УДК 548.735

_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ ___ СОЕДИНЕНИЙ

РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ НОВОЙ ГЕРМАНАТНОЙ ФАЗЫ Са₃Cr₂(GeO₄)₃

© 2020 г. А. Л. Мургин¹, Т. И. Овсецина^{1,*}, П. В. Андреев¹, Д. В. Симановский¹, А. Е. Егорова¹, В. А. Иванов¹

¹Нижегородский госуниверситет им. Н.И. Лобачевского, Нижний Новгород, Россия

**E-mail: ovsetsina@yandex.ru* Поступила в редакцию 10.10.2018 г. После доработки 21.12.2018 г. Принята к публикации 28.03.2019 г.

Изложены результаты рентгеноструктурного исследования новой германатной фазы, выращенной в псевдотройной системе Li₂O · MoO₃-CaO-GeO₂ с добавлением Cr₂O₃. Полученное кристаллическое соединение является новым представителем семейства со структурным типом граната.

DOI: 10.31857/S0023476120010154

ВВЕДЕНИЕ

В лазерной технике широко применяют монокристаллы. синтезированные из оксидных систем с добавлением ионов хрома. Наиболее популярные из них – кристаллы форстерита (Mg₂SiO₄) и граната (Y₃Al₅O₁₂). Также для этих целей могут быть успешно использованы кристаллы Са₂GeO₄. Однако получение и применение данных кристаллов не лишено известных недостатков [1]. В [2] были предложены новые растворители для выращивания Ca₂GeO₄ и других перспективных для использования в твердотельных лазерах кристаллов германатных фаз. При дальнейшем изучении фазовых диаграмм, построенных для систем с применением предложенных в [2, 3] растворителей, были получены монокристаллы нового соединения. Исследованию их атомной структуры посвящена настоящая работа.

ВЫРАЩИВАНИЕ КРИСТАЛЛОВ

Монокристаллы выращивали методом спонтанной кристаллизации из раствора в расплаве. Состав шихты для выращивания был выбран в соответствии с фазовой диаграммой псевдотройной системы $Li_2O \cdot MoO_3$ —CaO—GeO₂ [3]: 0.74 мас. % $Li_2O \cdot MoO_3$, 0.17 мас. % GeO₂ и 0.09 мас. % CaO. К указанному составу добавляли Cr₂O₃ в количестве 0.25% от суммы масс Li_2O и MoO₃. Расплав был приготовлен из следующих реагентов: Li_2CO_3 , MoO₃, CaCO₃, GeO₂, Cr₂O₃ (чистота более 99%). Реагенты механически перемешивали и помещали в платиновый тигель. Смесь нагревали в резистивной печи, оборудованной термоконтроллером COMECO RT1800, обеспечивающим точность поддержания температуры 1°С. Раствор гомогенизировали при температуре 1140°С в течение 1 ч. Кристаллы выращивали в двухзонной печи Enginex Crysten M, оснащенной термоконтроллером EUROTHERM 2704, обеспечивающим точность поддержания температуры 0.1°С, на платиновой проволоке, помещенной в платиновый тигель диаметром 3 см и высотой 3 см. В процессе выращивания использовался режим снижения температуры со скоростью 0.1–0.2 град/ч в течение 6 сут. Температуру начала кристаллизации определяли экспериментально, и она находилась в диапазоне 1070–1080°С.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследуемый образец выращенного монокристалла представлял собой осколок изумрудно-зеленого цвета размером $0.163 \times 0.113 \times 0.058$ мм. Интегральные интенсивности рентгеновских дифракционных отражений измеряли на дифрактометре Oxford Diffraction GEMINI S при температуре 293 К (Мо K_{α} -излучение, графитовый монохроматор). Атомная структура расшифрована методом тяжелого атома и уточнена методом наименьших квадратов (**МНК**) в полноматричном приближении с использованием программного комплекса SHELX97 [4].

Кристаллографические данные и результаты уточнения параметров исследуемой структуры представлены в табл. 1. Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры новой германатной фазы

Химическая формула	$Ca_3Cr_2(GeO_4)_3$		
Сингония, пр. гр., Z	Кубическая, <i>Ia</i> 3 <i>d</i> , 8		
<i>a</i> , Å	12.2641(1)		
<i>V</i> , Å ³	1844.6(2)		
ρ, г/см ³	4.566		
Излучение, λ, Å	MoK_{α}		
μ, мм ⁻¹	13.867		
<i>Т</i> , К	293(2)		
Радиус образца, мм	0.08		
Дифрактометр	Xcalibur, Sapphire 3, Gemini		
Тип сканирования	ω		
Учет поглощения, T_{\min}, T_{\max}	Multi-scan [6], 0.28015, 1.000		
θ_{max} , град	37.35		
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-20 \le h \le 19, -20 \le k \le 16, \\ -15 \le l \le 20$		
Число отражений: измеренных/независимых $(N_1), R_{int}/c I > 2\sigma(I) (N_2)$	13858/378, 0.0363/365		
Метод уточнения	Полноматричный МНК по <i>F</i> ²		
Число уточняемых параметров	18		
Весовая схема	1/[$\sigma^2(F_o^2)$ + (0.0191 <i>P</i>) ² + + 4.3598 <i>P</i>], где <i>P</i> = (F_o^2 + 2 F_c^2)/3		
$R_1/wR_2(N_1)$	0.0197/0.0537		
$R_1/wR_2(N_2)$	0.0187/0.0532		
S	1.305		
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im Å^{-3}$	-0.514/0.446		
Программы	SHELX97 [4], WinGX [5], CrysAlis Pro [6], Mercury [7]		

КРИСТАЛЛОГРАФИЯ том 65 № 1 2020

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рентгеноструктурное исследование показало, что каркасная структура кристалла $Ca_3Cr_2(GeO_4)_3$ (рис. 1) типична для группы соединений гранатов [8–11]. Симметрия исследуемого кристалла описывается кубической пр. гр. Ia3d. Атом Сг координируют шесть атомов О, формируя октаэдр, близкий к правильному. Средняя длина ребра октаэдра составляет 2.45 Å. Координация атома Ge представляет собой тетраэдр с реберными расстояниями 2.732 и 2.954 Å. Средняя длина ребра тетраэдра 2.84 Å, что характерно для тетраэдров Ge [12, 13]. Изоморфных замещений в позициях катионов не выявлено.

Таблица 2 содержит координаты атомов и тепловые параметры. Межатомные расстояния и значения углов в кристалле представлены в табл. 3. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Банк данных неорганических структур (ICSD № 433178).

Таким образом, координация ионов хрома в полученном новом соединении отличается от координации ионов Cr^{4+} в кристаллических структурах Ca_2GeO_4 и других германатных фаз, допированных Cr^{4+} [2]. Следовательно, при значительном увеличении концентрации оксида хрома в шихте (по сравнению с ~0.1–0.5% [1]) происходит рост кристаллической фазы, менее перспективной для использования в качестве активной среды в фемтосекундных лазерах.

Рис. 1. Кристаллическая структура $Ca_3Cr_2(GeO_4)_3$: *1* – октаэдр Cr, *2* – тетраэдр Ge, *3* – катион Ca

МУРГИН и др.

Атом	Позиция	x/a	y/a	z/a	$U_{ m _{3KB}}, { m \AA}^2$
Cr	16 <i>a</i>	1/4	1/4	1/4	0.00342(13)
Ca	24 <i>c</i>	0	1/4	1/8	0.00765(13)
Ge	24 <i>d</i>	0	1/4	3/8	0.00439(11)
0	96 <i>h</i>	0.09949(8)	0.19992(8)	0.28381(8)	0.00695(20)

Таблица 2. Координаты и эквивалентные тепловые параметры атомов структуры Ca₃Cr₂(GeO₄)₃

Таблица 3. Основные межатомные расстояния и углы в структуре Ca₃Cr₂(GeO₄)₃

	Связь	Длина, Å	Угол	Величина, град
Ge-тетраэдр	Ge–O	1.7654(10) × 4	O-Ge-O	101.39(7) × 2
	0–0	2.732(6) × 2		113.66(4) × 4
		$2.953(4) \times 4$		
Cr-октаэдр	Cr–O	1.9891(10) × 6	O-Cr-O	88.36(4) × 6
	0–0	2.732(6) × 6		91.64(4) × 6
		2.772(2) × 6		
Са-полиэдр	Са–О	$2.379(1) \times 4$	O–Ca–O	$69.09(5) \times 4$
	⟨Ca−O⟩	2.51(1) × 4		$70.09(5) \times 2$
	$\langle \mathrm{O-O} \rangle$	2.44(1)		72.09(5) × 2
		3.21(1)		$74.34(4) \times 4$
				93.75(5) × 4
				$109.83(5) \times 4$
				113.92(5) × 2
				$124.14(2) \times 4$
				159.25(5) × 2
				$165.66(5) \times 2$

Работа выполнена в рамках базовой части государственного задания высшим учебным заведениям и научным организациям в сфере научной деятельности (проект № 3.6502.2017/БЧ).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Marychev M.O., Koseva I., Gencheva G. et al.* // J. Cryst. Growth. 2017. V. 461. P. 46.
- Ivanov V.A., Marychev M.O., Andreev P.V. et al. // J. Cryst. Growth. 2015. V. 426. P. 25.
- Ivanov V.A., Marychev M.O., Andreev P.V. et al. // Mater. Chem. Phys. 2015. V. 167. P. 56.
- 4. Sheldrick G.M. // Acta Cryst. A. 2008. V. 64. P. 112.
- 5. Farrugia L.J. // J. Appl. Cryst. 1999. V. 32. P. 837.

- CrysAlis CCD and CrysAlis RED. Rigaku Oxford Diffraction. 2015.
- Macrae C.F., Edgington P.R., McCabe P. et al. // J. Appl. Cryst. 2006. V. 39. P. 453.
- Novak G.A., Gibbs G.V. // Am. Mineral. 1971. V. 56. P. 791.
- 9. Сомов Н.В., Фаддеев М.А., Чупрунов Е.В., Истомин Л.А. // Вестн. ННГУ. 2010. № 5(2). С. 207.
- Милль Б.В., Белоконева Е.Л., Симонов М.А., Белов Н.В. // Журн. структур. химии. 1977. Т. 18. С. 399.
- Lipp C., Strobel S., Lissner F., Niewa R. // Acta Cryst. E. 2012. V. 68. P. i35.
- 12. Овсецина Т.И., Юнин В.В., Верин И.А., Чупрунов Е.В. // Вестн. ННГУ. 2004. № 1(7). С. 72.
- 13. Овсецина Т.И., Юнин В.В., Верин И.А., Чупрунов Е.В. // Вестн. ННГУ. 2006. № 1(9). С. 85.

КРИСТАЛЛОГРАФИЯ том 65 № 1 2020