЛИЧЕСКОГО СТРОЕНИЯ ДВУХ КРИСТАЛЛОСОЛЬВАТОВ 4-АМИНО-N-(4-НИТРОФЕНИЛ)БЕНЗОЛСУЛЬФОНАМИДА

© 2019 г. В. В. Ткачев^{1,*}, А. Н. Утенышев^{1,4}, В. П. Казаченко², О. В. Авраменко³

¹ Институт проблем химической физики РАН, Черноголовка, Россия

² Институт физиологически активных веществ РАН, Черноголовка, Россия

³ Российский университет дружбы народов, Москва, Россия

⁴ Первый Московский государственный медицинский университет им. И.М. Сеченова Министерства

здравоохранения РФ, Москва, Россия

**E-mail: uten@icp.ac.ru* Поступила в редакцию 02.04.2018 г. После доработки 12.02.2019 г. Принята к публикации 25.02.2019 г.

Проведено рентгеноструктурное исследование (РСИ) двух новых кристаллосольватов на основе 4амино-N-(4-нитрофенил)бензолсульфонамида с диметилсульфоксидом и с N,N-диметилацетамидом. Показано, что присутствие растворителя практически не влияет на молекулярное строение соединения 4-амино-N-(4-нитрофенил)бензолсульфонамида, исследованного ранее (кристалл без растворителя), но оказывает влияние на его конформационное строение. В обеих новых кристаллических структурах реализуется межмолекулярная связь типа NH…O (молекулы растворителя).

DOI: 10.1134/S0023476119060237

введение

Сульфонамиды (СА) являются лекарственными средствами, широко применяющимися при лечении заболеваний, вызванных грамположительными и грамотрицательными микроорганизмами, а также некоторыми грибами [1, 2]. Можно попытаться модифицировать соединения, используя различные растворители. В случае, если эти растворители войдут в состав соединения, находящегося в твердом состоянии, это может увеличить спектр физиологических проявлений известных препаратов и расширить представления о строении биологически активных соединений.

В [3] показано, что молекулы СА в кристаллах принимают участие в образовании межмолекулярных водородных связей. В [4] было исследовано влияние йодо- и нитрогрупп на конформацию СА. Знание конформации молекулы СА необходимо при разработке лекарственных средств, так как СА-группа является чрезвычайно важной биологической функциональной группой и определяет биологическую активность препарата.

Цель настоящей работы — изучение влияния растворителей (диметилсульфоксида и N,N-диметилацетамида) на конформационное строение молекулы СА и топологию межмолекулярных водородных связей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Кристаллосольваты 4-амино-N-(4-нитрофенил)бензолсульфонамида с диметилсульфоксидом и с N.N-диметилацетамилом получены путем растворения при нагревании и непрерывном перемешивании 4-амино-N-(4-нитрофенил)бензолсульфонамида в указанных растворителях. Полученные растворы охлаждались до комнатной температуры и медленно испарялись при той же температуре через небольшие отверстия в защитной пленке, закрывающей бюксы с растворами, которые, в свою очередь, помещались в закрытую емкость с водой. При поиске кристаллосольватов был осуществлен перебор разных растворителей. Кристаллы, выделенные из разных растворителей, первоначально изучались методом термогравиметрии, который позволяет увидеть признаки получения кристаллосольвата, а затем исследовались методом рентгеноструктурного анализа.

Исследование соединений 4-амино-N-(4-нитрофенил)бензолсульфонамида с диметилсульфоксидом (1) и с N,N-диметилацетамидом (2) проведено на монокристаллах на дифрактометре КМ4 фирмы KUMA DIFFRACTION, Польша (λ (Мо K_{α}) = 0.71073 Å, ω /2 θ -сканирование). Кристаллографические данные и основные парамет-

Характеристика	Соединение 1	Соединение 2	
Формула	$C_{14} H_{17} N_3 O_5 S_2$	C ₁₆ H ₂₀ N ₄ O ₅ S	
M _r	371.43	380.42	
<i>Т</i> , К	293(2)	120.01(10)	
Сингония	Моноклинная	Орторомбическая	
Пр. гр.	<i>P</i> 2(1)/ <i>c</i>	Pbca	
<i>a</i> , <i>b</i> , <i>c</i> , Å	14.8011(4), 7.3250(3), 15.9426(3)	11.7440(10), 13.676(3), 23.363(2)	
α, β, γ, град	90.0, 102.562(2), 90.0	90.0, 90.0, 90.0	
Ζ	4	8	
d_x , γ/cm ³	1.462	1.347	
<i>V</i> , Å ³	1687.09(8)	3752.2(10)	
μ, мм ⁻¹	0.345	0.207	
<i>F</i> (000)	776	1600	
Форма кристалла	Призма	Призма	
Размер, мм	$0.40 \times 0.37 \times 0.32$	0.50 imes 0.45 imes 0.30	
Количество измеренных/незави- симых отражений	29149/11545	12022/4976	
$I > 2\sigma(I)$	8268	2929	
Число уточняемых параметров	229	238	
Область сканирования, град	3.07-42.04	2.88-29.00	
Пределы h, k, l	$-27 \le h \le 24, -13 \le k \le 13, -22 \le 1 \le 30$	$-16 \le h \le 13, -18 \le k \le 8, -16 \le 1 \le 31.$	
S	1.026	1.002	
R -фактор по $F^2 > \sigma(F^2)$	0.0630	0.0560	
<i>R</i> -фактор по всем отражениям	0.0909	0.1141	
wR_2 для всех отражений	0.1560	0.1192	
Остаточная электронная плотность (min/max), э/Å ³	-0.484/0.985	-0.312/0.916	

Таблица 1. Основные кристаллографические данные и характеристики эксперимента для соединений 1 и 2

ры уточнения представлены в табл. 1. Структуры расшифрованы прямым методом [5]. Позиции и температурные параметры неводородных атомов уточнены в анизотропном приближении полноматричным МНК. Позиции атомов водорода выявлены из разностных синтезов и в дальнейшем уточнялись с наложением ограничений по модели "всадника", все расчеты выполнены с использованием комплекса программ SHELXTL [6].

СІГ-файлы исследованных структур депонированы в Кембриджский банк структурных данных (ССDС № 1561491, 1561492) и могут быть свободно получены по запросу на www.ccdc.cam.ac.uk/data_request/cif.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Молекулярное строение соединений 1, 2 и 4амино-N-(4-нитрофенил)бензолсульфонамида (3), исследованного в [1], представлено на рис. 1.

Молекулы во всех трех соединениях не плоские. Угол между фрагментами NH_2 –Ph–SO₂– и NO_2 –Ph–NH– составляет 68.8°, 96.5° и 98.2° соответственно в соединениях 1–3. На рис. 2 представлены соединения 1–3, совмещенные по центральному фрагменту C(1)S(1)N(1)C(7). Нитрогруппы незначительно отклоняются от плоскости фенильных колец: 10.9°, 3.7° и 2.7° в 1–3 соответственно. Присутствие молекул растворителя диметилсульфоксида и N,N-диметилацетамида

Рис. 1. Молекулярное строение соединений 1-3.

практически не влияет на распределение длин связей и величин валентных углов в 4-амино-N-(4-нитрофенил)бензолсульфонамиде. Длины некоторых связей и величины валентных углов в соединениях **1–3** приведены в табл. 2.

Конформационные состояния исследуемых молекул зависят от подвижности моста, соединяющего два фенильных кольца: Ph1 (C(1)–C(6)) и Ph2 (C(7)–C(12)). Для описания конформационного состояния молекул в [7] были предложены три параметра: угол между SO₂-группой и фенильным фрагментом Ph1, C(2)–C(1)–S(1)–N(1) (τ_1); угол C(7)–N(1)–S(1)–C(1) (τ_2), описывающий подвижность связи S(1)–N(1), и торсионный угол C(12)–C(7)–N(1)–S(1) (τ_3), который характеризует положение второго фенильного кольца Ph2 относительно NH-группы (табл. 3). Кроме этих параметров в [1] введен угол между двумя фенильными кольцами Ph1 и Ph2 (острый угол между плоскостями двух фенильных колец)

Рис. 2. Молекулы соединений 1 (сплошная линия) и 2, 3 (пунктирные линии), совмещенные по центральному фрагменту C(1)S(1)N(1)C(7).

КРИСТАЛЛОГРАФИЯ том 64 № 6 2019

и суммарный угол ($\Sigma \tau_i = \tau_1 + \tau_2 + \tau_3$), который описывает интегральную гибкость моста, соединяющего фенильные кольца. Поскольку конформация молекулы в кристаллической решетке зависит от разных факторов, трудно выделить только один, который определял бы ее конформационное состояние. Из данных табл. 3 следует, что на конформационное строение 4-амино-N-(4-нитрофенил)бензолсульфонамида можно влиять, вводя в кристаллическую решетку различные молекулы растворителя (например, диметилсульфоксид и N,N-диметилацетамид). Так, в соединении 1 наблюдаются самые высокие значения углов τ_1 и τ_2 , самое низкое значение угла τ_3 и меньший по сравнению с соединениями 2 и 3 угол между фенильными кольцами. Введение молекул растворителя (диметилсульфоксида или N,N-диметилацетамида) больше всего отразилось на величине угла т₃, который характеризует положение фенильного кольца Ph2 относительно NH-группы.

В кристалле соединения 1 реализуется межмолекулярная водородная связь между амидным атомом водорода H(1) и атомом кислорода O(5) молекулы диметилсульфоксида (рис. 1) с параметрами: $H(1)\cdots O(5) = 2.06$ Å, $N(1)\cdots O(5) =$ = 2.801 Å, угол N(1)H(1)O(5) = 172.4°. В кристалле соединения 2 реализуется межмолекулярная водородная связь между амидным атомом водорода H(1) и атомом кислорода O(5) молекулы N,N-диметилацетамида (рис. 2) с параметрами: H(1)···O(5) = 1.91 Å, N(1)···O(5) = 2.762 Å, угол N(1)H(1)O(5) = 168.4°. В [1] показано, что увеличение донорно-акцепторных взаимодействий и водородных связей в кристаллах приводит к снижению подвижности моста C(1)-S(1)-N(1)-С(7). В кристалле 3 меньше межмолекулярных водородных связей, H(1) не участвует в образовании водородных связей в отличие от соединений 1

Связь	1	2	Угол	1	2	
S(1)–C(1)	1.748(1)	1.741(2)	O(2)S(1)O(1)	119.92(6)	118.7(1)	
S(1)–O(1)	1.4391(9)	1.437(2)	O(2)S(1)N(1)	108.82(6)	109.5(1)	
S(1)–O(2)	1.436(1)	1.433(2)	O(1)S(1)N(1)	103.05(6)	103.9(1)	
S(1)–N(1)	1.636(1)	1.627(2)	O(2)S(1)C(1)	108.31(6)	107.9(1)	
N(1)–C(7)	1.398(2)	1.395(3)	O(1)S(1)C(1)	108.23(6)	108.9(1)	
N(2)–C(4)	1.370(2)	1.356(3)	N(1)S(1)C(1)	107.91(5)	107.4(1)	
N(3)–C(10)	1.460(2)	1.461(3)	C(7)N(1)S(1)	128.34(9)	126.4(2)	
N(3)–O(3)	1.225(2)	1.225(3)	O(3)N(3)O(4)	123.3(1)	123.3(3)	
N(3)–O(4)	1.227(2)	1.235(3)	O(3)N(3)C(10)	118.4(1)	118.6(3)	
			O(4)N(3)C(10)	118.4(1)	118.1(3)	

Таблица 2. Длины некоторых связей (Å) и величины валентных углов (град) в соединениях 1-3

Таблица 3. Некоторые углы (град), описывающие конформационные состояния молекул СА в кристаллических структурах соединений 1–3

Соединение	$\angle C2 - C1 - S1 - N1(\tau_1)$	$\angle C7 - N1 - S1 - C1 (\tau_2)$	$\angle C12 - C7 - N1 - S1(\tau_3)$	∠Ph1-Ph2
1	-87.7	-73.2	-6.2	78.3
2	-73.1	-61.1	-17.2	88.3
3	-72.8(4)	-63.5(4)	-22.3(6)	89.5(4)

и 2. Таким образом, введение молекулы растворителя диметилсульфоксида и N,N-диметилацетамида в кристалл CA увеличивает количество межмолекулярных водородных связей, в результате чего снижается подвижность моста C(1)-S(1)-N(1)-C(7) молекулы CA и изменяется ее конформационное строение, что может сопровождаться разрывом межмолекулярных связей.

Работа выполнена при финансовой поддержке Минобрнауки России (соглашение № 02.a03.21.0008).

СПИСОК ЛИТЕРАТУРЫ

1. Perlovich G.L., Ryzhakov A.M., Tkachev V.V., Hansen L.Kr. // Cryst. Grouth Des. 2011. V. 11. P. 1067.

- Korolkovas A. // Essentials of Medicinal Chemistry. 2nd Ed. New York: Wiley, 1988. P. 699.
- Adsmond D.A., Grant D.J.W. //J. Pharm. Sci. 2001. V. 90(12). P. 2058.
- Kelly C.J., Skakle J.M.S., Wardell J.L. et al. // Acta Cryst. B. 2002. V. 58. P. 94.
- 5. *Sheldrik G.M.* SHELX-86, Program for the Crystal Structur Determination. University of Cambridge (England), 1986.
- 6. *Sheldrik G.M.* SHELXTL Vers. 6.14, Structure Determination Software Suite. Brucker AXS, Madison (Wisconsin, USA), 2000.
- Parkin A., Collins A., Gilmore C.J., Wilson C.C. // Acta Cryst. B. 2008. V. 64. P. 66.