_____ РЕАЛЬНАЯ СТРУКТУРА __ КРИСТАЛЛОВ

УДК 669.24 : 536.425 : 539.24'25'26'27

ОСОБЕННОСТИ АТОМНОЙ СТРУКТУРЫ СПЛАВА Ті₅₀Ni₂₅Cu₂₅, ПОЛУЧЕННОГО БЫСТРОЙ ЗАКАЛКОЙ ИЗ РАСПЛАВА

© 2020 г. В. Г. Пушин^{1,2,*}, А. В. Пушин^{1,2}, Н. Н. Куранова^{1,2}

¹ Институт физики металлов УрО РАН, Екатеринбург, Россия

² Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, Екатеринбург, Россия

**E-mail: pushin@imp.uran.ru* Поступила в редакцию 08.08.2018 г. После доработки 29.10.2018 г. Принята к публикации 27.11.2018 г.

Впервые представлены результаты комплексного изучения структуры сплава $Ti_{50}Ni_{25}Cu_{25}$, полученного в исходном аморфном состоянии методом сверхбыстрой закалки — спиннингованием струи расплава. Исследования выполнены методами нейтронной и рентгеновской дифрактометрии, просвечивающей и растровой электронной микроскопии и микродифракции электронов. Обнаружено, что в аморфном сплаве $Ti_{50}Ni_{25}Cu_{25}$ при затвердевании формируется топологический и композиционный ближний атомный порядок, соответствующий трем типам сверхструктур (B2, $L2_1$, $L1_2$), в пределах локализованных нанодоменов (до 1 нм). Также впервые показано, что сплав имеет аморфно-кристаллическую структуру, в которой наряду с отдельными микросферолитами, испытавшими термоупругое мартенситное превращение $B2 \leftrightarrow B19$, присутствуют ансамбли нанокристаллов со структурой B2, $L2_1$ или $L1_2$, имеющих размеры до 10 нм и локализованных в аморфной матрице.

DOI: 10.31857/S0023476119060158

введение

Большой научный интерес и широкое практическое использование находят методы синтеза материалов, основанные на сверхбыстрой закалке расплава и обеспечивающие получение порошка, ленты, проволоки, а также плазменных или лазерных покрытий [1–3]. В последние годы разработаны и используются разнообразные аддитивные технологии, сочетающие плавление и последующее охлаждение со скоростями вплоть до 10^7 – 10^8 K/с в различных инертных или активных средах, в вакууме, на воздухе.

Расплавы, подвергнутые закалке на быстро вращающемся диске или барабане методами сплэттинга или спиннингования, затвердевают с бо́льшей скоростью, чем распыленные. Такие материалы – прекурсоры –характеризуются бо́льшей химической гомогенностью, структурной и фазовой однородностью и находят разнообразное применение [1–6]. В случае спиннингования лента или проволока имеют большую протяженность (сотни метров) и хорошее качество поверхности. Линейная скорость спиннингования может составлять 15–30 м/с, толщина ленты от 10 до 200 мкм, ширина до 300 мм [1, 3]. Метод спиннингования струи расплава позволяет, например, создавать уникальные высокопрочные аморфизированные и ультрамелкозернистые поликристаллические сплавы на основе никелида титана с эффектами памяти формы для различных смартсистем [4–15], в частности широко применяемых противопожарных термодатчиков [16].

Металлические материалы. синтезированные быстрой закалкой расплава, принципиально отличаются по своему физическому состоянию и структуре от сплавов, полученных в обычных процессах затвердевания в условиях, когда скорости охлаждения составляют 10⁻³-1 К/с. При закалке со скоростью 10⁵-10⁶ К/с они могут быть получены и в исходном аморфном состоянии [1-6, 11–15]. В соответствии с современными представлениями многокомпонентные аморфные металлические материалы (или стекла) имеют нанокластерное и, следовательно, наноструктурированное строение [2-6, 17-19]. Его можно определить как структурное состояние, когда дальний атомный порядок отсутствует (т.е. нет строгой корреляции и трансляционной симметрии в расположении атомов на больших расстояниях), но сохраняется ближний порядок (корреляции атомов реализуются в двух-трех ближайших координационных сферах) [2, 3]. Полагают, что их строение в значительной мере подобно структуре переохлажденной жидкости и определяется реальным химическим составом, флуктуациями плотности и различным локальным распределением атомов разного сорта [2].

Особенности аморфного состояния можно описать тем или иным топологическим ближним атомным порядком (характеризуемым симметрией локального окружения) и химическим, или композиционным, ближним атомным порядком (обусловленным межатомными взаимодействиями и соответственно распределением атомов разного сорта в ближайшем окружении). Предложен ряд структурных моделей аморфных сплавов, которые подразделяются на две большие группы: модели квазижидкостного поликластерного описания и модели дефектных, или псевдокристаллических, состояний [2, 3].

Как известно, при наиболее часто применяемых дифракционных (рентгеновских, нейтронографических, электронно-микроскопических) и резонансных (ядерный магнитный резонанс и ядерный гамма-резонанс) методах исследования сплавов в аморфном состоянии регистрируют картины диффузного рассеяния и спектры особой тонкой атомной структуры. С одной стороны, их анализ позволил однозначно установить аморфизацию сплавов, полную или частичную, в том числе сплавов на основе никелида титана, и характер ближнего порядка в аморфной фазе [1-6, 12–15, 17–19]. A с другой стороны, указанные методы дают возможность изучать реальную атомную структуру исходных сплавов – прекурсоров в аморфном состоянии, чтобы затем разрабатывать и контролировать методы получения и исследовать особенности структуры новых перспективных материалов уже в поликристаллическом состоянии (например, [20-24]).

Вместе с тем отметим, что особенности ближнего композиционного и топологического атомного порядка в сплавах на основе никелида титана, полученных быстрой закалкой, до сих пор не определены. Как известно, выявляемые на рентгенограммах размытые диффузные эффекты не могут быть однозначно интерпретированы, поскольку в случае ультрамелкозернистых кристаллов (размером менее 2 нм) формируется аналогичная картина рассеяния рентгеновских лучей (и часто используется термин рентгеноаморфное состояние) [1, 2]. Как правило, при дифракции высокоэнергетических электронов также наблюдается только ограниченное количество диффузных максимумов (гало), что не позволяет корректно определить функцию радиального распределения атомов и выполнить достоверный количественный анализ тонкой атомной структуры сплавов [2]. Нейтронографическое изучение сплавов TiNi, полученных быстрой закалкой, практически не проводилось, за исключением [17, 18]. Поэтому в настоящей работе на одних и

тех же образцах комплексно исследованы особенности атомной структуры аморфизированного сплава $Ti_{50}Ni_{25}Cu_{25}$, полученного спиннингованием, при использовании комбинированного нейтроно- и рентгеноструктурного анализа, дифракции электронов и электронной микроскопии.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Для исследования был получен тройной квазибинарный сплав на основе никелида титана состава Ті₅₀Ni₂₅Cu₂₅ (отклонение от номинального состава менее 0.1 ат. %) электродуговой плавкой из высокочистых Ті (чистота 99.9%), Ni и Cu (99.99%) в атмосфере очищенного гелия. Для гомогенизации слиток подвергали многократным переплавам (не менее 3 раз) с последующим длительным отжигом в аргоне при температуре 1070 К. Аттестация исходного литого сплава показала, что средний размер зерна в сплаве составил 40 мкм. Затем была выполнена быстрая закалка методом спиннингования струи расплава на быстро вращающийся медный барабан со скоростью охлаждения $v_{3ak} = 10^6 \text{ K/c}$ и получены тонкие длинные ленты толщиной 40 мкм и шириной 1.5 мм. Локальный химический состав контролировали методом энергодисперсионного микроанализа с использованием просвечивающего электронного микроскопа Теспаі G² 30.

Микроструктуру лент сплава, фазовый состав изучали с помощью методов структурной нейтронографии, рентгеновского фазового и структурного анализа, просвечивающей электронной микроскопии (ПЭМ). Для нейтронных исследований был использован дифрактометр монохроматических нейтронов с длинами волн $\lambda = 0.1805$ и 0.2425 нм, установленный на горизонтальном экспериментальном канале реактора ИВВ-2М (г. Заречный, Свердловской области), для рентгеновских исследований – рентгеновский дифрактометр с монохроматическим излучением МоКа $(\lambda = 0.71073 \text{ нм})$ или СоК_{α} ($\lambda = 0.179021 \text{ нм}$). Электронно-микроскопические исследования выполняли в аналитических просвечивающих электронных микроскопах высокого разрешения Philips CM-30 и Tecnai G^2 30 (при ускоряющем напряжении 300 кВ).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Основные результаты исследований методом ПЭМ приведены на рис. 1. Светлопольные и темнопольные ПЭМ-изображения выявляют типичные особенности исходного сплава (рис. 1а, 1б) и нанокристаллической структуры *B*19-мартенсита в сплаве после отжига (рис. 1в, 1г). На рис. 1а приведен пример изображения и соответствующей микродифракции сферолитов, наиболее часто

Рис. 1. Светлопольные (а) и темнопольные (б–г) ПЭМ-изображения структуры быстрозакаленного сплава $Ti_{50}Ni_{25}Cu_{25}$ в исходном состоянии (а–б) и после отжига (в) (после закалки со скоростью $v_{3a\kappa} = 10^6$ K/c): б – темнопольное изображение, соответствующее диффузному гало, в, г – темнопольные изображения, соответствующие рефлексам мартенсита, близким к 110_{B2}. На вставках – соответствующие электронограммы.

образующихся вблизи неконтактной поверхности быстрозакаленной ленты. Внутри одного из них при охлаждении произошло термоупругое мартенситное превращение $B2 \leftrightarrow B19$.

Отметим, что аустенит и мартенсит в пределах исходных В2-нанозерен сохранили монокристалличность и, судя по кольцевому деформационному контрасту, имели когерентную связь друг с другом и не содержали нанодвойниковой субструктуры (рис. 1в). Двойникование является типичным для кристаллов мартенсита после термоупругого превращения $B2 \leftrightarrow B19$ в более крупных сферолитах (рис. 1а) и зернах (рис. 1г) [20, 21]. На рис. 1б отчетливо видны в аморфном сплаве светящиеся в диффузном гало нанообласти (яркие размером 5–10 нм и менее яркие типа ряби размером не более 1 нм). Изображения их структуры в виде ансамблей нанокристаллов с размерами до нескольких нанометров и аморфных кластеров меньших размеров представлены на рис. 2а. Элементный рентгеновский анализ (с высокой латеральной локальностью от 2 нм) не выявил в сплаве отличий химического состава от номинального Ti₅₀Ni₂₅Cu₂₅, что свидетельствует о структурнофазовых превращениях без изменения химического состава.

Наряду с ПЭМ-изображением структуры на рис. 2 показаны его фурье-образ (рис. 2б) и изображения нанокристаллов кубической симметрии (рис. 2в) и кластеров в пределах аморфного окру-

Рис. 2. ПЭМ-изображение поверхности быстрозакаленного сплава $Ti_{50}Ni_{25}Cu_{25}$ (а), его фурье-образ (б) и изображения (в, г), полученные путем обратного фурье-преобразования выделенных дифракционных картин (на вставках).

жения (рис. 2г), восстановленные с применением обратного фурье-преобразования. Видно, что размеры нанокристаллитов не превышают десятка нанометров, а размеры нанокластеров в аморфном окружении (говоря иначе, в аморфной матрице) составляют единицы нанометров и имеют преимущественно сферическую форму.

На рис. 3 представлены микроэлектронограммы, полученные от различных участков аморфной фольги. Картины рассеяния электронов аморфным сплавом характеризуются системой четырех–пяти диффузных колец (или гало). Наиболее интенсивное гало располагается вблизи возможных брэгговских отражений, например типа 110_{OUK} или $111_{\Gamma \amalg K}$. Внутри видны диффузные кольца гораздо меньшей интенсивности вблизи ожидаемых положений брэгговских сверхструктурных отражений, например 100_{в2} или других типов сверхструктур, что свидетельствует о наличии ближнего атомного порядка. Справа от картин диффузного рассеяния электронов на рис. 3 представлены в соответствии с расчетом схемы возможных дифракционных отражений упорядоченных фаз B2, $L2_1$, $L1_2$ исходя из результатов рентгенодифракционных исследований (рис. 4б, табл. 1). Однако отсутствие четких брэгговских колец и размытость диффузных гало на микроэлектронограммах не позволяют сделать вывод о конкретном структурном типе ближнего атомного порядка в сплаве.

Рис. 3. Электронограммы (а, в, д) аморфного быстрозакаленного сплава $Ti_{50}Ni_{25}Cu_{25}$ ($v_{3ak} = 10^6$ K/c) и расчетные дифракционные картины для сверхструктур *B*2 (б), *L*2₁ (г), *L*1₂ (е).

Результаты рентгенодифракционного исследования быстрозакаленного сплава с использованием двух видов излучения — Мо K_{α} и Со K_{α} представлены на рис. 4а, 46 соответственно. На рис. 46 видно, что узкие слабые брэгговские структурные и сверхструктурные дифракционные отражения фаз *B*2, *L*2₁ и *L*1₂, по которым вычислены их параметры, присутствуют на фоне двух диффузных максимумов (штрих-диаграммы соответствуют возможным положениям дифракционных отражений фаз).

Сравнение угловых положений узких брэгговских, широких диффузных максимумов и штрихлиаграмм позволяет сделать следующие выволы. Во-первых, картину рентгеновской дифракции, полученную с использованием излучения СоК_а (рис. 4б), нельзя объяснить только дальним и ближним атомным порядком сверхструктуры типа В2 в отличие от дифракции более жесткого излучения Мо K_{α} (рис. 4а). Напротив, на дифрактограмме, приведенной на рис. 46, идентифицируются дополнительные слабые узкие брэгговские отражения в угловых положениях 20, обозначенных $k = 4\pi \sin\theta/\lambda$, соответствующих не только *B*2фазе (100 и 200_{*B*2}), но и *L*2₁ (111, 200, 400) и *L*1₂ (100, 200). Во-вторых, имеется диффузный максимум в области углов или интервала волновых векторов k ~2.5-3.5 Å⁻¹ вблизи положений указанных структурных отражений. Также наблюдается двойной максимум при $k \sim 1.0 - 1.5 \text{ Å}^{-1}$, который, очевидно, не совпадает с положением единственного сверхструктурного отражения 100_{во}, как и одинарный максимум на рис. 4а при тех же углах. Двойной максимум можно интерпретировать как результат суперпозиции диффузных эф-

Рис. 4. Дифрактограммы быстрозакаленного сплава $Ti_{50}Ni_{25}Cu_{25}$ ($v_{3ak} = 10^6$ K/c), полученные с использованием излучения MoK_{α} (а) и CoK_{α} (б) в зависимости от волнового вектора $k = 4\pi \sin\theta/\lambda$. Вертикальными штрихами обозначены угловые положения сверхструктурных и структурных отражений сверхструктур *B*2, *L*2₁ и *L*1₂.

фектов вблизи сверхструктурных отражений типа 100 B2, 100 $L1_2$ и 100, 111 и 200 $L2_1$. Поэтому дополнительно был предпринят эксперимент с использованием мощного, но редко используемого метода дифрактометрии монохроматических нейтронов.

Действительно, нейтронный анализ показал, что быстрозакаленный сплав $Ti_{50}Ni_{25}Cu_{25}$ находится в основном аморфизированном состоянии (рис. 5а). Специфической особенностью рассеяния нейтронов в данном сплаве является существенное различие (вплоть до знака) амплитуд рассеяния атомов разного сорта ($b_{Ti} = -0.344 \times 10^{-12}$, $b_{Ni} = 1.03 \times 10^{-12}$, $b_{Cu} = 0.70 \times 10^{-12}$ см), что обеспечивает высокую чувствительность метода, особенно для сверхструктурных отражений, и возможность изучать тонкие особенности рассеяния нейтронов в аморфном объекте. Представленные на рис. 5а экспериментальные результаты можно корректно объяснить исходя из наличия нанодоменного ближнего (и, возможно, с элементами дальнего) порядка в расположении атомов титана, никеля и меди.

Так, основной диффузный максимум располагается в окрестности вектора рассеяния k = 1.5– 2.5 Å⁻¹ вблизи сверхструктурных положений типа 100 *B*2 ОЦК-, 100 и 110 *L*1₂ ГЦК-, 111 и 200 *L*2₁ ОЦК-сверхструктур. На рис. 5а также обнаруживается "наплыв" диффузного максимума при меньших углах рассеяния нейтронов в окрестности вектора рассеяния k = 0.5 - 1.5 Å⁻¹, возможно-

Таблица 1. Экспериментальные значения периодов элементарных ячеек фаз *B*2, *L*1₂, *L*2₁

Фазы	<i>B</i> 2	<i>L</i> 1 ₂	$L2_1$
а, нм	0.3040	0.3589	0.6080

го сверхструктурного отражения вблизи 100 L2₁. Хорошо согласующееся с данными рентгеновской дифракции (рис. 4б) обнаруженное рассеяние нейтронов следует связать с наличием в аморфной матрице нанодоменов со сверхструктурой более высокого, чем В2, ранга. На рис. 56-5е представлены результаты суперпозиции максимумов диффузного рассеяния нейтронов, полученные путем моделирования комбинаций спектров рассеяния в сверхструктурах В2 (рис. 5б), $L1_2$ (рис. 5в), $L2_1$ (рис. 5г), $B2 + L2_1$ (рис. 5д), B2 + $+L2_1+L1_2$ (рис. 5е) по программе Origin с применением функции Гаусса. Из сравнения экспериментальной и модельных огибающих интенсивности рассеяния был сделан вывод, что нейтронные диффузные максимумы не могут удовлетворительно описать ближний атомный порядок для каждого типа сверхструктуры в отдельности (рис. 56–5г). Правильнее и точнее оказалось использовать для этого суперпозицию диффузных пиков, которые описывают композиционный и топологический ближний атомный порядок в указанных сверхструктурах с учетом формирования наряду с В2 нанообластей с L2₁- и L1₂-сверхструктурой (рис. 5д. 5е). Настояший вывод согласуется как с

Рис. 5. Фрагменты экспериментальной (а) и расчетных (б–е) нейтронограмм быстрозакаленного сплава Ti₅₀Ni₂₅Cu₂₅. Обозначены профили диффузных пиков *B*2 (пунктир), *L*2₁ (штрихпунктир), *L*1₂ (точки) и их суперпозиция.

КРИСТАЛЛОГРАФИЯ том 65 № 1 2020

данными рентгеновской дифрактометрии, так и с данными ПЭМ. Вместе с тем важно отметить, что в соответствии с диаграммой фазовых равновесий и многими литературными данными при высоких температурах кристаллическая фаза состава $Ti_{50}Ni_{25}Cu_{25}$ имеет *B*2-решетку, а при охлаждении до комнатной температуры она испытывает термоупругое мартенситное превращение $B2 \leftrightarrow B19$ [9–14].

ЗАКЛЮЧЕНИЕ

В результате проведенных комплексных исследований методами рентгено-, нейтроно-, электронографии и просвечивающей электронной микроскопии установлено, что быстрозакаленный спиннингованием сплав Ti₅₀Ni₂₅Cu₂₅ имеет особую неравновесную аморфно-кристаллическую структуру. Анализ диффузного рассеяния рентгеновских лучей, электронов и нейтронов позволил сделать вывод о том, что в аморфном сплаве формируются без изменения среднего химического состава нанодомены с топологическим и композиционным ближним атомным порядком, соответствующим трем сверхструктурам $(B2, L2_1, L1_2)$. Кроме того, в сплаве обнаружены нанокристаллиты тех же фаз $B2, L2_1, L1_2$ наряду с микросферолитами, в том числе мартенсита В19. Расстекловывание сплава при термообработке происходит с образованием только В2-фазы, метастабильной по отношению к термоупругому мартенситному превращению $B2 \rightarrow B19$, а кристаллиты со структурой $L2_1$ и $L1_2$ не выявляются.

Работа выполнена по тематике госзадания Г.р. № АААА-А18-118020190116-6 ("Структура") и совместной лаборатории УрФУ и ИФМ УрО РАН. Электронно-микроскопические исследования проведены с использованием оборудования Центра коллективного пользования ИФМ УрО РАН.

СПИСОК ЛИТЕРАТУРЫ

- Быстрозакаленные металлические сплавы / Ред. Штиб С. и Варлимонт Г. М.: Металлургия, 1989. 373 с.
- 2. *Кекало И.Б.* Атомная структура аморфных сплавов и ее эволюция. М.: Учеба МИСИС, 2006. 340 с.
- 3. Глезер А.М., Пермякова И.Е. Нанокристаллы, закаленные из расплава. М.: Физматлит, 2012. 360 с.

- 4. *Пушин В.Г., Волкова С.Б., Матвеева Н.М.* // Физика металлов и металловедение. 1997. Т. 83. № 3. С. 68.
- 5. *Пушин В.Г., Волкова С.Б., Матвеева Н.М. //* Физика металлов и металловедение. 1997. Т. 83. № 3. С. 78.
- 6. *Пушин В.Г., Волкова С.Б., Матвеева Н.М.* // Физика металлов и металловедение. 1997. Т. 83. № 4. С. 155.
- 7. *Пушин В.Г., Волкова С.Б., Матвеева Н.М. и др. //* Физика металлов и металловедение. 1997. Т. 83. № 6. С. 149.
- Пушин В.Г., Волкова С.Б., Матвеева Н.М. и др. // Физика металлов и металловедение. 1997. Т. 83. № 6. С. 157.
- 9. Пушин В.Г., Волкова С.Б., Матвеева Н.М. и др. // Физика металлов и металловедение. 1997. Т. 84. № 4. С. 172.
- Матвеева Н.М., Пушин В.Г., Шеляков А.В. и др. // Физика металлов и металловедение. 1997. Т. 83. № 6. С. 82.
- Cesari E., Van Humbeek J., Kolomytsev V. et al. // J. Phys. IV. France. 1997. V. 5. P. 197.
- 12. Пушин А.В., Коуров Н.И., Попов А.А., Пушин В.Г. // Материаловедение. 2012. Т. 187. № 10. С. 24.
- 13. *Пушин А.В., Попов А.А., Пушин В.Г.* // Физика металлов и металловедение. 2012. Т. 113. № 3. С. 299.
- Пушин А.В., Попов А.А., Пушин В.Г. // Физика металлов и металловедение. 2013. Т. 114. № 6. С. 753.
- Pushin A.V., Popov A.A., Pushin V.G. // Mater. Sci. Forum. 2013. V. 738–739. P. 321.
- Shelykov A.V., Larin S.G., Ivanov V.P. et al. // J. Phys. IV. France. 2001. V. 11. P. 547.
- Дубинин С.Ф., Пархоменко В.Д., Пушин В.Г., Теплоухов С.Г. // Физика металлов и металловедение. 2000. Т. 89. № 1. С. 70.
- Пархоменко В.Д., Дубинин С.Ф., Пушин В.Г., Теплоухов С.Г. // Вопросы атомной науки и техники. 2001. № 4. С. 28.
- Алексашин Б.А., Кондратьев В.В., Королев А.В. и др. // Физика металлов и металловедение. 2010. Т. 110. № 6. С. 608.
- 20. *Pushin V.G., Stolyarov V.V., Valiev R.Z. et al.* // Ann. Chim. Sci. Mat. 2002. V. 27. № 3. P. 77.
- 21. Pushin V.G., Kourov N.I., Kuntsevich T.E. et al. // Phys. Metals Metallogr. 2002. V. 94. S. 1. P. S107.
- Heusler Alloys: Properties, Growth, Applications / Ed. Felser C. Springer International Publishing, 2016. 485 p.
- Куранова Н.Н., Пушин А.В., Уксусников А.Н. и др. // ЖТФ. 2017. Т. 87. № 8. С. 1177.
- 24. Пушин А.В., Пушин В.Г., Кунцевич Т.Э. и др. // ЖТФ. 2017. Т. 87. № 12. С. 1844.

КРИСТАЛЛОГРАФИЯ том 65 № 1 2020