_ ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ

УДК 541.135.4

ОПТИМИЗАЦИЯ СОСТАВОВ ТВЕРДЫХ ЭЛЕКТРОЛИТОВ Pb_{1-x}R_xF_{2+x} Со структурой флюорита по проводимости и термической устойчивости

© 2020 г. Н. И. Сорокин^{1,*}, Б. П. Соболев¹

¹Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

**E-mail: nsorokin1@yandex.ru* Поступила в редакцию 21.05.2018 г. После доработки 28.06.2018 г. Принята к публикации 28.06.2018 г.

Оптимизация составов нестехиометрических фаз $Pb_{1-x}R_xF_{2+x}$ (тип CaF_2 , R – редкоземельные элементы) по ионной проводимости и термической устойчивости основана на температурных измерениях электропроводности монокристаллов и сплавов в зависимости от их ионного радиуса R^{3+} и содержания RF_3 и на исследовании фазовых диаграмм систем PbF_2-RF_3 . Показано, что среди фаз $Pb_{1-x}R_xF_{2+x}$ максимальные значения проводимости $\sigma_{500 \text{ K}} = 9.3 \times 10^{-3} \text{ и } 2.0 \times 10^{-2} \text{ См/см и } \sigma_{293 \text{ K}} = 1.4 \times 10^{-6} \text{ и } 1.5 \times 10^{-4} \text{ См/см имеют кристаллы } Pb_{0.95}Yb_{0.05}F_{2.05}$ и $Pb_{0.9}Sc_{0.1}F_{2.1}$ соответственно. Твердый электролит $Pb_{0.9}Sc_{0.1}F_{2.1}$ обладает величиной $\sigma_{293 \text{ K}}$, достаточной для использования во фтор-ионных сенсорах и источниках тока, функционирующих при комнатной температуре.

DOI: 10.31857/S0023476120010245

ВВЕДЕНИЕ

В [1-3] рассматривался прием нарушения стехиометрии гетеровалентными изоморфными замещениями M^{2+} (M =Ca, Sr, Ba, Cd) на R^{3+} (R редкоземельные элементы Sc, Y, La-Lu – P3Э) в катионном мотиве структурного типа флюорита $(CaF_2, пр. гр. Fm\overline{3}m)$ для оптимизации качественного (M, R) и количественного (x - мольная доля RF_3) состава фаз $M_{1-x}R_xF_{2+x}$ по максимальной величине ионной проводимости σ_{dc} (dc – direct current) и термической устойчивости монокристаллов. Полученные значения σ_{dc} при 500 К для наиболее проводящих составов флюоритовых фаз $M_{1-x}R_xF_{2+x}$ (*M* = Ca, Sr, Ba, Cd) достигают $\sigma_{500 \text{ K}}$ = $= 10^{-4} - 10^{-3}$ См/см [4-11], поэтому они являются фтор-проводящими твердыми электролитами (ФТЭЛ) для решения практических задач [12, 13] в области средних (200-500°С) и высоких (>500°С) температур.

При комнатной температуре (293 К) для всех оптимизированных составов $M_{1-x}R_xF_{2+x}$ (M = = Ca, Sr, Ba, Cd) проводимость $\sigma_{293 \text{ K}}$ не превышает 10⁻⁷ См/см [4–11]. Отсюда следует вывод о непригодности использования при 293 К в качестве ФТЭЛ для химических сенсоров и твердотельных источников тока ни одного изученного состава этих нестехиометрических флюоритовых фаз. Та-

ким образом, нарушения стехиометрии во всех кристаллических флюоритовых матрицах MF_2 (M = Ca, Sr, Ba, Cd) с перечисленными выше катионными замещениями M^{2+} на R^{3+} не решают задачу получения проводящих при комнатной температуре флюоритовых $\Phi T \Im Л$.

В структурном типе флюорита кристаллизуется также дифторид свинца PbF₂. Кондуктометрические данные в ряду флюоритовых матриц CaF₂–SrF₂–BaF₂–CdF₂–PbF₂ [14, 15] свидетельствуют, что уменьшение степени ионности химической связи от CaF₂ к PbF₂ сопровождается ростом фтор-ионной проводимости. Эта тенденция направляет дальнейший поиск новых ФТЭЛ, обладающих высокими значениями σ_{dc} , на семейство флюоритовых фаз Pb_{1-x} R_x F_{2+x}.

Во всех 16 системах PbF₂–*R*F₃ (R = 16 P3Э Sc, Y, La–Lu, система с Pm не изучалась) образуются широкие поля устойчивости флюоритовых нестехиометрических фаз Pb_{1-x} R_x F_{2+x}. Области гомогенности фаз меняются по ряду P3Э, как и склонность к распаду при понижении температуры. Для оценки характеристик, определяющих условия получения монокристаллов и возможного практического применения флюоритовых фаз Pb_{1-x} R_x F_{2+x}, будут использованы данные из фазовых диаграмм систем PbF₂–*R*F₃ [16, 17]. Ранее проводимость фаз $Pb_{1-x}R_xF_{2+x}$ (R - P3Э) практически всегда исследовалась на поликристаллических образцах, полученных методом твердофазного синтеза [18–23]. В [18] в поликристаллы PbF₂ вводили до 2 мол. % YF₃ при 850°C с эффектом роста σ_{dc} . В [19, 22] определены предельные растворимости RF_3 в PbF₂ для R = La(45 ± 3 мол. %), Gd (30 мол. %), Lu (25 мол. %), Y (25 мол. %) при 750–850°C и изучена ионная проводимость этих флюоритовых фаз (на поликристаллах).

О недостатках поликристаллической формы ФТЭЛ сказано в [24]: наличие пористости, существование протяженных границ зерен (способствуют пирогидролизу фторидов), необходимость технологической операции формования порошков и разделение вкладов внутризеренной (объемной) и межзеренной (поверхностной) проводимостей. Отметим, что в исследованиях [18–23] необходимое для поликристаллов $Pb_{1-x}R_xF_{2+x}$ разделение вкладов внутри- и межзеренной провводимостей, как правило, не делалось. В результате полученные на таких образцах данные по ионной проводимости фаз $Pb_{1-x}R_xF_{2+x}$ (например, $Pb_{1-x}Y_xF_{2+x}$ [19–21, 23]) противоречивы.

Получение монокристаллов $Pb_{1-x}R_{x}F_{2+x}$ осложняется рядом факторов, отсутствующих для кристаллов на основе фторидов щелочноземельных элементов (ШЗЭ). Основную технологическую сложность вносит высокая упругость паров PbF2 в сочетании с высокими температурами плавления *R*F₃ цериевой подгруппы и скандия. Также особенностью поведения расплавов дифторида свинца в контакте с графитовым тиглем при росте кристаллов является его частичное восстановление до металлического свинца. В свою очередь загрязнение кислородом исходных RF_3 и пирогидролиз в процессе роста кристаллов из расплавов на основе фторида свинца проявляются не в сильной степени. Это вызвано самоочисткой расплава, с учетом которой при промышленном росте кристаллов фторидов ЩЗЭ принято применять к фторидным расплавам добавку PbF₂ в количестве 2-5 мас. %. Дифторид свинца реагирует с примесями оксидов:

$$PbF_2 + CaO \rightarrow CaF_2 + PbO\uparrow$$
.

образуя фторид и летучий PbO [16, 25].

Ранее была изучена ионная проводимость слаболегированных монокристаллов PbF_2 с 0.01 до 0.5 мол. % трифторидами Pr, Sm, Eu, Tb, Er (рост кристаллов из расплава) [26] и небольших (1 × 1 × × 1 мм³) монокристаллов концентрированных твердых растворов $Pb_{1-x}Y_xF_{2+x}$ (x = 0.1, 0.2) [27], полученных методом твердофазного синтеза.

Систематическое выращивание монокристаллов нестехиометрических фаз $Pb_{1-x}R_xF_{2+x}$ [28]

КРИСТАЛЛОГРАФИЯ том 65 № 1 2020

проводили из расплава методом направленной кристаллизации Бриджмена только в Институте кристаллографии РАН в рамках программы по получению многокомпонентных фторидных материалов и исследования их структуры и свойств. Проведенные кондуктометрические исследования флюоритовых фаз Pb_{1-x}*R*_xF_{2+x} [7, 11, 29, 30] базируются на измерениях широкого круга монокристаллов (в некоторых случаях сплавов) из областей гомогенности этих фаз в рамках этой исследовательской программы. Полученные репозволили впервые зультаты предпринять систематический поиск кристаллов и оптимизацию состава флюоритовых ФТЭЛ на основе матрицы α-PbF₂, обладающих высокими значениями σ_{dc} .

Целью работы является оптимизация составов семейства флюоритовых нестехиометрических фаз $Pb_{1-x}R_xF_{2+x}$ ($R - P3\Theta$) по проводимости и термической стабильности для выбора перспективных ФТЭЛ для полностью твердотельных электрохимических устройств в среднетемпературной области и при комнатной температуре.

ФЛЮОРИТОВАЯ МОДИФИКАЦИЯ α-PbF₂

Свинец принадлежит IV группе (главной подгруппе) Периодической системы элементов, однако его типичным валентным состоянием во фторидах является 2+. Электронное строение катиона Pb²⁺ отличается от других ионов M^{2+} (M == Ca, Sr, Ba, Cd) наличием неподеленной электронной пары. Это является причиной его высокой поляризуемости.

Существенная ковалентизация химических связей в PbF₂ (по сравнению с фторидами ЩЗЭ и Cd) сопровождается резким понижением температуры плавления ($826 \pm 5^{\circ}$ C). Она примерно на 640°C ниже, чем у наиболее тугоплавкого из фторидов ЩЗЭ SrF₂ (1464 ± 5°C). Структурный тип флюорита резко теряет термическую стабильность при переходе от фторидов ЩЗЭ (II группа, главная подгруппа Периодической системы элементов) и фторида кадмия (II группа, побочная подгруппа) к фториду свинца (IV группа, главная подгруппа).

Фторид свинца является единственным MF_2 , имеющим полиморфный переход при нормальном давлении. Низкотемпературная модификация кристаллизуется в типе котуннита PbCl₂ (ромбическая сингония, пр. гр. *Pmna*). При 335— 360°С ([16] и ссылки в ней) она переходит в высокотемпературную модификацию типа CaF₂. В литературе ее принято обозначать как β-PbF₂. Будем придерживаться мнения, что модификация, существование которой ограничивается плавлением, должна обозначаться первой буквой грече-

Рис. 1. Флюоритовые нестехиометрические фазы $Pb_{1-x}R_xF_{2+x}$ в системах PbF_2-RF_3 : *1* – области гомогенности при перитектических (R = La - Gd) и эвтектических (R = Tb - Lu, Y, Sc) температурах; 2 – составы с конгруэнтным плавлением (R = Tb - Y); 3 – составы флюоритовых фаз, насыщенных при 600°С [16, 17]; 4 – составы с изученными электрофизическими характеристиками (табл. 1). Римскими цифрами обозначены морфотропные подгруппы RF₃ (a); фазовая диаграмма системы PbF₂-YF₃ [20] и точки на рис. а (б).

ского алфавита (α -PbF₂) и будем пользоваться этим в дальнейшем.

Модификация α -PbF₂ легко переохлаждается и сохраняется в метастабильном состоянии при комнатной температуре. Параметр решетки α-PbF₂ зависит от условий охлаждения и меняется в интервале *a* = 5.920–5.940 Å. Как и другие флюоритовые MF₂, PbF₂ имеет "размытый" фазовый переход, выражающийся в частичном разупорядочении анионной подрешетки, с которым связана фтор-ионная проводимость. Максимум аномалии теплоемкости, соответствующий «размытому» переходу, по разным данным приходится на 705 [31], 710 [32], 715 [33], 718 [34], 721 К [35] (среднее значение ~715 К) с шириной пика 150-200 К. По геометрии решетки α-PbF₂ с *a* = 5.940 Å располагается в гомологическом ряду MF_2 между SrF₂ (5.800 Å) и BaF₂ (6.200 Å).

ОПТИМИЗАЦИЯ ФТЭЛ Рb_{1-x}R_xF_{2+x} ПО ТЕРМИЧЕСКОЙ СТАБИЛЬНОСТИ И ПРОВОДИМОСТИ

Термическая стабильность

Системы $PbF_2 - RF_3$, несмотря на высокую упругость паров компонента PbF₂, были изучены в приближении конденсированных систем при ограничении содержаниями RF_3 от 0 до 60 мол. %. Фазовые диаграммы систем PbF₂-RF₃ публиковались в разное время: PbF₂-YF₃ [20], PbF₂-YbF₃ [36], участки систем $PbF_2 - RF_3$ с содержанием от 0 до 60 мол. % RF_3 с R = Nd, Tb, Dy, Ho, Lu [37], данные по системам PbF₂-HoF₃ и PbF₂-YbF₃ представлены в [38]. Нами суммированы опубликованные и неопубликованные данные по этому ряду систем. Построенные фазовые диаграммы всего ряда систем $PbF_2 - RF_3$ собраны в [16, 17].

На рис. 1а точками 1 (перечеркнутые кружки) представлено изменение областей гомогенности насыщенных твердых растворов $Pb_{1-x}R_xF_{2+x}$ по ряду РЗЭ. На рис. 16 положение точки 1 показано на фазовой диаграмме системы PbF₂-YF₃. Изменение термической устойчивости (температур плавления) фаз $Pb_{1-x}R_xF_{2+x}$ по ряду РЗЭ является единственным для всех $M_{1-x}R_xF_{2+x}$ примером, когда она не монотонно падает от La к "тяжелым" РЗЭ с уменьшением ионного радиуса R^{3+} (например, у $Sr_{1-x}R_xF_{2+x}$ и $Ba_{1-x}R_xF_{2+x}$), а имеет экстремум. Хотя точность определения температур перитектик низкая, прохождение их через максимум по ряду РЗЭ очевидно.

Такое поведение плавления флюоритовых фаз $Pb_{1-x}R_{x}F_{2+x}$ по ряду РЗЭ приводит к изменению характера плавления с инконгруэнтного (R = La -Gd с температурами перитектик от 960°С для системы PbF₂-LaF₃ до 1033°С для системы PbF₂- GdF_3) на конгруэнтный (R = Tb-Lu, Y). На кривых плавления последних имеются максимумы с температурами конгруэнтного плавления от 999°С для системы PbF₂-TbF₃ до 885°С для системы PbF₂-LuF₃. Переходное состояние наблюдается в системе PbF₂-GdF₃.

Термическая стабилизация флюоритовой структуры α-PbF₂ изоморфным введением в него ионов R^{3+} является рекордной по абсолютному значению среди всех флюоритовых фаз $M_{1-x}R_xF_{2+x}$ (M = Ca, Sr, Ba, Cd, Pb). Температуры плавления фаз $Pb_{1-x}R_xF_{2+x}$ проходят по ряду РЗЭ через мак-

Образец	Состав кристалла	Т, К	А, См/смК	$\Delta H_{\sigma}, \Im B$
	α-PbF ₂	590-700	1.3×10^{9} [41]	1.04 [41]
		573-713	6.7×10^9 [42]	1.05 [42]
1	Pb _{0.9995} La _{0.0005} F _{2.0005}	293-489	6.3×10^{4}	0.53
2	Pb _{0.999} La _{0.001} F _{2.001}	293-489	8.5×10^{4}	0.53
3	Pb _{0.99} La _{0.01} F _{2.01}	293-489	1.3×10^{6}	0.60
4	Pb _{0.98} La _{0.02} F _{2.02}	293-489	2.4×10^{5}	0.56
5	$Pb_{0.9}La_{0.1}F_{2.1}^*$	293-490	2.0×10^{5}	0.49
6	$Pb_{0.9}Sm_{0.1}F_{2.1}^*$	293-490	2.7×10^{4}	0.44
7	$Pb_{0.99}Gd_{0.01}F_{2.01}$	293-489	2.4×10^{5}	0.51
8	Pb _{0.9} Tb _{0.1} F [*] _{2.1}	293-490	2.3×10^{5}	0.51
9	$Pb_{0.9}Dy_{0.1}F_{2.1}^*$	293-490	5.2×10^{4}	0.47
10	$Pb_{0.9}Er_{0.1}F_{2.1}^*$	293-490	4.1×10^{4}	0.45
11	Pb _{0.9995} Yb _{0.0005} F _{2.0005}	291-487	1.1×10^{4}	0.43
12	Pb _{0.999} Yb _{0.001} F _{2.001}	292-454	1.8×10^{4}	0.44
13	Pb _{0.99} Yb _{0.01} F _{2.01}	293-489	1.5×10^{5}	0.50
14	Pb _{0.98} Yb _{0.02} F _{2.02}	294-539	1.0×10^{6}	0.56
15	Pb _{0.95} Yb _{0.05} F _{2.05}	294-539	2.4×10^{6}	0.57
16	$Pb_{0.9}Yb_{0.1}F_{2.1}$	292-454	5.2×10^{4}	0.46
17	$Pb_{0.88}Yb_{0.12}F_{2.12}$	294-539	3.9×10^{4}	0.44
18	Pb _{0.85} Yb _{0.15} F _{2.15}	292-454	3.5×10^{4}	0.44
19	$Pb_{0.8}Yb_{0.2}F_{2.2}$	294-539	1.2×10^{5}	0.49
20	$Pb_{0.9}Lu_{0.1}F_{2.1}^*$	293-490	2.7×10^{4}	0.42
21	$Pb_{0.99}Y_{0.01}F_{2.01}$	293-489	1.6×10^{5}	0.52
22	$Pb_{0.9}Y_{0.1}F_{2.1}^*$	293-490	3.5×10^{4}	0.46
23	$Pb_{0.99}Sc_{0.01}F_{2.01}$	293-489	1.6×10^{5}	0.52
24	$Pb_{0.9}Sc_{0.1}F_{2.1}$	293-490	2.1×10^{4}	0.33

Таблица 1. Значения A и ΔH_{σ} для кристаллов $Pb_{1-x}R_xF_{2+x}$ в уравнении Аррениуса–Френкеля $\sigma_{dc}T = Aexp(-\Delta H_{\sigma}/kT)$

* Сплавы.

симум в районе неодима. Состав $Pb_{0.6}Nd_{0.4}F_{2.4}$ плавится инконгруэнтно ($T_{inc} \approx 1085^{\circ}C$) выше, чем α -PbF₂ ($T_{PbF2} = 826 \pm 5^{\circ}C$) на величину $\Delta T_{stab} = T_{inc} - T_{PbF2} = 259^{\circ}C$.

Для фаз $M_{1-x}R_xF_{2+x}$ (M = Ca, Sr, Ba, Cd) максимальное превышение у $Ba_{0.69}La_{0.31}F_{2.31}$ составляет $\Delta T_{stab} = 130$ °C. В абсолютном выражении эффект термической стабилизации флюоритовой структуры у $Pb_{0.6}Nd_{0.4}F_{2.4}$ вдвое превышает аналогичный эффект у $Ba_{0.69}La_{0.31}F_{2.31}$.

Еще больше относительное (к температурам плавления MF_2) превышение, поскольку температура плавления PbF₂ (826°C) намного ниже, чем BaF₂ (1354°C). Относительный эффект термической стабилизации флюоритовой структуры у нестехиометрических фаз Pb_{1-x}R_xF_{2+x} более чем втрое превышает стабилизирующее влияние R^{3+} на BaF₂.

КРИСТАЛЛОГРАФИЯ том 65 № 1 2020

Объяснить исключительно высокую термическую стабилизацию флюоритовой структуры в системах PbF₂-RF₃ чисто геометрическим фактором (увеличение степени заполнения пространства при образовании нестехиометрических фаз) нельзя. В этом случае эффект стабилизации у PbF₂ должен был бы быть средним между эффектами для BaF₂ и SrF₂, между которыми по параметрам решетки и плотности упаковки располагается фторид свинца. Для ряда систем $SrF_2 - RF_3$ наиболее тугоплавкий состав Sr_{0.69}La_{0.31}F_{2.31} (1570°С) имеет превышение $\Delta T_{stab} = 106$ °С над плавлением компонента SrF_2 (1464°C). Таким образом, эффект стабилизации флюоритовой структуры в ряду систем $PbF_2 - RF_3$ в 2-3 раза выше, чем в аналогичных рядах $SrF_2 - RF_3$ и $BaF_2 - RF_3$. Возможная причина этого в электронном строении и поляризующем действии иона Pb²⁺.

Температурная и концентрационная устойчивость фаз $Pb_{1-x}R_xF_{2+x}$ изменяется в зависимости от их качественного и количественного состава. Предельные растворимости RF_3 в PbF_2 , представленные на рис. 1 точками *1*, проходят по ряду P3Э через максимум на Sm, Gd (43 и 42 мол. % RF_3), понижаясь до 38 и 29 мол. % RF_3 для La и Lu соответственно (при нормальном давлении).

Склонность к распаду при понижении температуры показана на рис. 1 точками 2, отвечающими составам флюоритовых фаз, насыщенных по отношению к RF_3 при 600°С. По поведению растворимости RF_3 в PbF₂ при понижении температуры системы делятся на две группы.

В первой группе с R = La - Nd растворимость не меняется от перитектических температур до нижнего изучавшегося предела (600°С). Ко второй группе относятся системы со всеми остальными РЗЭ. Для них характерно значительное уменьшение содержания RF_3 во флюоритовых фазах при понижении температуры. Возникновение сильной зависимости протяженности областей гомогенности фаз $Pb_{1-x}R_xF_{2+x}$ от температуры связано с появлением упорядоченных фаз $Pb_4R_3F_{17}$ (состав $PbF_2: RF_3 = 4:3$, образование фазы Pb₄Y₃F₁₇ на рис. 1б). Это подтверждает правило Юм-Розери [39]: появление фазы с узкой областью гомогенности приводит к резкому уменьшению областей гомогенности соседней (в данном случае нестехиометрической $Pb_{1-x}R_xF_{2+x}$) фазы.

Изменение термической стабильности фаз $Pb_{1-x}R_xF_{2+x}$ по ряду РЗЭ однозначно связано с появлением упорядоченных фаз $Pb_4R_3F_{17}$. Выше температур распада упорядоченных фаз растворимость RF_3 в $Pb_{1-x}R_xF_{2+x}$ мало зависит от температуры (рис. 16).

Относительно низкие температуры распада фаз $Pb_{1-x}R_xF_{2+x}$ не позволили изучить эти процессы методом термического анализа при исследованиях фазовых диаграмм PbF_2-RF_3 (нижняя граница исследования фазовых диаграмм составляет 600°C) [16, 26].

Таким образом, из данных рис. 1а следует, что фазы $Pb_{1-x}R_xF_{2+x}$ с P3Э второй половины ряда имеют высокий температурный коэффициент уменьшения растворимости. Для достаточно большого числа флюоритовых фаз $Pb_{1-x}R_xF_{2+x}$ уменьшение области гомогенности с понижением температуры приводит к частичному распаду фазы. Это необходимо иметь в виду при выборе составов фаз для роста кристаллов, исследования их свойств и проводимости.

Использование кристалла ФТЭЛ (независимо от его величины σ_{dc}) зависит от его устойчивости в температурной области эксплуатации. Неустой-

чивость кристаллов флюоритовых фаз $Pb_{1-x}R_xF_{2+x}$ приводит к невоспроизводимости σ_{dc} -данных при изучении температурной зависимости $\sigma_{dc}(T)$ [40].

Ионная проводимость

Из общего числа 15 парных сочетаний Pb-R, дающих 15 флюоритовых фаз $Pb_{1-x}R_xF_{2+x}$ (*R* – РЗЭ, за исключением Рт. Eu), на сеголняшний день изучена ионная проводимость для 10 фаз с разным качественным составом (R = La, Sm, Gd, Tb, Dy, Er, Yb, Lu, Y и Sc) [7, 11, 24, 25], что составляет 67% от общего числа парных Рb-R-сочетаний. Исследование σ_{dc} флюоритовых фаз $Pb_{1-x}R_xF_{2+x}$ (монокристаллы и сплавы) с разным количественным составом (x) увеличивает число изученных кристаллов до 24 (таблица). На рис. 1а точками 4 показаны составы, изученные нами. Наиболее представительной является изоконцентрационная серия кристаллов $Pb_{0.9}R_{0.1}F_{2.1}$. Наиболее глубоко по составу прослежена нестехиометрическая фаза Pb_{1-x}Yb_xF_{2+x} (до 20 мол. % YbF₃). Ограничения по высоким содержаниям RF₃ в кристаллах Pb_{1-x}R_xF_{2+x} связаны с распадными явлениями. Таблица суммирует объем проведенного в ИК РАН эксперимента по росту нестехиометрических кристаллов на основе высокотемпературной флюоритовой модификации lpha-PbF $_2$ для их характеризации как потенциальных ФТЭЛ.

Фтор-ионная проводимость нестехиометрических кристаллов $Pb_{1-x}R_xF_{2+x}$ увеличивается по сравнению с матрицей α -PbF₂ (рис. 2). Это достигается путем последовательных изменений состава и дефектной структуры. Катионный состав флюоритовых кристаллов $Pb_{1-x}R_xF_{2+x}$ оказывает влияние на ионный транспорт в анионной (фторной) подрешетке, благодаря чему и становится возможной оптимизация составов $Pb_{1-x}R_xF_{2+x}$ по $\sigma_{293 \text{ K}}$.

Кристаллы $Pb_{1-x}La_xF_{2+x}$

Энтальпия активации ионного переноса в монокристаллах $Pb_{1-x}La_xF_{2+x}$ при $x = 5 \times 10^{-4}$, 1×10^{-3} , 0.01 и 0.02 практически не меняется и составляет $\Delta H_{\sigma} = 0.5-0.6$ эВ. Значения $\sigma_{500 \text{ K}}$ сначала возрастают от 5.7 × 10⁻⁴ См/см ($x = 5 \times 10^{-4}$) до 2.3 × 10⁻³ См/см (x = 0.01), а затем уменьшаются до 1.2 × 10⁻³ См/см (x = 0.02). Величина $\sigma_{500 \text{ K}}$ для монокристалла $Pb_{0.99}La_{0.01}F_{2.01}$ превышает $\sigma_{500 \text{ K}}$ для собственной проводимости флюоритовой матрицы α -PbF₂ в ~6 раз.

Кристаллы $Pb_{1-x}Yb_xF_{2+x}$

Энтальпия активации ΔH_{σ} в концентрационной серии монокристаллов $Pb_{1-x}Yb_xF_{2+x}$ ($x = 5 \times$

Рис. 2. Зависимость проводимости $\sigma_{500 \text{ K}}$ от энтальпии активации ионного переноса ΔH_{σ} для флюоритовых ФТЭЛ Pb_{1-x} R_x F_{2+x}. Квадратами показаны значения собственной проводимости флюоритовых матриц *M*F₂ (*M* = Ca, Sr, Ba, Pb) [41–45].

× 10⁻⁴, 1 × 10⁻³, 0.01, 0.02, 0.05, 0.1, 0.12, 0.15 и 0.2) изменяется немонотонно: 0.43–0.44 эВ для x == 5 × 10⁻⁴–1 × 10⁻³, 0.50–0.57 эВ для x = 0.01-0.05и 0.44–0.49 эВ для x = 0.1-0.2. Значения $\sigma_{500 \text{ K}}$ возрастают от 1 × 10⁻³ См/см ($x = 5 \times 10^{-4}$) до 9.3 × × 10⁻³ См/см (x = 0.05), затем падают и практически не меняются (2.5–3) × 10⁻³ См/см (x = 0.1– 0.2). При этом величина $\sigma_{500 \text{ K}}$ для монокристалла Pb_{0.95}Yb_{0.05}F_{2.05} превышает $\sigma_{500 \text{ K}}$ флюоритовой матрицы α -PbF₂ в ~25 раз.

Кристаллы $Pb_{1-x}R_xF_{2+x}$ (x = 0.01 u 0.1)

В ряду монокристаллов $Pb_{0.99}R_{0.01}F_{2.01}$ (R = La, Gd, Yb, Y, Sc) с 1 мол. % RF_3 величина энтальпии ионного переноса сохраняется ($\Delta H_{\sigma} = 0.5$ эВ), а значения проводимости $\sigma_{500 \text{ K}}$ равны (2–3.5) × × 10⁻³ См/см. Введение 1 мол. % RF_3 во флюоритовую матрицу α -PbF₂ дает рост $\sigma_{500 \text{ K}}$ в 5–10 раз.

Дальнейшее десятикратное увеличение концентрации RF_3 в кристаллах (сплавах) $Pb_{0.9}R_{0.1}F_{2.1}$ при изменении R по ряду La \rightarrow Lu, Y не приводит к значительному росту проводимости. Величина $\Delta H_{\sigma} = 0.46 \pm 0.05$ эВ, значения $\sigma_{500 \text{ K}}$ соответствуют диапазону (2–5) × 10⁻³ См/см.

КРИСТАЛЛОГРАФИЯ том 65 № 1 2020

Однако при переходе от Lu к Sc для кристаллов Pb_{0.9} $R_{0.1}F_{2.1}$ наблюдаются значительное снижение энтальпии активации ионной проводимости ($\Delta H_{\sigma} = 0.33$ эВ) и резкий рост проводимости $\sigma_{500 \text{ K}} = 2.0 \times 10^{-2} \text{ См/см}$. Превышение уровня ионной проводимости по сравнению с матрицей α -PbF₂ составляет ~55 раз.

Практическое применение

На рис. 2 показаны изменения $\sigma_{500 \text{ K}}$ двухкомпонентных кристаллов $\text{Pb}_{1-x}R_xF_{2+x}$ с разным качественным (*R*) и количественным составом (*x*) в координатах "lg $\sigma_{500 \text{ K}}$ — ΔH_{σ} ". Пунктирная горизонталь отмечает условную границу lg[σ_{dc}] = -5, ниже которой применение ФТЭЛ в электрохимических устройствах считается нежелательным изза их недостаточной проводимости. На рис. 2 для сравнения приведены значения $\sigma_{500 \text{ K}}$ для собственной проводимости номинально предельно чистых флюоритовых матриц CaF₂, SrF₂, BaF₂ и α -PbF₂ по данным [41–45].

Проводимость $\sigma_{500 \text{ K}}$ всех изученных кристаллов $\text{Pb}_{1-x}R_x\text{F}_{2+x}$ находится выше условной границы $\log[\sigma_{dc}] = -5$ для применения ФТЭЛ в электрохимических устройствах. Кристаллы $\text{Pb}_{1-x}R_x\text{F}_{2+x}$ пригодны для ФТЭЛ, работающих в среднетемпературном диапазоне (200–300°С).

На рис. 3 представлена зависимость проводимости $\sigma_{293 \text{ K}}$ при комнатной температуре от энтальпии ΔH_{σ} для изученных кристаллов Pb_{1-x}R_xF_{2+x}. Можно видеть, что, за исключением кристалла Pb_{0.9}Sc_{0.1}F_{2.1}, ионная проводимость при 293 K для кристаллов Pb_{1-x}R_xF_{2+x} не превышает $\sigma_{293 \text{ K}} < 10^{-5} \text{ См/см}$. При переходе от Lu к Sc для кристалла Pb_{0.9}Sc_{0.1}F_{2.1} наблюдается резкий рост проводимости (в ~10² раз), она достигает $\sigma_{293 \text{ K}} = 1.5 \times 10^{-4} \text{ См/см}$.

Таким образом, среди изученных составов $Pb_{1-x}R_xF_{2+x}$ (R - P3Э) только проводимость монокристалла $Pb_{0.9}Sc_{0.1}F_{2.1}$ превышает (в ~10 раз) условный предел $\sigma_{293 K} \approx 10^{-5}$ См/см. Монокристаллы $Pb_{0.9}Sc_{0.1}F_{2.1}$ пригодны для ФТЭЛ, работающих при комнатной температуре. Однако на данный момент задача создания стабильного ФТЭЛ с $\sigma_{293 K} > 10^{-3}$ См/см для работы источника тока или сенсора в условиях пониженных температур (до -30° С) остается нерешенной.

ФТЭЛ на основе флюоритовой модификации α -PbF₂ уже находят практическое применение в твердотельных электрохимических устройствах (потенциометрический сенсор [46] для определения концентрации фтора в газовых средах ($p_{F2} = 10^{-1}-10^3$ Па), твердотельные фтор-ионные источники тока [47–50]). Их преимущества перед литий-ионными источниками тока в высокой

Рис. 3. Зависимость проводимости $\sigma_{293 \text{ K}}$ от энтальпии активации ионного переноса ΔH_{σ} для флюоритовых ФТЭЛ Pb_{1-x} R_x F_{2+x}.

плотности энергии, взрыво- и пожаробезопасности [51]. Однако предложенные макеты сенсоров и гальванических элементов требуют нагрева до $100-150^{\circ}$ С для увеличения σ_{dc} , что усложняет их эксплуатацию.

ЗАКЛЮЧЕНИЕ

Продолжено изучение оптимизации состава флюоритовых ФТЭЛ по проводимости и термической устойчивости для кристаллов в семействе флюоритовых нестехиометрических фаз $Pb_{1-x}R_xF_{2+x}$. Изменение качественного катионного состава кристаллов приводит к росту их проводимости и позволяет провести оптимизацию новых ФТЭЛ.

Изменения характера химической связи в PbF₂ сопровождаются (по сравнению с фторидами ЩЗЭ) радикальными изменениями физико-химических характеристик: понижением температуры плавления и ростом упругости паров.

Структурный тип флюорита термически стабилизируется у кристаллов $Pb_{1-x}R_xF_{2+x}$, характер плавления которых меняется по ряду РЗЭ с перитектического (от 960°С для PbF_2 —LaF₃ до 1033°С для PbF_2 —GdF₃) на эвтектический (от 991°С для PbF_2 —TbF₃ до 807°С для PbF_2 —LuF₃). Рост кристаллов фаз, плавящихся с разложением (перитектически), осложнен повышенной дифференциацией компонентов по объему кристалла. Стабилизация флюоритовой структуры у фаз $Pb_{1-x}R_xF_{2+x}$ в системах с R = Tb-Lu, Y сопровождается появлением максимумов на кривых плавкости. Из составов с конгруэнтным плавлением возможно получение высокооднородных (по составу) кристаллов. Такие нестехиометрические флюоритовые фазы $Pb_{1-x}R_xF_{2+x}$ с R = Tb-Lu, Y, Sc могут быть получены в монокристаллической форме.

Склонность к распаду при понижении температуры мала у фаз с РЗЭ начала ряда (R = La - Nd). Она начинает повышаться в системах с РЗЭ второй половины ряда, начиная с европия. Понижение устойчивости вызвано образованием упорядоченных фаз Pb₄ R_3 F₁₇.

По сравнению с кристаллами $M_{1-x}R_xF_{2+x}$ на основе фторидов ЩЗЭ ухудшаются механические свойства кристаллов $Pb_{1-x}R_xF_{2+x}$, растет растворимость в воде, падает химическая стабильность в возможных условиях эксплуатации, растет склонность к пирогидролизу, затрудняющая эксплуатацию кристаллов и измерения проводимости. Получение кристаллов из расплава и исследования температурных зависимостей проводимости могут сопровождаться частичным восстановлением Pb^{2+} до металлического свинца.

В однокомпонентном кристалле α -PbF₂ дефектность анионной (проводящей) подрешетки задается термическими дефектами (антифренкелевские пары вакансия фтора-межузельный фтор) и зависит от термической предыстории исследуемых образцов. В двухкомпонентных кристаллах Pb_{1-x}R_xF_{2+x} (на фоне термостимулированных дефектов) дефектность задается изменением состава гетеровалентными изоморфными замещениями в катионном мотиве. Концентрация "конституционных" дефектов на порядки выше концентрации термостимулированных, и этот тип дефектов может стабилизироваться по температуре (сохраняться при охлаждении кристалла).

Использование в качестве флюоритовой матрицы α -PbF₂ по сравнению с матрицами CaF₂, SrF₂, BaF₂ приводит к снижению температур, при которых реализуется высокая ионная проводимость. При поиске составов кристаллов Pb_{1-x}R_xF_{2+x} со значениями $\sigma_{dc} > 10^{-5}$ См/см (нижний предел проводимости для Φ ТЭЛ) показал свою эффективность метод "конституционных" изменений стехиометрии в структурном типе флюорита. Все кристаллы Pb_{1-x}R_xF_{2+x} пригодны как Φ ТЭЛ, работающие в среднетемпературном диапазоне (200–300°С). Максимальные значения $\sigma_{500 \text{ K}} = 9.3 \times 10^{-3}$ и 2.0 $\times 10^{-2}$ См/см имеют кристаллы Pb_{0.95}F_{2.05} и Pb_{0.95}Sc_{0.1}F_{2.1} соответственно.

Наибольший практический интерес как ФТЭЛ представляет флюоритовая фаза $Pb_{1-x}Sc_xF_{2+x}$. Значения $\sigma_{293 \text{ K}}$ монокристаллов $Pb_{0.9}Sc_{0.1}F_{2.1}$ с конгруэнтным плавлением составляют ~1.5 × $\times 10^{-4}$ См/см и превышают в 10 раз условный предел 10^{-5} См/см. Они пригодны в качестве ФТЭЛ в твердотельных приборах, функционирующих при комнатной температуре, но не достаточны для их работы в условиях пониженных температур (до -30° C).

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- Соболев Б.П., Сорокин Н.И. // Кристаллография. 2014. Т. 59. № 6. С. 891.
- 2. Сорокин Н.И., Голубев А.М., Соболев Б.П. // Кристаллография. 2014. Т. 59. № 2. С. 275.
- Сорокин Н.И., Соболев Б.П. // Кристаллография. 2019. Т. 64. № 5. С. 757.
- Ivanov-Shits A.K., Sorokin N.I., Fedorov P.P., Sobolev B.P. // Solid State Ionics. 1989. V. 31. № 4. P. 253.
- Ivanov-Shits A.K., Sorokin N.I., Fedorov P.P., Sobolev B.P. // Solid State Ionics. 1989. V. 31. № 4. P. 269.
- Ivanov-Shits A.K., Sorokin N.I., Fedorov P.P., Sobolev B.P. // Solid State Ionics. 1990. V. 37. № 1–2. P. 125.
- 7. *Сорокин Н.И.* // Электрохимия. 2006. Т. 42. № 7. С. 828.
- Sobolev B.P., Sorokin N.I., Bolotina N.B. // Photonic & Electronic Properties of Fluoride Materials. V. 1. Междунар. сб. Progress in Fluorine Science / Eds. Tressaud A., Poeppelmeier K. Amsterdam: Elsevier, 2016. P. 465.
- Сорокин Н.И., Федоров П.П., Иванов-Шиц А.К., Соболев Б.П. // ФТТ. 1988. Т. 30. № 5. С. 1537.
- Сорокин Н.И., Сульянова Е.А., Бучинская И.И., Соболев Б.П. // Кристаллография. 2005. Т. 50. № 4. С. 750.
- Сорокин Н.И., Соболев Б.П., Брайтер М. // ФТТ. 2002. Т. 44. № 8. С. 1506.
- Fergus J.W. // Sensors & Actuators. B. 1997. V. 42. P. 119.
- Сорокин Н.И., Соболев Б.П. // Кристаллография. 2007. Т. 52. № 5. С. 870.
- 14. Chadwick A.V. // Solid State Ionics. 1983. V. 8. P. 209.
- 15. *Сорокин Н.И.* // Журн. физ. химии. 2002. Т. 76. № 3. С. 391.
- 16. *Sobolev B.P.* The Rare Earth Trifluorides. Part 1. The High Temperature Chemistry of Rare Earth Trifluo-

КРИСТАЛЛОГРАФИЯ том 65 № 1 2020

rides, Institute of Crystallography, Moscow, and Institut d'Estudis Catalans, Barcelona: Institut d'Estudis Catalans, Spain, 2000. 520 p.

- 17. *Бучинская И.И., Федоров П.П.* // Успехи химии. 2004. Т. 73. № 4. С. 404.
- Liang C.C., Joshi A.V. // J. Electrochem. Soc. 1975. V. 122. P. 466.
- 19. *Мурин И.В.* // Изв. СО АН СССР. Сер. хим. наук. 1984. № 2. Вып. 1. С. 53.
- Reau J.M., Fedorov P.P., Rabardel L. et al. // Mater. Res. Bull. 1983. V. 18. P. 1235.
- 21. *Rhandour A., Reau J.M., Matar S.F., Hagenmuller P. //* J. Phys. Chem. Solids. 1986. V. 47. № 6. P. 587.
- 22. Ten Eicken J., Gunsser W., Chernov S.V. et al. // Solid State Ionics. 1992. V. 53–56. P. 843.
- 23. Patwe S.J., Balaya P., Goyal P.S., Tyagi A.K. // Mater. Res. Bull. 2001. V. 36. P. 1743.
- Сорокин Н.И., Соболев Б.П. // Кристаллография. 2016. Т. 61. № 2. С. 468.
- Stockbarger D.S. // J. Opt. Soc. Am. 1949. V. 39. № 9. P. 31.
- Архангельская В.А., Бакланова В.Н., Иванова И.А. и др. // Труды ГОИ (Гос. опт. ин-та). 1983. Т. 54. № 188. С. 129.
- 27. *Ito Y., Koto K.* // Solid State Ionics. 1986. V. 18–19. P. 1202.
- 28. *Sobolev B.P.* The Rare Earth Trifluorides. Part 2. Introduction to Materials Science of Multicomponent Metal Fluoride Crystals, Institute of Crystallography, Moscow, and Institut d'Estudis Catalans, Barcelona: Institut d'Estudis Catalans, Spain, 2001. 460 p.
- 29. Сорокин Н.И., Федоров П.П., Соболев Б.П. // Неорган. материалы. 1997. Т. 33. № 1. С. 5.
- Сорокин Н.И., Щавлинская Г.А., Бучинская И.И., Соболев Б.П. // Электрохимия. 1998. Т. 34. № 9. С. 1031.
- 31. Derrington C.E., Navrotsky A., O'Keeffe M. // Solid State Commun. 1976. V. 18. P. 47.
- 32. *Goff J.P., Hayes W., Hull S., Hutchings M.T.* // J. Phys.: Condens. Matter. 1991. V. 3. P. 3677.
- Kosacki I., Litvinchuk A.P., Tarasov J.J., Valakh M. Ya. // J. Phys.: Condens. Matter. 1989. V. 1. P. 929.
- Volodkovich L.M., Petrov G.S., Vecher R.A., Vecher A.A. // Termochim. Acta. 1985. V. 88. P. 497.
- Den Hartog H.W., van der Veen J. // Phys. Rev. B. 1988.
 V. 37. № 4. P. 1807.
- Федоров П.П., Зибров И.П., Соболев Б.П., Шишкин И.В. // Журн. неорган. химии. 1987. Т. 32. № 7. С. 1794.
- 37. Федоров П.П., Зибров И.П., Тарасова Е.В. и др. // Журн. неорган. химии. 1988. Т. 33. № 12. С. 3222.
- 38. Федоров П.П., Трновцева В., Мелешина В.А. и др. // Неорган. материалы. 1994. Т. 30. №. 3. С. 406.

- 39. *Юм-Розери В., Рейнор Г.В.* Структура металлов и сплавов. М.: Металлургиздат, 1959. 392 с.
- 40. Ten Eicken J., Gunsser W., Karus M. et al. // Solid State Ionics. 1994. V. 72. P. 7.
- 41. Bonne R.W., Schoonman J. // J. Electrochem. Soc. 1977. V. 124. P. 28.
- 42. *Мурин И.В., Глумов А.В., Глумов О.В.* // Электрохимия. 1979. Т. 15. № 8. С. 1119.
- Bollmann W., Reimann R. // Phys. Status Solidi A. 1973.
 V. 16. P. 187.
- 44. Schoonman J., den Hartog H.W. // Solid State Ionics. 1982. V. 7. P. 9.
- 45. Figueroa D.R., Chadwick A.V., Strange J.H. // J. Phys. C. 1978. V. 11. P. 55.

- 46. Алейников А.Н., Алейников Н.Н., Вершинин Н.Н. // Тез. докл. IX Всесоюз. симпоз. по химии неорган. фторидов. Череповец. 3–6 июля 1990. С. 31.
- 47. *Kennedy J.H., Hunter J.C.* // J. Electrochem. Soc. 1976. V. 123. № 1. P. 10.
- 48. *Hagenmuller P., Reau J.M., Lucat C. et al.* // Solid State Ionics. 1981. V. 3–4. P. 341.
- 49. Kosacki I. // Appl. Phys. A. 1989. V. 49. P. 413.
- Закиров Р.Н., Маринин А.С. // Тез. докл. IX Всесоюз. симпоз. по химии неорган. фторидов. Череповец. 3–6 июля 1990. С. 136.
- 51. Потанин А.А. // Журн. Всерос. хим. о-ва им. Д.И. Менделеева. 2001. Т. 45. № 5-6. С. 58.