КРИСТАЛЛОГРАФИЯ, 2020, том 65, № 1, с. 32–37

_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ ____ СОЕДИНЕНИЙ

УДК 548.736.6

НОВЫЕ ДАННЫЕ ОБ ИЗОМОРФИЗМЕ В МИНЕРАЛАХ ГРУППЫ ЭВДИАЛИТА. V. КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ПРОМЕЖУТОЧНОГО ЧЛЕНА ИЗОМОРФНОГО РЯДА МАНГАНОЭВДИАЛИТ–ИЛЮХИНИТ

© 2020 г. Р. К. Расцветаева^{1,*}, Н. В. Чуканов², Ш. Мёккель³, А. П. Дудка¹, С. М. Аксенов¹

¹Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

²Институт проблем химической физики РАН, Черноголовка, Россия

³Альфа-Геофизик в Саксонии, Готтхельффридрихсгрунд, Германия

*E-mail: rast@crys.ras.ru

Поступила в редакцию 12.07.2019 г. После доработки 30.07.2019 г. Принята к публикации 30.07.2019 г.

Методами рентгеноструктурного анализа и ИК-спектроскопии исследована кристаллическая структура высокосимметричного представителя группы эвдиалита из массива Норра Шер (Norra Kärr), Швеция. Параметры тригональной элементарной ячейки: a = 14.1767(4), c = 30.286(1) Å, V = 5271.3 (3) Å³, пр. гр. $R\overline{3}m$. Кристаллическая структура уточнена до итогового фактора расходимости R = 6.4% в анизотропном приближении атомных смещений с использованием 1071 рефлекса с $F > 3\sigma(F)$. Идеализированная формула минерала (Z = 3): [(Na,H₃O)_{13.5} $REE_{1.5}$]Са₆Mn₂Zr₃[Si_{25.5}O_{73.5}]Сl · H₂O. Обсуждаются проблемы гидролиза и центросимметричности минералов со структурным типом эв-диалита.

DOI: 10.31857/S0023476120010208

введение

Минералы группы эвдиалита – широко распространенные цирконосиликаты с параметрами тригональной ячейки *а* ~ 14 и *с* ~ 30 Å и пр. гр. *R*3. R3m и R3m. Каркас структуры эвдиалитов, состоящий из колец Si₉O₂₇, Si₃O₉ и Ca₆O₂₄ и объединяющих их изолированных ZrO₆-октаэдров, центросимметричен, а распределение катионов в его полостях нарушает центр симметрии. Структура большинства минералов группы ацентрична. и лишь несколько представителей описываются центросимметричной пространственной группой [1]. В настоящей работе методами рентгеноструктурного анализа и ИК-спектроскопии изучен высокосимметричный образец из щелочного интрузивного комплекса Норра Шер (Norra Kärr), Швеция, являющийся промежуточным членом в ряду твердых растворов манганоэвдиалит $Na_{14}Ca_6Mn_3Zr_3[Si_{26}O_{72}(OH)_2]Cl_2 \cdot 4H_2O$ -илюхинит $(H_3O, Na)_{14}Ca_6Mn_2Zr_3Si_{26}O_{72}(OH)_2 + 3H_2O.$ Этот минерал (образец 7639) найден одним из авторов (Ш.М.) в пегматите, где он образует красно-бурые монокристаллические зерна размером до 1 см в ассоциации с эгирином, арфведсонитом и микроклином.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Химический состав исследовали методом рентгеноспектрального микроанализа с применением растрового электронного микроскопа Tescan Vega-II XMU (режим EDS, ускоряющее напряжение 20 кВ, ток 400 пА) и использованием системы регистрации рентгеновского излучения и расчета состава образца INCA Energy 450. Диаметр электронного пучка 157-180 нм. Диаметр зоны возбуждения - не более 5 мкм. Время накопления сигнала составляло 100 с. Расстояние от образца до детектора 25 мм. В качестве стандартов использовали: альбит на Na, Al_2O_3 на Al, SiO₂ на Si. NaCl на Cl. санилин на К. волластонит на Са. монофосфаты Ln на соответствующие лантаноиды и чистые Ti, Mn, Fe, Y, Zr, Nb и Hf на cootветствующие элементы. Эмпирическая формула образца 7639 с учетом неоднородности состава, рассчитанная на 25.5 атомов Si, имеет вид (Z=3): $Na_{9.1-11.2}K_{0.7-0.8}Ln_{0.6-0.9}Y_{0.4-0.7}Ca_{4.2-4.7}Mn_{1.2-1.3}Fe_{0.8-1.0}$ $Zr_{29-3,15}Hf_{0,04}Nb_{0,25-0,3}Si_{25,50}Al_{0,1-0,3}Cl_{0,4-0,7}O_x \cdot n(H_3O,H_2O).$

ИК-спектр образца 7639, предварительно растертого в агатовой ступке и запрессованного в таблетку с KBr, снят на фурье-спектрометре ALPHA FTIR (Bruker Optics, Германия) в диапа-

Идеализированная формула (Z = 3)	$[(Na,H_{3}O)_{13.5}REE_{1.5}]Ca_{6}Mn_{2}$ Zr ₃ [Si _{25.5} O _{73.5}]Cl · H ₂ O
<i>a</i> , <i>c</i> , Å	14.1767(4), 30.286(1)
<i>V</i> , Å ³	5271.3(3)
Сингония, пр. гр., Z	Тригональная, $R\overline{3}m$, 3
Размеры кристалла, мм	$0.2 \times 0.2 \times 0.3$
Дифрактометр	Xcalibur Eos CCD Oxford Diffraction
Излучение; λ, Å	MoK_{α} ; 0.71073
Тип сканирования	Ω
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$\begin{array}{l} -22 < h < 20, -20 < k < 22, \\ -48 < l < 44 \end{array}$
$(\sin \theta / \lambda)_{max}$	0.798
Число независимых отражений с <i>F</i> > 3 <i> бF</i>	1233
Метод уточнения	МНК по F
<i>R</i> , %	6.4
Программы	AREN [3]

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры

зоне волновых чисел $360-3800 \text{ см}^{-1}$ при разрешающей способности 4 см⁻¹ и числе сканирований 16. В качестве образца сравнения использовали аналогичную таблетку из чистого KBr.

Для сбора дифракционных данных на СССдифрактометре Xcalibur Oxford Diffraction (Мо K_{α} излучение) использован красно-бурый фрагмент монокристалла изометричной формы. Характеристика кристалла и данные эксперимента приведены в табл. 1. Параметры тригональной ячей-

Рис. 1. ИК-спектр поглощения образца 7639.

КРИСТАЛЛОГРАФИЯ том 65 № 1 2020

ки: a = 14.1767(4), c = 30.286(1) Å, V = 5271.3(3) Å³, пр. гр. $R\overline{3}m$. При неоднозначности выбора пространственной группы уточнение структуры проводилось в рамках обеих пр. гр. R3m и $R\overline{3}m$. По-

скольку результаты в обоих вариантах оказались близкими, предпочтение было отдано центросимметричной группе. Косвенным подтверждением центросимметричности структуры можно считать и ограниченное количество экспериментальных данных (минимальные три-четыре отражения на уточняемый параметр), полученных для данного монокристалла. Учитывая близость химического состава кристалла к составу центросимметричного 12-слойного низкожелезистого образца [2], в качестве стартового набора для исследования структуры использовали координаты атомов его каркаса. Остальные позиции найдены из серии разностных синтезов электронной плотности. Ряд позиций уточняли с учетом смешанных кривых атомного рассеяния. Все расчеты выполнены по системе кристаллографических программ AREN [3]. Уточненные структурные параметры и характеристики координационных полиэдров приведены в табл. 2 и 3 соответственно.

ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ

ИК-спектр образца 7639 приведен на рис. 1. Для отнесения спектральных полос были приняты во внимание данные, полученные на основе статистического анализа ИК-спектров 22 образцов минералов группы эвдиалита, для которых были изучены кристаллические структуры [1]. Для изученного образца в области О-Н-валентных колебаний проявляются полосы ОН-групп и молекул воды (при 3560 и 3420 см⁻¹), а также плечи при 3240 и 2840 см⁻¹, относящиеся к кислотным группам (предположительно, ионам гидроксония H_3O^+). Аналогичные, но более интенсивные полосы наблюдаются в ИК-спектре илюхинита [4], тогда как в ИК-спектре манганоэвдиалита [5] поглощение кислотных групп не проявляется в явном виде (возможно, из-за перекрывания с полосой H₂O). Полоса при 1636 см⁻¹ обусловлена НОН-деформационными колебаниями.

В области Si–O-валентных колебаний можно выделить полосы, относящиеся к кольцам кремнекислородных тетраэдров (в диапазоне 980– 1120 см⁻¹) и тетраэдров SiO₄ в позициях *M*3 и *M*4 (полоса при 941 см⁻¹). Деформационные и смешанные колебания групп из кремнекислородных тетраэдров проявляются в интервалах 440–480 и 660–750 см⁻¹ соответственно. Полоса при 522 см⁻¹ может относиться как к (Mn,Fe)–O-валентным колебаниям ионов Mn²⁺ и Fe²⁺ с координационным числом (**K4**) 5, так и к ионам Fe³⁺, имеющим

РАСЦВЕТАЕВА и др.

Позиция	x/a	y/b	z/c	Q	q	$B_{_{ m ЭKB/ИЗ0}*}, Å^2$
М	0.3333	0.1667	0.1667	9	1	2.00(5)
M 1	0.4041(1)	0.3334	0.3334	18	1	0.84(4)
T1	0.5264(2)	0.2632(1)	0.2524(1)	18	1	1.7(1)
<i>T</i> 2	-0.0066(1)	0.6042(1)	0.0974(1)	36	1	1.56(7)
<i>T</i> 3	0.2067(1)	0.4135(2)	0.0772(1)	18	1	2.2(1)
O1	0.4703(8)	0.2351(6)	0.2050(3)	18	1	3.4(4)
O2	0.2573(5)	0.0265(5)	0.2050(2)	36	1	2.8(2)
O3	0.6044(3)	0.3956(3)	0.2545(3)	18	1	2.7(4)
O4	0.4454(9)	0.2222(6)	0.2930(3)	18	1	3.3(4)
O5	0.4066(5)	0.0340(6)	0.0457(2)	36	1	2.9(2)
O6	0.0985(5)	0.3756(5)	0.1071(1)	36	1	2.5(2)
O7	0.0226(8)	0.5113(5)	0.1119(3)	18	1	2.8(3)
O 8	0.2718(4)	0.5436(6)	0.0753(4)	18	1	4.1(4)
O9	0.1785(4)	0.3570(6)	0.0307(3)	18	1	3.2(3)
M2a	0	0.5	0	9	0.70	6.0(1)
M2b	0.176(3)	0.588(2)	0.006(2)	18	0.15	4.3(6)
МЗа	0.3334	0.6667	0.1000(7)	6	0.76	8.4(1)
M3b	0.3334	0.6667	0.0425(5)	6	0.14	3.3(3)
МЗс	0.3334	0.6667	0.059(1)	6	0.10	1.1(8)
N	0	0	0	3	0.50	6.7(8)
N1a	0.1145(4)	0.2291(5)	0.1515(2)	18	0.48	2.8(2)
N1b	0.5685(5)	0.4315(5)	0.1717(3)	18	0.52	3.3(3)
N3a	0.4667(3)	0.2333(2)	0.0463(1)	18	0.14	1.61(1)
N3b	0.502(2)	0.251(1)	0.0523(6)	18	0.88	6.3(3)
N5a	0.257(2)	0.515(2)	0.168(1)	18	0.10	3(2)*
N5b	0.213(2)	0.607(1)	0.152(1)	18	0.10	4(3)*
N5c	0.357(3)	0.589(3)	0.163(2)	36	0.10	3(1)*
X1a	0.6667	0.3334	0.151(2)	6	0.30	2.6(6)*
X1b	0.6667	0.3334	0.098(2)	6	0.70	7.9(8)
(O,OH)1	0.3334	0.6667	0.1545(7)	6	0.76	7.8(1)
(O,OH)2	0.213(2)	0.607(2)	0.005(2)	18	0.14	3(2)*
(O,OH)3	0.623(6)	0.312(4)	-0.000(2)	18	0.10	3(2)*

Таблица 2. Координаты атомов, кратность (Q) и заселенность (q) позиций и эквивалентные/изотропные параметры атомных смещений ($B_{_{3KB/ИЗO}}$)

Примечание. Здесь и в табл. 3 нумерация катионных позиций соответствует ацентричной группе R3m.

координацию плоского квадрата. Плечо при 545 см⁻¹ соответствует небольшой примеси Fe^{2+} в координации плоского квадрата. Колебания *М*2-катионов, имеющих октаэдрическую координацию, не проявляются в ИК-спектре, так как их полосы экранированы более интенсивными полосами Si–O–Si-деформационных колебаний (ниже 500 см⁻¹).

ОПИСАНИЕ СТРУКТУРЫ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Основные особенности состава и строения минерала отражены в его кристаллохимической формуле (Z= 3), которая находится в хорошем согласии с эмпирической: [Na_{11.37}(H₃O)_{1.5}K_{0.75}Ln_{0.78}] [(H₃O)_{0.5}] [Ca_{5.37}Y_{0.63}][Si₂₄O₇₂][Zr₃] [(^{IV}Fe_{0.9}^{VI}Mn_{1.2}) ^{VII}Na_{0.9}][Si_{1.52}(Al_{0.2}Nb_{0.28})](O,OH)₃Cl_{0.6} · 1.4H₂O,

НОВЫЕ ДАННЫЕ ОБ ИЗОМОРФИЗМЕ

Позиция	Состав	КП	Расстояния катион-анион					
	Состав	K1	Минимальное	Максимальное	Среднее			
М	3Zr	6	2.04(1)	2.083(6)	2.065			
M1	5.37Ca + 0.63Y	6	2.276(8)	2.381(6)	2.323			
M2a	0.9Fe	4	2.130(4)	2.130(4)	2.130			
	1.2Mn	6	2.130(4)	2.62(2)	2.290			
M2b	0.9Na	7	2.23(4)	2.96(3)	2.650			
МЗа	1.52Si	4	1.68(1)	1.65(4)	1.670			
M3b	0.28Nb	6	1.81(1)	1.87(3)	1.840			
МЗс	0.2Al	6	1.59(1)	1.84(7)	1.710			
T1	1Si	4	1.58(1)	1.63(1)	1.610			
<i>T</i> 2	1Si	4	1.58(1)	1.62(1)	1.610			
<i>T</i> 3	1Si	4	1.57(1)	1.62(1)	1.600			
N	0.5H ₃ O	12	2.835(8)	2.978(9)	2.906			
N1a	2.13Na + 0.75K	9	2.54(1)	2.96(2)	2.650			
N1b	3.12Na	7	2.438(9)	2.66(1)	2.560			
N3a	0.78 <i>Ln</i>	9	2.38(6)	2.959(9)	2.620			
N3b	5.22Na	5	2.44(3)	2.94(2)	2.750			
N5a	0.6Na	6	2.0(1)	2.8(1)	2.410			

Таблица 3. Характеристика некоторых полиэдров в ключевых позициях структуры

где квадратными скобками выделены составы ключевых позиций структуры, а римскими цифрами обозначены КЧ катионов. Идеализированная формула (Z = 3): [(Na,H₃O)_{13.5}*REE*_{1.5}]Ca₆Mn₂Zr₃[Si_{25.5}O_{73.5}]Cl · H₂O.

Каркас минерала аналогично другим представителям группы эвдиалита [1] состоит из колец Si_9O_{27} , Si_3O_9 и Ca_6O_{24} и объединяющих их изолированных ZrO₆-октаэдров. Позиция *М* полностью занята атомами Zr с небольшой примесью Hf. Недостающее до шести атомов количество Ca

Рис. 2. МпО₆-октаэдры в структурах манганоэвдиалита и образца 7639.

КРИСТАЛЛОГРАФИЯ том 65 № 1 2020

в М1-позиции восполняется за счет Ү. Остальные катионы распределяются по позициям в полостях каркаса. Особенностью состава образца является высокое содержание марганца, который занимает одну из ключевых позиций структуры М2. Она располагается в пространстве между соседними шестичленными кольцами Са-октаэдров, образующих своими ребрами плоский квадрат. В центре квадрата находится позиция *M2a*, занятая атомами железа и марганца, а по обе стороны от него на расстоянии 2.16(4) Å локализована M2b-позиция атомов Na. Если координационная сфера атомов железа представляет собой плоский квадрат с расстояниями Fe-O 2.13 Å, то для атомов марганца он дополняется до октаэдра атомами кислорода, отстоящими от квадрата на 2.62 Å (среднее для октаэдра расстояние – 2.29 Å) (рис. 2). Координационный полиэдр Na построен на основе того же квадрата и дополнен атомами кислорода до семивершинника со средним расстоянием Na-O, равным 2.65 Å. Связанные центром симметрии позиции Na находятся на расстоянии более 4 Å, и оба полиэдра могут существовать одновременно, статистически замещая Fe(Mn)-полиэдры. Среди конкурирующих катионов в этой микрообласти доминирует Mn²⁺.

Позиция *M*3, располагающаяся на оси третьего порядка, расщеплена на три подпозиции, находящиеся на коротких расстояниях M3a-M3b == 1.25(4), M3a-M3c = 1.74(2) и M3b-M3c = 0.49 Å и занятые Si, Nb и Al соответственно при домини-

Минерал	<i>N</i> 1	N2	<i>N</i> 3	<i>N</i> 4	<i>N</i> 5	<i>M</i> 2	М3	<i>M</i> 4	<i>X</i> 1	<i>X</i> 2	Литература
Манганоэвдиалит	Na	Na	Na	Na	Na	Mn^{VI}	Si	Si	H_2O	H_2O	[5]
Илюхинит	H_3O	Na	H_3O	Na	H_3O	Mn^V	Si	Si	H_2O	H_2O	[6]
Гидратированный эвдиалит-6	Na	H_3O	H_3O	H_3O	OH	Mn^V	Si	Si	H_2O	H_2O	[7]
Образец 7639	Na	Na	Na	Na	H_3O	$Mn^{VI} \\$	Si	Si	H_2O	H_2O	Настоящая
											работа

Таблица 4. Доминирующий состав внутрикаркасных ключевых позиций в структурах изоморфного ряда манганоэвдиалит—илюхинит и его промежуточных членов

ровании атомов Si. Позиции для крупных катионов тоже расщеплены на две или три подпозиции. Позиции N1a и N1b находятся на расстоянии 0.50(1) Å друг от друга и заняты преимущественно атомами Na с примесью K. В позиции N3a и N3b, находящиеся на расстоянии 0.47(2) Å, входят атомы лантаноидов и натрия соответственно. Подпозиции расщепленной позиции N5 заняты преимущественно оксониевыми группами и частично атомами Na.

Исследованный образец по составу наиболее близок к голотипу манганоэвдиалита [5] из Минас-Жераис (Бразилия), в котором заполнение *M*2-микрообласти атомами Fe, Mn и Na аналогично образцу 7639. Доминирующие атомы Mn также формируют полиэдр на базе квадрата с дополнением его до октаэдра двумя атомами O на расстоянии 2.78 Å со средним для октаэдра расстоянием Mn–O, равным 2.30 Å (рис. 2). Различие лишь в том, что статистически замещающие полиэдры Fe и Na – пятивершинники.

Отличие в заполнении этой микрообласти в структуре илюхинита из Хибинского массива более существенное. В этом минерале атомы Fe и Mn занимают одну общую позицию в пятивершиннике при доминировании Mn и отсутствии Na. Оксониевые группы входят во все *N*-позиции наряду с атомами натрия, доминируя в трех из них (*N*1, *N*3, *N*5). Аналогично в гидратированном образце-6 из Кондерского массива (Хабаровский край) имеет место заполнение позиции *M*2-пятивершинника атомами железа и марганца с преобладанием последних, а среди *N*-позиций оксоний-доминантными являются *N*2, *N*3 и *N*4.

Несмотря на индивидуальные особенности распределения примесных катионов, в ключевых *M*-позициях всех четырех образцов доминируют однотипные катионы (табл. 4). Различие между этими минералами в заселенности крупных полостей катионами натрия и изоморфно замещающих их оксониевых групп говорит о разной степени гидратации образцов и позволяет судить об особенностях генезиса манганоэвдиалита, наиболее гидратированного илюхинита и двух промежуточных разновидностей. Изучение структуры образца 7639 позволяет сделать вывод, что илюхинит скорее всего образовался в результате гидролитического изменения манганоэвдиалита, и образец 7639 — продукт промежуточной стадии этого процесса.

Проблема центросимметричности эвдиалитов связана не только с особенностями их генезиса в высокотемпературных условиях кристаллизации, но и с их составом. Как правило, высокосимметричные образцы характеризуются относительно простым химическим составом (без существенных примесей). Из ~80 структурно охарактеризованных образцов [1] к центросимметричным эвдиалитам относятся: эвдиалит, исследованный Джузеппетти [8], фенченит [9], цирконо-ниобосиликат [10], Na-эвдиалит-3043 [2] и несколько высококремнистых образцов, исследованных Йонсеном и Грайсом [11], а также семь 24-слойных образцов с удвоенной ячейкой. По мнению авторов [11], решающим фактором центросимметричности структуры является высокое содержание в ней кремния. Однако исследования большого числа образцов показали, что только на основании этого критерия нельзя структуру эвдиалита считать центросимметричной. Среди структур, в которых сохраняется центр симметрии, фенченит содержит всего 25 атомов кремния, образец 3043 – 25.1, образец Джузеппетти характеризуется еще более низким содержанием кремния (~24 атома Si), как и цирконо-ниобосиликатный минерал (24.4 атома Si). В МЗ- и М4позициях в структуре эвдиалита Джузеппетти находятся атомы циркония, а в цирконо-ниобосиликатном минерале в этих позициях доминируют атомы титана. И наоборот, в исследованном давинчиите [12] – максимально кремнеземистом эвдиалите (26 атомов Si) – причина ацентричности структуры заключается в упорядочении атомов К и Na и преимушественном их вхождении соответственно в позиции N3 и N4, которые связаны псевдоцентром симметрии. В образцах, представленных в табл. 4, общее количество кремния изменяется в небольших пределах (25.21-25.52 атома, Z = 3). Однако три из них ацентричны (пр. гр. R3m и R3), и только образец 7639 центросимметричен (пр. гр. *R*3*m*).

Количество кремния, дополнительного к 24 атомам колец кремнекислородных тетраэдров, участвующих в построении гетерополиэдриче-

ского каркаса, влияет на тип М2-полиэдра. В высококремнистых образцах, как, например, в давинчиите, M2-позиция представлена Fe в квалкоординации. При статистической ратной заселенности полиэдров на оси третьего порядка октаэдрическими катионами вокруг этой оси возникают позиции для дополнительных атомов кислорода (или ОН-групп), координирующих эти катионы, которые становятся общими для М2-полиэдров, дополняя "квадратную" координацию до пяти- или шестивершинников. В манганоэвдиалите и образце 7639 вокруг атомов Мп формируются октаэдры, а в структуре илюхинита и его разновидности – Мп-пятивершинники. Учитывая, что данные ИК-спектроскопии указывают на присутствие в образце 7639 разновалентного железа, можно предположить, что трансформация октаэдров в пятивершинники связана с тем, что гидролиз манганоэвдиалита сопровожлается изменением отношения Fe²⁺:Fe³⁺ в соселней подпозиции.

выводы

Полученные данные и их сравнение с полученными ранее результатами рентгеноструктурного исследования Mn-доминантных (в позиции M2) высококремниевых минералов группы эвдиалита позволяют сделать вывод о том, что гидролиз манганоэвдиалита в природных гидротермальных системах сопровождается постепенным замещением ионов Na⁺ на H₃O⁺ и трансформацией октаэдра MnO₆ в тетрагональную пирамиду MnO₅. Наличие или отсутствие центра симметрии в таких минералах не связано со степенью гидролитического изменения манганоэвдиалита.

Работа выполнена при поддержке Министерства науки и высшего образования в рамках Государственного задания ФНИЦ "Кристаллография и фотоника" РАН с использованием оборудования ЦКП ФНИЦ "Кристаллография и фотоника" РАН при поддержке Министерства науки и высшего образования (проект RFMEFI62119X0035) в части рентгеноструктурного анализа, Российского фонда фундаментальных исследований в части кристаллохимического анализа микропористых минералов группы эвдиалита (проект № 18-29-12005) и в части ИК-спектроскопии и анализа химического состава (проект № 18-29-12007 мк).

СПИСОК ЛИТЕРАТУРЫ

- 1. Расцветаева Р.К., Чуканов Н.В., Аксенов С.М. Минералы группы эвдиалита: кристаллохимия, свойства, генезис. Нижний Новгород: Изд-во НГУ, 2012. 229 с.
- 2. Розенберг К.А., Расцветаева Р.К., Верин И.А. // Кристаллография. 2009. Т. 54. № 3. С. 446.
- 3. *Андрианов В.И.* // Кристаллография. 1987. Т. 32. Вып. 1. С. 228.
- Чуканов Н.В., Расцветаева Р.К., Розенберг К.А. и др. // Записки РМО. 2016. Т. 145(2). С. 44.
- 5. *Номура С.Ф., Атенсио Д., Чуканов Н.В. и др.* // Зап. Рос. минерал. о-ва. 2010. Ч. 139. № 4. С. 35.
- Расцветаева Р.К., Розенберг К.А., Чуканов Н.В., Аксенов С.М. // Кристаллография. 2017. Т. 62. № 1. С. 69.
- 7. Rozenberg K.A., Rastsvetaeva R.K., Khomyakov A.P. // Eur. J. Mineral. 2005. V. 17. P. 875.
- 8. *Giuseppetti G., Mazzi F., Tadini C. //* Tshermaks Mineral. Petrogr. Mitt. 1971. V. 1. P. 6.
- Shen G., Xu J., Yao P., Li G. // Mineral. Mag. 2011. V. 75. P. 2887.
- 10. Расцветаева Р.К., Аксенов С.М., Чуканов Н.В. // Докл. РАН. 2010. Т. 432. № 5. С. 639.
- Johnsen O.E., Grice J.D. // Can. Mineral. 1999. V. 37. № 4. P. 865.
- Расцветаева Р.К., Розенберг К.А., Хомяков А.П. // Докл. РАН. 2009. Т. 424. № 1. С. 53.