УДК 548.736.6

_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ ____ Соединений

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ВЫСОКОКАЛИЕВОГО МАНАКСИТА К(K_{0.72}Na_{0.28})Mn[Si₄O₁₀] ПО ДАННЫМ НИЗКОТЕМПЕРАТУРНОГО СИНХРОТРОННОГО ЭКСПЕРИМЕНТА

© 2020 г. Г. В. Кирюхина^{1,2,*}, О. В. Якубович¹, Ю. Н. Довгалюк³, О. В. Димитрова¹, А. С. Волков¹

¹Московский государственный университет им. М.В. Ломоносова, Москва, Россия ²Институт экспериментальной минералогии РАН, Черноголовка, Россия

³Лаборатория Швейцарско-Норвежские Линии Европейского Центра синхротронного излучения, SNBL at ESRF,

Гренобль, Франция

**E-mail: g-biralo@yandex.ru* Поступила в редакцию 18.04.2019 г. После доработки 15.05.2019 г. Принята к публикации 27.06.2019 г.

Методом дифракции рентгеновских лучей с использованием синхротронного излучения при низких температурах ($\lambda = 0.64066$ Å, T = 100 K, R = 0.0248) изучена кристаллическая структура нового трубчатого силиката калия, натрия и марганца, K(K_{0.72}Na_{0.28})Mn[Si₄O₁₀], полученного в виде монокристаллов методом гидротермального синтеза в системе MnCl₂–NaNO₃–SiO₂–K₂CO₃–H₂O: a == 7.0182(4), b = 8.1642(7), c = 9.9670(11) Å, $\alpha = 104.816(8)^{\circ}$, $\beta = 101.099(8)^{\circ}$, $\gamma = 113.558(8)^{\circ}$, пр. гр. $P\overline{1}$, Z = 2, $\rho_{выч} = 2.790$ г/см³. Проанализированы структурные особенности нового синтетического высококалиевого аналога манаксита в сопоставлении с природным минералом и высоконатриевой синтетической разновидностью, общая формула которых AA'Mn[Si₄O₁₀], где позиции A и A' щелочных металлов K и/или Na находятся в открытых каналах триклинной структуры.

DOI: 10.31857/S0023476120010105

введение

Минерал манаксит KNaMn[Si₄O₁₀] был впервые найден в ультраагпаитовых пегматитах щелочного массива Ловозеро [1]. Минеральную группу литидионита, к которой относится манаксит, составляют еще несколько изотипных минералов: фенаксит, (K,Na)₄(Fe,Mn)₂[Si₄O₁₀]₂(OH,F), литидионит $KNaCu[Si_4O_{10}]$ и кальцинаксит $KNaCa(H_2O)[Si_4O_{10}]$ [2]. Особенностью их кристаллических структур является одномерный трубчатый анионный кремнекислородный мотив. Силикаты с трубчатыми фрагментами, природные и синтетические, достаточно редки. Помимо семейства манаксита с трубками шестиугольного сечения известны минералы с трубками восьмиугольного (франкаменит, канасит, мизерит) и четырехугольного сечения (нарсарсукит), разнородными (чароит) и гетерополиэдрическими трубчатыми фрагментами (юкспорит) [3]. Во всех структурах присутствуют двухвалентные катионы, обеспечивающие связь между соседними трубчатыми фрагментами [3]. В кристаллических постройках группы литидионита эту функцию выполняют переходные металлы Mn, Fe или Cu, расположенные в пятивершинниках, связанных ребрами в димеры, либо шелочноземельный Са, координацию которого дополняют молекулы воды [4]. В [5] представлены результаты исследования магнитных свойств силикатов с общей формулой $KNaM[Si_4O_{10}]$ (M = Mn, Fe, Си), показавшие антиферромагнитные взаимодействия внутри Mn- и Cu-димеров и ферромагнитные внутри Fe-димеров. Помимо атомов переходных металлов первого ряда структуры такого типа содержат крупные щелочные катионы, которые занимают позиции в открытых каналах. В составе минералов группы литидионита обычно присутствуют атомы Na и K, среди синтетических аналогов известны чисто натриевые представители. В настоящей работе представлены результаты изучения кристаллической структуры первой высококалиевой разновидности манаксита, полученной в виде монокристаллов в гидротермальных условиях, а также проведен кристаллохимический анализ соединений различного состава с целью выявить влияние типа шелочного катиона на характер искажения кремнекислородных трубчатых конструкций и размеры элементарных ячеек манакситов.

Рис. 1. РЭМ-изображение кристаллов $K_2Mn[Si_4O_{10}]$.

ПОЛУЧЕНИЕ КРИСТАЛЛОВ, РЕНТГЕНОВСКИЙ ЭКСПЕРИМЕНТ И РАСШИФРОВКА СТРУКТУРЫ

Новая фаза получена в гидротермальных условиях при *T* = 270–280°С и *P* = 90–100 атм. в стандартных автоклавах объемом 4 см³, футерованных фторопластом. В качестве исходных компонентов системы были взяты следующие реагенты в соотношениях: $MnCl_2$: $NaNO_3$: SiO_2 : K_2CO_3 : $H_2O =$ = 1 : 1 : 4 : 1 : 30. Коэффициент заполнения автоклава 0.8, длительность опыта 14 дней. После охлаждения печи содержание автоклава было промыто водой, высушено и проанализировано под бинокулярным микроскопом. Кристаллы новой фазы оказались прозрачными, блестящими, бесцветными пластинами в сростках (рис. 1), максимальный линейный размер пластины достигал 0.15 мм. По данным качественного рентгеноспектрального анализа¹ (растровый электронный микроскоп (РЭМ) Jeol JSM-6480LV, энергодисперсионный дифракционный спектрометр OxfordX-Max N) в их составе присутствуют атомы K, Mn, Si, Oи Na.

Экспериментальный рентгеновский материал, необходимый для структурных исследований, получен при низких температурах T = 100 K (Oxford Crystream 700+) на многофункциональном дифрактометре PILATUS@SNBL [6] с детектором PILATUS 2M на станции BM01 (SNBL) в Европейском центре синхротронного излучения (ESRF, Гренобль, $\lambda = 0.64066$ Å). Определение параметров элементарной ячейки, а также интегрирование интенсивностей были проведены с помощью

КРИСТАЛЛОГРАФИЯ том 65 № 1 2020

программы Crysalis Pro [7] с введением эмпирической поправки на поглощение.

Все расчеты по расшифровке и уточнению структуры осуществлены в рамках программной среды WinGX [8]. Кристаллическая структура решена прямыми методами и уточнена в анизотропном приближении тепловых колебаний атомов с помощью комплекса программ SHELX [9, 10] до значения *R*-фактора 0.0248. В ходе расчетов было предположено заселение одной из симметрически независимых позиций атомов К атомами Na. Дальнейшее уточнение структуры выявило расщепление этой позиции на две (расстояние между позициями 0.246 Å), заселенные атомами К и Na на 72 и 28% соответственно. В табл. 1 привелены кристаллографические характеристики изученного соединения, а также условия рентгеновского эксперимента и результаты уточнения кристаллической структуры. Координаты базисных атомов с тепловыми поправками приведены в табл. 2, межатомные расстояния – в табл. 3. Установленная в результате рентгеноструктурного анализа формула новой разновидности манаксита — $K_{1.72}$ Na_{0.28}Mn[Si₄O₁₀]. Степень окисления атомов Mn (2+) подтверждена расчетом локального баланса валентностей (табл. 4).

АНАЛИЗ МЕЖАТОМНЫХ РАССТОЯНИЙ И ОПИСАНИЕ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ

Независимый фрагмент кристаллической структуры $K(K_{0.72}Na_{0.28})Mn[Si_4O_{10}]$ представлен на рис. 2, где показаны основные структурные единицы – пятивершинник марганца и четыре независимых тетраэдра кремния. Длины связей в кремнекислородных тетраэдрах лежат в интервале 1.558(2)–1.631(3) Å и типичны для силикатов.

Анионная часть структуры представляет собой

трубчатые фрагменты $[Si_8O_{20}]_{\infty}^{8-}$, вытянутые вдоль оси *x* (рис. 3). Четыре кремниевых тетраэдра формируют кольца, объединенные далее в цепочки (рис. 3б). Каждые две цепочки, связанные центром инверсии, соединены общими вершинами в трубку с открытыми вдоль направления [100] шестичленными окнами (рис. 3а). Каждый тетраэдр делит три вершины с тремя соседними тетраэдрами. Четвертая вершина тетраэдров, оставаясь не поделенной с другими тетраэдрами кремния, формирует наиболее короткую связь Si–O (табл. 3). Такой трубчатый фрагмент имеет "боковые" окна в форме четырех- и восьмичленных колец (рис. 3в).

Каждый полиэдр MnO₅ делит все вершины с тетраэдрами SiO₄ так, что на одно ребро пятивершинника замкнуты два тетраэдра одной трубки, на другое ребро — два тетраэдра другой трубки, и пятая вершина является мостиковой для тетраэд-

¹ Проведен в лаборатории локальных методов исследования вещества кафедры петрологии геологического факультета МГУ.

М	400.99
Сингония, пр. гр., <i>Z</i>	Триклинная, <i>Р</i> 1, 2
<i>a</i> , <i>b</i> , <i>c</i> , Å	7.0182(4), 8.1642(7), 9.9670(11)
α, β, γ, град	104.816(8), 101.099(8), 113.558(8)
$V, Å^3$	477.28(8)
<i>D_x</i> , г/см ³	2.790
Излучение λ, Å	Синхротрон, 0.64066
Размер кристалла, мм	$0.05 \times 0.08 \times 0.1$
μ, мм ⁻¹	1.872
<i>Т</i> , К	100
Дифрактометр	PILATUS@SNBL
θ_{max} , град	25.965
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-6 \le h \le 6, -11 \le k \le 11, \\ -13 \le l \le 13$
Число отражений: измеренных/независимых $(N_1)/c I > 2\sigma(I) (N_2)$	2670/1356/1268
Метод уточнения	по <i>F</i> ²
Число уточняемых параметров	159
Весовая схема	$\frac{1}{[\sigma^2(F_o^2) + (0.0509P)^2 + 0.2547P]}, P = (F_o^2 + 2F_c^2)/3$
$R_{\rm BH}, R_{\sigma}$	0.0136, 0.0204
<i>R</i> 1/ <i>wR</i> 2 по <i>N</i> ₁	0.0264/0.0722
<i>R</i> 1/ <i>wR</i> 2 по <i>N</i> ₂	0.0248/0.0710
S	1.062
$\Delta \rho_{min}, \Delta \rho_{max}, \Im/Å^3$	-0.348, 0.484

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры K(K_{0 72}Na_{0 28})Mn[Si₄O₁₀]

ра третьей соседней трубки. Длины связей Mn-O лежат в интервале 2.034(2)-2.315(2) Å (табл. 3). Пятивершинники марганца объединяются ребрами в димеры и связывают кремнекислородные трубки вдоль осей у и z в трехмерную постройку (рис. 4а), в которой формируются открытые каналы с шестичленными окнами из тетраэдров кремния и полиэдров марганца.

Атомы калия занимают две различные позиции и располагаются в альтернативных каналах структуры (рис. 4б). Позиция К1 находится в центре девятивершинника из атомов кислорода на расстояниях 2.742(2)-3.363(3) Å (среднее 2.964 Å). Атом К2 окружен восемью атомами кислорода на рас-

Таблица 2. Координаты базисных атомов и эквивалентные анизотропным параметры тепловых смещений в структуре K(K_{0 72}Na_{0 28})Mn[Si₄O₁₀]

Атом	x/a	y/b	z/c	$U_{_{ m ЭKB}},{ m \AA}^2$
Mn	0.24877(9)	0.69903(6)	0.09124(4)	0.0167(2)
K1	0.83166(14)	0.18909(8)	0.49780(7)	0.0216(3)
K2*	0.2287(8)	0.2286(3)	0.9157(4)	0.0242(6)
Na2*	0.248(4)	0.263(2)	0.920(2)	0.0242(6)
Si1	0.42264(17)	0.31009(10)	0.63247(8)	0.0163(3)
Si2	0.26984(17)	0.09936(10)	0.29367(8)	0.0159(3)
Si3	0.88793(17)	0.62350(10)	0.76242(8)	0.0158(3)
Si4	0.68383(18)	0.36894(11)	0.23868(8)	0.0173(3)
01	0.9158(4)	0.5827(3)	0.9095(2)	0.0173(6)
02	0.8879(4)	0.8276(3)	0.7861(2)	0.0176(6)
O3	0.1663(4)	0.8756(3)	0.2233(2)	0.0215(6)
O4	0.2853(4)	0.1576(3)	0.4656(2)	0.0193(6)
05	0.9181(4)	0.3738(3)	0.3053(2)	0.0190(6)
O6	0.2806(4)	0.4210(3)	0.6666(2)	0.0214(6)
07	0.6595(4)	0.4593(3)	0.6317(2)	0.0173(6)
O 8	0.5140(4)	0.2126(3)	0.2880(2)	0.0191(6)
O9	0.4476(4)	0.2049(3)	0.7404(2)	0.0245(6)
O10	0.6124(4)	0.3249(3)	0.0701(2)	0.0274(7)

* Заселенность позиции К2 составляет 0.721(9), позиции Na2 - 0.279(9).

стояниях 2.516(5)-3.323(4) Å (среднее 2.882 Å) (табл. 3), именно эта позиция с более короткими расстояниями до атомов кислорода заселена статистически с вероятностью 72%. Атомы К2 "соседствуют" в канале с атомами Na на расстоянии 0.246 Å. В ближайшем окружении Na находятся четыре атома кислорода на расстояниях 2.48(2)-2.59(2) Å. Они формируют тетраэдрическую координацию, которую дополняют еще три атома О на расстояниях 3.074(3)-3.147(5) Å.

ОСОБЕННОСТИ КРИСТАЛЛОХИМИИ "МАНАКСИТОВ"

Кристаллические структуры минералов группы литидионита с общей формулой *АА'М*[Si₄O₁₀] образованы анионными силикатными трубчатыми фрагментами [Si₈O₂₀], димерами делящих ребра пятивершинников M (Mn, Cu, Fe или Ca), которые связывают кремнекислородные постройки в каркас, содержащий атомы шелочных металлов К и Na в каналах. Известны синтетические фазы

40

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ВЫСОКОКАЛИЕВОГО МАНАКСИТА

К1-девятин	-девятивершинник		К2-восьмивершинник		Na2-семивершинник		вершинник
K1–O5	2.742(2)	K2-O10	2.516(5)	Na2-O10	2.48(2)	Mn–O3	2.034(2)
-04	2.758(2)	-03	2.522(5)	-09	2.539(19)	-O10	2.042(2)
-06	2.811(3)	-09	2.559(4)	-01	2.572(18)	-01	2.1189(19)
-08	2.851(2)	-01	2.644(4)	-03	2.59(2)	-09	2.142(2)
-03	2.958(2)	-02	2.915(4)	-O10	3.074(3)	-01	2.315(2)
-09	3.015(2)	-06	3.263(4)	-06	3.122(3)	$\langle Mn-O \rangle$	2.130
-07	3.059(2)	-O10	3.313(3)	-02	3.147(5)		
-05	3.123(2)	-02	3.323(4)	⟨Na2−O⟩	2.789		
-04	3.363(3)	$\langle K2-O \rangle$	2.882				
$\langle K1-O \rangle$	2.964						
Si1-тетраэдр		Si2-тетраэдр		Si3-тетраэдр		Si4-тетраэдр	
Si1-09	1.564(2)	Si2–O3	1.564(2)	Si3–O1	1.578(2)	Si4-O10	1.558(2)
-04	1.616(2)	-O8	1.610(3)	-02	1.622(2)	-O8	1.620(2)
-06	1.620(2)	-04	1.626(2)	-05	1.627(2)	-06	1.623(2)
-07	1.624(2)	-02	1.626(2)	-07	1.628(3)	-05	1.631(3)
$\langle Si1-O \rangle$	1.606	$\langle Si2-O \rangle$	1.606	⟨Si3−O⟩	1.614	$\langle Si4-O \rangle$	1.608

Таблица 3. Межатомные расстояния (Å) в кристаллической структуре K(K_{0.72}Na_{0.28})Mn[Si₄O₁₀]

Таблица 4. Локальный баланс валентностей* в кристаллической структуре $K(K_{0.72}Na_{0.28})Mn[Si_4O_{10}]$

	K1	K2 (72%)	Na2 (28%)	Mn	Si1	Si2	Si3	Si4	Σ
01		0.105	0.047	0.398, 0.256			1.139		1.95
O2		0.082, 0.059	0.028			0.925	0.967		2.06
O3	0.110	0.118	0.046	0.489		1.168			1.93
04	0.131, 0.080				0.959	0.925			2.10
05	0.133, 0.096						0.949	0.912	2.09
O6	0.125	0.062	0.029		0.944			0.939	2.10
O 7	0.101				0.931		0.945		1.98
08	0.120					0.982		0.949	2.05
09	0.105	0.114	0.048	0.377	1.166				1.81
O10		0.119, 0.060	0.051, 0.030	0.479				1.200	1.94
Σ	1.00	0.72	0.28	2.00	4.0	4.0	4.0	4.0	

* Использованы алгоритм и эмпирические параметры из [16].

КРИСТАЛЛОГРАФИЯ том 65 № 1 2020

Рис. 2. Независимый фрагмент кристаллической структуры $K(K_{0.72}Na_{0.28})Mn[Si_4O_{10}]$ (эллипсоиды тепловых колебаний показаны с вероятностью 90%). Операции симметрии: (') 1 - x, 1 - y, 1 - z; ('') 1 - x, -y, -z; ('') 1 - x, -y, -1 + x, -1 + y, -1 + z; (**) 2 - x, 1 - y, 1 - z.

Рис. 3. Трубчатый фрагмент из кремнекислородных тетраэдров в структуре высококалиевого аналога манаксита, вид вдоль оси *a* (а) и сбоку, демонстрирующий четырехчленные (б) и восьмичленные (в) окна.

того же структурного типа с переходными металлами Cu, Mn, Co и Ni, в кристаллических постройках которых обе независимые позиции щелочных катионов A и A' занимают атомы Na [5, 11–13]. Также в [14] был получен новый "чисто калиевый" синтетический член в группе литидионита, K₂Ca[Si₄O₁₀]. В настоящей работе впервые представлена первая высококалиевая разновидность манаксита, в структуре которой обе позиции A и A' заселены атомами калия. Новое соединение K(K_{0.72}Na_{0.28})Mn[Si₄O₁₀], высоконатриевая фаза Na₂Mn[Si₄O₁₀] [11], минерал манаксит [15] и

Рис. 4. Проекция кристаллической структуры $K(K_{0.72}Na_{0.28})Mn[Si_4O_{10}]$: а – вдоль [100], демонстрирующая шестиугольное сечение кремнекислородных трубок, объединенных димерами Мп-пятивершинников; б – вдоль [110], хорошо видны открытые каналы, заселенные атомами K и Na.

КРИСТАЛЛОГРАФИЯ том 65 № 1 2020

Структурная формула	K(K _{0.7} Na _{0.3})Mn[Si ₄ O ₁₀]*	KNaMn[Si ₄ O ₁₀]	NaNaMn[Si ₄ O ₁₀]
<i>a</i> , <i>b</i> , <i>c</i> , Å	7.0182(4), 8.1642(7), 9.9670(11)	6.9851(6), 8.1825(7), 99.51(1)	6.9464(2), 7.8459(2), 9.9742(6)
$\alpha, \beta, \gamma,$ град	104.816(8), 101.099(8), 113.558(8)	105.70(1), 9.9747(10), 114.58(1)	106.206(3), 98.537(4), 115.741(4)
$V, Å^3$	477.28(8)	473.33(9)	446.77(3)
А-позиция,	К	К	Na/Na'
KH, $\langle A-O \rangle$, Å	9, 2.964	9, 2.975	7-8, 2.602-2.73
А'-позиция,	K _{0.7} /Na _{0.3}	Na	Na
KH, $\langle A' - O \rangle$, Å	8-7, 2.882-2.79	7, 2.670	7, 2.651
∠Si2—O4—Si1, град	147.24	150.50	139.07
∠Si1–O7–Si3, град	132.91	133.09	135.79
∠Si2—O2—Si3, град	135.98	136.79	139.84
∠Si4–O6–Si1, град	140.05	138.87	130.90
∠Si4—O8—Si2, град	149.46	150.50	147.67
O5–O5, Å**	3.60	3.79	3.44
Литература	Настоящая работа	[5]	[11]

Таблица 5. Некоторые геометрические характеристики синтетических структурных аналогов манаксита, $AA'Mn[Si_4O_{10}]$ (A, A' = K, Na), пр. гр. $P\overline{1}, Z2$

Примечание. КЧ – координационное число.

* Экспериментальный материал получен при T = 100 К.

** Минимальный диаметр восьмичленного окна (рис. 5б).

его синтетический аналог KNaMnSi₄O₁₀ [5] образуют семейство изотипных трубчатых силикатов марганца (табл. 5) с атомами К и/или Na, разница в ионных радиусах которых достаточно велика ($r_{K+} = 1.38, r_{Na+} = 1.02$ Å).

Одномерные кремнекислородные трубчатые конструкции шестиугольного сечения в манаксите с минимальным диаметром 3.4 Å имеют "боковые" окна, ограниченные четырех- и восьмичленными кольцами с минимальными диаметрами 2.7 и 3.6 Å соответственно (рис. 3). В [3] отмечено, что кристаллическая структура манаксита формально не может рассматриваться как микропористая, поскольку эффективный диаметр самого крупного восьмичленного кольца равен лишь 0.9 Å. На поверхности трубок в восьмичленных окнах, а также вблизи стенок каналов из полиэдров марганца и кремния располагаются атомы щелочных металлов (рис. 4а). Наличие боковых восьмичленных окон, а также боковых окон в туннелях между кремнекислородными трубками обеспечивает формирование в структуре открытых каналов, вытянутых параллельно на-

КРИСТАЛЛОГРАФИЯ том 65 № 1 2020

правлению [110] (рис. 46). Таким образом, атомы щелочного металла в рассматриваемых структурах заселяют каналы двух типов, располагающиеся под углом $\sim 60^{\circ}$ к трубкам из тетраэдров кремния.

В табл. 5 приведены кристаллографические и некоторые кристаллохимические характеристики синтетических аналогов манаксита *АА*'Mn[Si₄O₁₀] с различным катионным составом позиций А и А'. Средние расстояния в координационных полиэдрах щелочных катионов закономерно уменьшаются при смене сорта катиона в позициях А и А' с К на Na. Анализ параметров элементарных ячеек фиксирует значительное уменьшение параметра bэлементарной ячейки высоконатриевой разновидности манаксита NaNaMnSi₄O₁₀. Параметр cдля трех структур остается практически одинаковым, слабо меняется период повторяемости а вдоль оси х. Таким образом, уменьшение объема элементарных ячеек изотипных манакситов происходит за счет "сжатия" структуры вдоль оси у.

Как хорошо видно из рис. 5, координационный полиэдр вокруг щелочного катиона в пози-

Рис. 5. Структурные фрагменты вокруг *А*-позиции в кристаллической постройке высококалиевого манаксита (а); вид на восьмичленное окно кремнекислородной трубки вдоль [110] (б).

ции А формируют атомы кислорода восьмичленного кольца из тетраэдров кремния одной трубки и три атома кислорода пары тетраэдров другой трубки. При изменении сорта катиона в А-позиции минимальный диаметр окна О5-О5 (ребро полиэдра AO_x) уменьшается в структуре NaNaMnSi₄O₁₀ по сравнению с манакситом и его высококалиевой разновидностью. Восьмичленное кольцо сжимается в результате значительного изменения углов Si-O-Si, которые легко приспосабливаются к изменению размера щелочного катиона, обеспечивая его координацию (табл. 5). Значительное уменьшение угла Si2-O4-Si1 пары тетраэдров верхней трубки в структуре высоконатриевой фазы приводит к изменению расстояний А-О и уменьшению координационного числа атома натрия (атом ОЗ выпадает из его координации). Отметим, что заселение атомами натрия позиции А в структуре высоконатриевого манаксита сопровождается ее расщеплением на две (расстояние между позициями 0.348 Å), различающиеся координационными числами (табл. 5).

Позиция A' расположена между кремнекислородными трубками. Размер соответствующего канала в значительной степени задан длиной ребра пятивершинника MnO₅, связывающего соседние трубки (рис. 4), что, видимо, и обусловливает лишь небольшие структурные подвижки при изменении сорта щелочного катиона в A'-позиции. В отличие от "манакситов" Na₂MnSi₄O₁₀ и NaKMnSi₄O₁₀ с атомами Na в каналах между кремнекислородными трубками в структуре высококалиевого манаксита в ближайшем координационном окружении атомов калия в позиции A' участвует дополнительный атом кислорода O2.

выводы

Структурный тип манаксита AA'MnSi₄O₁₀ включает в себя две позиции А и А' щелочных металлов в открытых каналах, вытянутых параллельно направлению [110] триклинной элементарной ячейки. Каждую из позиций в каналах может заселять как крупный атом калия, так и более мелкий натрия. Такая ситуация обусловлена пластичностью кремнекислоролной постройки, которая позволяет ей приспособиться к размеру катиона щелочного металла за счет разворота тетраэдров кремния. Размер щелочного катиона в позиции А значительно меняет геометрические характеристики структуры, такие как диаметр восьмичленного кольца и углы Si-O-Si между соседними тетраэдрами в кольце. Изменение в составе А'-позиции меньше сказывается на искажении структуры, поскольку ребро марганцевого пятивершинника стабилизирует размер соответствующего канала. Вариации расстояний в координационных полиэдрах вокруг атомов щелочных металлов при смене сорта катиона сопровождаются изменением параметров b и объемов элементарных ячеек изотипных манакситов.

Авторы выражают благодарность Н.Н. Кошля-ковой за анализ химического состава кристаллов.

Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 19-77-00081) и Российского фонда фундаментальных исследований (проект № 18-03-00908).

СПИСОК ЛИТЕРАТУРЫ

- 1. Хомяков А.П., Курова Т.А., Нечелюстов Г.Н. // Записки Рос. минерал. о-ва. 1992. Т. 121. С. 112.
- 2. *Strunz H., Nickel E.H.* Strunz mineralogical tables, 9th ed. Stuttgart, 2001.

- 3. Рождественская И.В., Кривовичев С.В. // Кристаллография. 2011. Т. 56. № 6. С. 1076.
- 4. Aksenov S.M., Rastsvetaeva R.K., Chukanov N.V. et al. // Acta Cryst. B. 2014. V. 70. P. 768.
- Brandão P., Rocha J., Reis M.S. et al. // J. Solid State Chem. 2009. V. 182. P. 253.
- Dyadkin V., Pattison Ph., Dmitriev V. et al. // J. Synchr. Rad. 2016. V. 23. P. 825.
- 7. Agilent. 2011. CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire.
- 8. Farrugia L.J. // J. Appl. Cryst. 2012. V. 45. P. 849.
- 9. Sheldrick G. M. // Acta Cryst. A. 2015. V. 71. P. 3.
- 10. Sheldrick G. M. // Acta Cryst. C. 2015. V. 71. P. 8.

- 11. *Cadoni M., Ferraris G.* // Rend. Fis. Acc. Lincei. 2011. V. 22. P. 225.
- 12. *Kawamura K., Kawahara A. //* Acta Cryst. B. 1977. V. 33. P. 1071.
- Durand G., Vilminot S., Richard-Plouet M. et al. // J. Solid State Chem. 1997. V. 131. P. 335.
- 14. *Schmidmair D., Kahlenberg V., Grießer A.* // J. Am. Ceram. Soc. 2018. V. 101. P. 919.
- Karimova O., Burns P.C. Minerals as Advanced Materials / Ed. Krivovichev S.V. Berlin: Springer, 2008. V. I. 153 p.
- 16. *Пятенко Ю.А. //* Кристаллография. 1972. Т. 17. Вып. 4. С. 773.