СТРУКТУРА ОРГАНИЧЕСКИХ _ СОЕДИНЕНИЙ

УДК 548.737

ПРОТОТРОПНАЯ ТАУТОМЕРИЯ САЛИЦИЛИДЕНИМИНОВ: КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА 3,5-ДИХЛОРСАЛИЦИЛИДЕНАЛЛИЛИМИНА

© 2020 г. В. С. Сергиенко^{1,2,*}, В. Л. Абраменко³, Ю. Е. Горбунова¹

¹Институт общей и неорганической химии РАН, Москва, Россия ²Всероссийский институт научной и технической информации РАН, Москва, Россия ³Луганский национальный университет, Луганск, Украина *E-mail: sergienko@igic.ras.ru Поступила в редакцию 28.05.2018 г. После доработки 28.05.2018 г. Принята к публикации 21.11.2018 г.

Проведены синтез и рентгеноструктурный анализ азометина, производного 3,5-дихлорсалицилового альдегида и аллиламина. В соединении реализуется енолиминная таутомерная форма (атом водорода локализован рядом с атомом кислорода). Структура стабилизирована внутримолекулярной водородной связью O(1)–H(1*A*)···N(1) (O–H 0.82 Å, H···N 1.91 Å, O···N 2.580 Å, угол O–H–N 138°).

DOI: 10.31857/S0023476120010233

ВВЕДЕНИЕ

Результаты многочисленных исследований показали, что в растворах органических растворителей салицилиденимины (*о*-оксиазометины) существуют в виде равновесной смеси различных

таутомеров (а–в), соотношение между которыми зависит от природы растворителей и азометинов [1–3]. При их кристаллизации из растворов возможна фиксация следующих таутомерных форм:

В некоторых случаях салицилиденимины кристаллизуются в виде смеси равновесных таутомерных ОН- и NH-форм, содержание каждой из которых колеблется при изменении температуры [4, 5].

В настоящем сообщении представлены результаты синтеза и рентгеноструктурного анализа (**PCA**) азометина, производного 3,5-дихлорсалицилового альдегида и аллиламина (**I**).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез I. К раствору 1.91 г (0.01 моль) 3,5-дихлорсалицилового альдегида в 20 мл этанола добавляли 0.57 г (0.01 моль) аллиламина. Смесь кипятили в течение 10 мин и оставляли для кристаллизации в холодильнике на сутки. Выпавшие кристаллы желтого цвета фильтровали с помощью фильтра Шотта, промывали холодным этанолом и сушили в токе сухого аргона, $T_{\rm пл} = 54-55^{\circ}{\rm C}$.

ИК-спектр I регистрировали на спектрометре ИКС-29 в суспензии вазелинового масла. ИК-спектр представлял собой набор полос: 1645, 1627, 1600, 1575, 1320, 1300, 1280, 1220, 1180, 1100, 1030, 990, 930, 880, 868, 852, 820, 740, 710, 640, 562, 460 см⁻¹.

Рентгеноструктурный анализ

Экспериментальный материал для кристаллов I получен на автоматическом дифрактометре Enraf

Брутто-формула	C ₁₀ H ₈ Cl ₂ NO		
M	229.07		
Цвет	Желтый		
Размер кристалла, мм	$0.13 \times 0.11 \times 0.03$		
Сингония, пр. гр.	Моноклинная, <i>P</i> 2 ₁ / <i>c</i>		
<i>a</i> , <i>b</i> , <i>c</i> , Å	4.2575(1), 12.177(1),		
	20.734(1)		
β, град	93.24(1)		
<i>V</i> , Å ³	1073.2(3)		
Ζ	4		
$ρ_{\rm выч}$, γ/см ³	1.418		
μ, мм ⁻¹	5.166		
<i>F</i> (000)	468		
<i>Т</i> , К	293(2)		
Излучение; λ, Å	CuK_{α} ; 1.54178		
Тип сканирования	ω		
θ, град	4.21-64.94		
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-1 \le h \le 5, -14 \le k \le 14,$ $-24 \le l \le 24$		
Поправка на поглощение	Полуэмпирическая		
T_{\min}, T_{\max}	0.5532, 0.8604		
Число отражений: измерен-	2920/1419/711, 0.2269		
ных/независимых $(N_1)/c$			
$I \ge 2\sigma(I) (N_2), R_{int}$	7		
Метод уточнения	$\Pi O F^2$		
Число уточняемых параметров	132		
S	1.037		
R_1/wR_2 по N_1	0.0738/0.2016		
R_1/wR_2 по N_2	0.1422/0.2590		
Коэффициент экстинкции	0.009(2)		
$\Delta \rho_{\min}, \Delta \rho_{\max}, \Im/Å^3$	-0.321, 0.321		

Таблица 1. Кристаллографические данные, основные характеристики эксперимента и результаты уточнения параметров структуры I

Nonius CAD-4. Структура расшифрована прямым методом и уточнена методом наименьших квадратов в полноматричном анизотропном приближении тепловых смещений всех атомов, кроме атомов водорода (SHELXL-97) [6]. Позиции атомов водорода рассчитаны геометрически и уточнены с использованием модели "наездника". Атом H(1A) в структуре I найден из разностного синтеза Фурье и уточнен в изотропном приближении тепловых смешений. Параметры элементарной ячейки и основные характеристики эксперимента приведены в табл. 1, межатомные расстояния и валентные vглы в табл. 2. Полные _ кристаллографические характеристики депонированы в Кембриджский банк структурных данных (CCDC № 1844695; http://www.ccdc.cam.ac.uk/deposit/).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Подавляющая часть рентгеноструктурных исследований обсуждаемого класса соединений относится к салицилилен-N-(арил- или гетарил-)иминам (*R*-производным ароматических или гетероциклических аминов). Салицилиденалкилиминам (*R*-алкилам) посвящено значительно меньше публикаций. В частности, авторы [7] методом РСА определили, что 2,3-дигидроксибензилиденаллилимин кристаллизуется в енолиминной форме. Проведенный РСА о-оксиазометинов, производных замещенных салициловых альдегидов, и 2-фурфуриламина ($R = CH_2C_4H_4O$) показал. что в зависимости от приролы и положения заместителя в альдегидном фрагменте в кристалле азометина реализуется либо енолиминная (Z == 3-OMe) (II) [8], либо биполярная цвиттер-ионная (Z = 4-OH) (III) таутомерная форма [9]. Хинонаминная форма с вкладом биполярной определена в структуре 3-нитро-5-бромсалицилиден-2-фурфурилимина (IV) [10].

В описанной в настоящей работе кристаллической структуре соединения I, как и в II, реализу-

Таблица 2. Длины связей и валентные углы в структуре

Связь	d, Å	Связь	d, Å	Угол	ω, град	Угол	ω, град
Cl(1)–C(3)	1.722(7)	C(2)–C(3)	1.374(9)	C(4)–O(1)–H(1A)	105(5)	O(1)-C(4)-C(5)	120.7(7)
Cl(2)–C(1)	1.731(7)	O(1)–C(4)	1.339(7)	C(7)–N(1)–C(8)	118.1(7)	C(3) - C(4) - C(5)	118.9(6)
C(3)–C(4)	1.388(10)	C(4)–C(5)	1.425(9)	C(6)-C(1)-C(2)	120.9(7)	C(6) - C(5) - C(4)	117.5(7)
O(1)-H(1A)	0.82(7)	C(5)–C(6)	1.399(9)	C(6)-C(1)-Cl(2)	120.4(6)	C(6) - C(5) - C(7)	121.1(7)
N(1)-C(7)	1.277(8)	C(5)–C(7)	1.456(10)	C(2)-C(1)-Cl(2)	118.7(7)	C(4) - C(5) - C(7)	121.3(6)
N(1)–C(8)	1.460(11)	C(8)–C(9)	1.476(12)	C(1)-C(2)-C(3)	119.8(8)	C(1) - C(6) - C(5)	121.5(7)
C(1)–C(6)	1.360(10)	C(9)-C(10)	1.292(13)	C(2) - C(3) - C(4)	121.2(6)	N(1)-C(7)-C(5)	120.8(7)
C(1)–C(2)	1.362(10)			C(2)-C(3)-Cl(1)	119.3(6)	N(1)-C(8)-C(9)	110.4(9)
				C(4) - C(3) - Cl(1)	119.5(5)	C(10)-C(9)-C(8)	123.1(10)
				O(1)-C(4)-C(3)	120.3(6)		

Рис. 1. Строение молекулы I.

ется енолиминная таутомерная форма (а) (атом водорода H(1A) локализован рядом с атомом кислорода O(1)). Длины связей в структуре I (O(1)– C(4) 1.339(7), N(1)–C(7) 1.277(8) Å) сопоставимы с аналогичными величинами в структуре II (O–C 1.352(2), N–C 1.275(2) Å). В структуре IV, в которой связи N–C 1.278(7) \pm 0.014 Å, как и в I, II, имеют повышенную кратность, существенен вклад хинонаминной формы (атом H локализован рядом с атомом N). Тем не менее длинная связь N–H 1.07(9) Å в структуре IV свидетельствует о значительной доле цвиттер-ионной биполярной таутомерной формы. В структуре III обе кристаллографически неэквивалентные молекулы имеют цвиттер-ионную форму (O–H 0.91(8) \pm

 \pm 0.04 Å, N–C 1.301(7) \pm 0.003 Å, O–C 1.349(7) \pm \pm 0.001 Å). Отметим, что связи О–С в структуре III существенно длиннее, чем в I, II, IV.

В структуре I, как и в II–IV, замыкается шестичленный H-цикл NC₃OH за счет прочной внутримолекулярной водородной связи O(1)–H(1A)···N(1) (O–H 0.82(7) Å, H···N 1.91(7) Å, O···N 2.580(9) Å, угол O–H–N 138(7)°).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Брень В.А., Минкин В.И.* // Изв. вузов. Химия и хим. технол. 1982. Т. 25. № 6. С. 665.
- 2. *Minkin V.I., Olekhnovich L.P., Zhdanov Yu.A.* Molecular Design of Tautomeric Compounds. Doldrecht, Boston, Tokio: D. Reidel, 1988. 271 p.
- 3. Гарновский А.Д., Гарновский Д.А., Васильченко И.С. и др. // Успехи химии. 1997. Т. 66. № 5. С. 434.
- 4. *Ogawa K., Fujiwara T., Harada J.* // Mol. Cryst. Liq. Cryst. Sci. Technol. A. 1999. V. 344. № 1. P. 169.
- Elerman Y., Kabak M., Kavlakoglu E. et al. // J. Mol. Struct. 1999. V. 510. № 1–3. P. 207.
- 6. *Sheldrick G.M.* // Acta Cryst. A. 2008. V. 64. № 1. P. 112.
- Rudbari H.A., Khorshidifard M., Askari B. et al. // Polyhedron. 2015. V. 100. P. 180.
- Сергиенко В.С., Абраменко В.Л., Горбунова Ю.Е., Чураков А.В. // Журн. неорган. химии. 2017. Т. 62. № 2. С. 180.
- 9. Сергиенко В.С., Абраменко В.Л, Горбунова Ю.Е. // Журн. неорган. химии. 2017. Т. 62. № 8. С. 1043.
- 10. Сергиенко В.С., Абраменко В.Л., Горбунова Ю.Е. // Кристаллография. 2019. Т. 64. № 1. С. 68.