____ ТЕОРИЯ КРИСТАЛЛИЧЕСКИХ ₌ СТРУКТУР

УДК 548.736

ИНТЕРМЕТАЛЛИДЫ Li_kM_n (M = Ag, Au, Pt, Pd, Ir, Rh): ГЕОМЕТРИЧЕСКИЙ И ТОПОЛОГИЧЕСКИЙ АНАЛИЗ, ТЕТРАЭДРИЧЕСКИЕ КЛАСТЕРНЫЕ ПРЕКУРСОРЫ И САМОСБОРКА КРИСТАЛЛИЧЕСКИХ СТРУКТУР

© 2020 г. Г. Д. Илюшин^{1,*}

¹ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

* *E-mail: gdilyushin@gmail.com* Поступила в редакцию 15.06.2019 г. После доработки 25.06.2019 г. Принята к публикации 08.07.2019 г.

С помощью компьютерных методов (пакет программ ToposPro) осуществлен геометрический и топологический анализ и проведено моделирование самосборки кристаллических структур интерметаллидов, образующихся в системах Li–M, где M = Ag, Au, Pt, Pd, Ir, Rh. Металлокластеры-прекурсоры Li_k M_n определены с использованием алгоритмов разложения графов на кластерные структуры и построения базисных 2D- и 3D-сеток в виде графов, узлы которых соответствуют положениям центров кластеров. Установлены тетраэдрические металлокластеры M_4 , образующие упаковки в кристаллических структурах (LiPd₃)(Pd₄)-cF32, (Li₂Rh₂)(Rh₄)-oI8, (Li₂Pd₂)(Pd₄)-mP4, LiAu₃-cP4, Li_{1.84}Ag_{2.16}-cF4, Li₂Ag₂-tI8, Li₂Pd₂-cP2, Li₂Rh₂-hP2, Li₃Pd-cF16, тетраэдрические металлокластеры M_4 и атомы-спейсеры для каркасной структуры Li₂(Pt₄)-cF24 и двухслойные кластеры 0@M4@M22 для (Li₄)(Li₁₂Ag₁₀)-cI52. Полностью реконструирован симметрийный и топологический код процессов самосборки кристаллических структур интерметаллидов Li_k M_n из металлокластеров-прекурсоров

 S_3^0 в виде: первичная цепь $S_3^1 \to$ микрослой $S_3^2 \to$ микрокаркас S_3^3 .

DOI: 10.31857/S0023476120020113

ВВЕДЕНИЕ

В настоящее время в двойных системах установлено образование около 7000 кристаллических структур интерметаллидов $A_n B_m$, которые распределены примерно по 800 топологическим типам [1–9]. Известны 20 типичных кристаллических структур интерметаллидов $A_n B_m$, которые насчитывают 50 и более представителей, что составляет половину всех исследованных кристаллических структур двойных интерметаллидов. В [6–9] установлено, что в типичных кристаллических структурах интерметаллидов металлокластерами-прекурсорами являются в основном тетраэдрические металлокластеры M_6 и икосаэдрические металлокластеры M_{13} .

С участием атомов щелочных металлов A = Li, Na, K, Rb, Cs установлено образование около 400 кристаллических структур интерметаллидов $A_n B_m$ [1, 2]. Наиболее многочисленное семейство составляют 130 интерметаллидов Li, которым соответствуют 49 структурных типов. В образовании двойных интерметаллических соединений с атомами Li принимают участие только 22 химических элемента из 70, образующих кристаллические структуры металлов с координационными числами KЧ = 12 и 14. Известны соединения атомов Li с атомами *d*-элементов M = Ag, Au, Pt, Pd, Ir, Rh, но отсутствуют соединения атомов Li со всеми другими атомами *d*-элементов от Sc до Cu, от Y до Ru, от Hf до Os. Известны соединения атомов Li с крупными атомами Ca, Sr, и Ba, но отсутствуют соединения атомов Li с другими крупными атомами Na, K, Rb, Cs [1, 2].

В настоящей работе проведен геометрический и топологический анализ интерметаллидов лития, образующихся в системах Li—M с атомами dэлементов M = Ag, Au, Pt, Pd, Ir, Rh. Из 13 установленных структурных типов интерметаллидов Li для 11 определены тетраэдрические типы металлокластеров-прекурсоров S_3^0 . Реконструирован симметрийный и топологический код процессов самосборки кристаллических структур интерметаллидов из тетраэдрических металлокластеров S_3^0 в виде: первичная цепь $S_3^1 \rightarrow$ микрослой $S_3^2 \rightarrow$ микрокаркас S_3^3 .

Рис. 1. Тетраэдрические кластеры в кристаллических структурах металлов. Здесь и далее цифры обозначают длины связей (Å).

Работа продолжает исследования [6–10] в области геометрического и топологического анализа кристаллических структур и моделирования самосборки кристаллических структур из кластеров-прекурсоров с применением компьютерных методов (пакета программ ToposPro [4]).

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro, позволяющего проводить исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов).

Алгоритм разложения в автоматическом режиме структуры любого интерметаллида, представленного в виде свернутого графа, на кластерные единицы основывается на следующих принципах: структура образуется в результате самосборки из кластеров-прекурсоров; кластеры-прекурсоры образуют каркас структуры, пустоты в котором заполняют спейсеры; многослойные нанокластеры-прекурсоры не имеют общих внутренних атомов, но они могут иметь общие атомы на поверхности; кластеры-прекурсоры занимают высокосимметричные позиции; набор нанокла-

КРИСТАЛЛОГРАФИЯ том 65 № 2 2020

стеров-прекурсоров и кластеров-спейсеров включает в себя все атомы структуры.

Кристаллохимические и топологические данные для 11 структурных типов Li-интерметаллидов с установленными тетраэдрическими метал-

локластерами-прекурсорами S_3^0 представлены в табл. 1. Представители кристаллохимических семейств Li-интерметаллидов приведены в табл. 2— 11. На рис. 1 даны длины связей атомов в кристаллических структурах Li, Ag, Au, Pt, Pd, Ir, и Rh. На рис. 2 обозначены длины связей атомов в тетраэдрических кластерах-прекурсорах кристаллических структур Li-интерметаллидов.

СИММЕТРИЙНЫЙ И ТОПОЛОГИЧЕСКИЙ КОД (ПРОГРАММА) САМОСБОРКИ КРИСТАЛЛИЧЕСКИХ СТРУКТУР ИНТЕРМЕТАЛЛИДОВ

При моделировании кристаллических структур интерметаллидов определяется иерархическая последовательность ее самосборки в кристаллографическом пространстве *XYZ*, т.е. восстанавливается симметрийный и топологический код формирования макроструктуры в виде последовательности значимых элементарных событий, характеризующих самую короткую (быструю)

Структурный	<i>B</i> /Li	Группа симметрии,	Атом	Локальное	Координационные последовательности				
ТИП		последователь- ность Уайкова		окружение	N_1	<i>N</i> ₂	N_3	N_4	N_5
$(\text{LiPd}_3)(\text{Pd}_4)$ -cF32	0.142	$Fm\overline{3}m$, dba	Li1	12 Pt	12	42	92	162	252
			Pt1	12 Pt	12	42	92	162	252
			Pt2	2 Li + 10 Pt	12	42	92	162	252
LiAu ₃ - <i>cP</i> 4	0.33	$Pm\overline{3}m, ca$	Li1	12 Au	12	42	92	162	252
			Au1	4 Li + 8 Au	12	42	92	162	252
$(\text{Li}_2\text{Ir}_2)(\text{Ir}_4)-oI8$	0.33	Imm2, dba	Li1	2 Li + 10 Ir	12	44	96	170	264
			Ir1	4 Li + 8 Ir	12	44	96	170	264
			Ir2	3 Li + 9 Ir	12	44	96	170	264
$(\text{Li}_2\text{Pd}_2)(\text{Pd}_4)-mP4$	0.33	P2/m, n2gdca	Li1	2 Li + 10 Pd	12	42	92	162	252
			Li2	2 Li + 10 Pd	12	42	92	162	252
			Pd1	4 Li + 8 Pd	12	42	92	162	252
			Pd2	2 Li + 10 Pd	12	42	92	162	252
			Pd3	2 Li + 10 Pd	12	42	92	162	252
			Pd4	4 Li + 8 Pd	12	42	92	162	252
Li_2Pt_4 - $cF24$	0.5	$Fd\overline{3}m, da$	Li1	12Pt + 4 Li	16	52	130	244	380
			Pt1	6 Pt + 6 Li	12	50	110	216	356
Ag _{2.16} Li _{1.84} - <i>cF</i> 4	0.85	$Fm\overline{3}m, a$	AgLi	6.48 Ag + 5.52 Li	12	42	92	162	252
Li_2Ag_2-tI8	1.0	$I4_1/amd$, ba	Li	4 Li + 8 Ag	12	42	92	162	252
			Ag	8 Li + 4 Ag4	12	42	92	162	252
Li_2Pd_2 - <i>cP</i> 2	1.0	$Pm\overline{3}m$, ba	Li1	8 Pd + 6 Li	14	50	110	194	302
			Pd1	8 Li + 6 Pd	14	50	110	194	302
Li_2Ir_2-hP2	1.0	$P\overline{6}m2$, da	Li1	6 Li + 6 Ir	12	44	96	170	264
			Ir1	6 Li + 6 Ir	12	44	96	170	264
$Li_4(Li_{12}Ag_{10})-cI52$	1.6	$I\overline{4}3m, gec2$	Li3	6 Li + 6 Ag	12	38	102	188	278
			Li4	5 Li + 6 Ag	11	46	99	180	282
			Ag1	9 Li + 3 Ag	12	44	96	182	275
			Ag2	10 Li + 3 Ag	13	44	101	174	287
Li ₃ Pd- <i>cF</i> 16	3	$Fm\overline{3}m$, cba	Li1	8 Li + 6 Pd	14	50	110	194	302
			Li2	4 Pd + 10Li	14	50	110	194	302
			Pd1	14 Li	14	50	110	194	302

Таблица 1. Кристаллохимические и топологические данные 11 структурных типов интерметаллидов лития

программу кластерной самосборки из тетраэдрических металлокластеров S_3^0 в виде: первичная цепь $S_3^1 \to$ микрослой $S_3^2 \to$ микрокаркас S_3^3 .

Структурный тип (LiPd₃)(Pd₄)-cF32[11] (табл. 1). К этому семейству интерметаллидов относится минерал CuPt₇ (Kitagohaite) (табл. 2). Металлокластеры LiPd₃ и Pd₄ обладают симметрией 3т (рис. 2). В тетраэдре Pd₄ длины связей Pd–Pd 2.708 Å соответствуют длинам связей Pd–Pd в кристаллической структуре Pd-cF4 (рис. 1). Для металлокластеров установлены базовые сетки: 2D 4⁴ и 3D с KЧ = 4 (в слое)+1+1. Первичная

Таблица 2. Кристаллохимическое семейство LiPd₇-*cF*32 [1, 2]

Интерметаллид	<i>a</i> , <i>b</i> , <i>c</i> , Å	<i>V</i> , Å ³
LiPd ₇	7.713, 7.713, 7.713	458.8
LiPt ₇	7.725, 7.725, 7.725	461.0
MoZn ₇	7.732, 7.732, 7.732	462.2
CuPt7 Kitagohaite	7.789, 7.789, 7.789	472.6
SbPt ₇	7.948, 7.948, 7.948	502.1
GeCa ₇	9.450, 9.450, 9.450	843.9

КРИСТАЛЛОГРАФИЯ том 65 № 2 2020

Интерметаллид	Группа симметрии	Последовательность Уайкова	<i>a</i> , <i>b</i> , <i>c</i> , Å	<i>V</i> , Å ³
LiAu ₃	<i>Pm</i> 3 <i>m</i> (221)	са	3.973, 3.973, 3.973	62.7
LiAl ₃	<i>Pm</i> 3 <i>m</i> (221)	са	4.010, 4.010, 4.010	64.5
NaPb ₃	$Pm\overline{3}m$ (221)	са	4.888, 4.888, 4.888	116.8
CaPb ₃	<i>Pm</i> 3 <i>m</i> (221)	са	4.901, 4.901, 4.901	117.7

Таблица 3. Кристаллохимическое семейство LiAu₃-*cP*4 [1, 2]

цепь S_3^1 формируется в результате связывания тетраэдрических металлокластеров Pd₃Li и Pd₄ с индексом связанности $P_c = 4$ (рис. 3). Удвоенное расстояние между центрами кластеров определяет модуль вектора трансляции a = 7.713 Å. Слой S_3^2 образуется при связывании ($P_c = 10$) параллельно расположенных цепей. Каркас S_3^3 формируется при упаковке слоев S_3^2 . Удвоенные расстояния

Таблица 4. Кристаллохимическое семейство (Li₂Ir₂)(Ir₄)-*о1*8 [1, 2]

Интерметаллид	<i>a</i> , <i>b</i> , <i>c</i> , Å	<i>V</i> , Å ³
LiIr ₃	2.673, 8.695, 4.670	108.5
LiRh ₃	2.658, 8.602, 4.657	108.52
RuRe ₃	9.005, 2.757, 4.775	118.5

Таблица 5. Кристаллохимическое семейство Li₂Pt₄-*cF*24 [1, 2]

Интерметаллид	<i>a</i> , <i>b</i> , <i>c</i> , Å	$V, Å^3$
Li ₂ (Cu ₃ Ge)	7.060, 7.060, 7.060	351.9
Li ₂ (Cu ₃ Ga)	7.090, 7.090, 7.090	356.4
$Li_2(Cu_3Zn)$	7.100, 7.100, 7.100	357.9
Li_2Pt_4	7.600, 7.600, 7.600	439.0
Ca ₂ Li ₄	8.856, 8.856, 8.856	694.6

Таблица 6. Кристаллохимическое семейство Ag_{2.16}Li_{1.84}-*cF* [1, 2]

Интерме- таллид	Последова- тельность Уайкова	a, b, c, Å	<i>V</i> , Å ³
Li _{1.6} Au _{2.4}	а	3.968, 3.968, 3.968	62.5
$Li_{1.84}Ag_{2.16}$	а	4.042, 4.042, 4.042	66.0

Таблица 7. Кристаллохимическое семейство Li₂Ag₂-*t1*8 [1, 2]

Интерметаллид	<i>a</i> , <i>b</i> , <i>c</i> , Å	<i>V</i> , Å ³
Li ₂ Al ₂	4.479, 4.479, 6.345	127.3
Li ₂ Ag ₂	3.966, 3.966, 8.280	130.2
Li ₂ In ₂	4.768, 4.768, 6.779	154.1

КРИСТАЛЛОГРАФИЯ том 65 № 2 2020

между осями первичных цепей из соседних слоев вдоль осей *Y* и *Z* соответствуют длинам векторов трансляции b = c = 7.713 Å.

Структурный тип LiAu₃-cP4 [12] (табл. 1, 3). Металлокластер LiAu₃ (рис. 2) обладает симметрией 3*m*. Длины связей Li–Au и Au–Au равны 2.809 Å. Установлены базовые сетки: 2D 4⁴ и 3D с KЧ = 4 (в слое) + 1 + 1. Первичная цепь S_3^1 формируется в результате связывания ($P_c = 4$) тетраэдрических металлокластеров LiAu₃. Расстояние между центрами металлокластеров определяет длину вектора трансляции a = 3.973 Å. Слой S_3^2 образуется при связывании (с $P_c = 10$) параллельно расположенных цепей (рис. 3). Каркас S_3^3 формируется при связывании микрослоев. Удвоенные расстояния между осями первичных цепей из соседних слоев вдоль осей Y и Z соответствуют параметрам кубической ячейки b = c = 7.713 Å.

Структурный тип (Li₂Ir₂)(Ir₄)-оІ8[13] (табл. 1, 4). Металлокластеры Li₂Ir₂ и Ir₄ (рис. 2) обладают симметрией т. Для них установлены базовые сетки: 2D 3^6 и 3D с KЧ = 6 (в слое) + 3 + 3. Первичная цепь S_3^1 формируется в результате связывания $(P_c = 6)$ металлокластеров Li₂Ir₂ и Ir₄. Расстояние между центрами димеров Li₂Ir₂ + Ir₄ определяет удвоенную длину вектора трансляции a = 3.973 Å (рис. 3). Образование слоя S_3^2 происходит при связывании ($P_c = 7$) параллельно расположенных цепей. Расстояние между центрами димеров $Li_2Ir_2 + Ir_4$ вдоль оси Z соответствует модулю вектора трансляции c = 4.670 Å. Каркас S_3^3 формируется при упаковке микрослоев со сдвигом. Удвоенное расстояние между слоями в направлении оси *У*равно длине вектора трансляции b = 8.694 Å.

Структурный тип $(Li_2Pd_2)(Pd_4)$ -тР4 [14] (табл. 1). Кристаллохимические аналоги интерметаллида $(Li_2Pd_2)(Pd_4)$ -тР4 отсутствуют. Металлокластеры Li_2Pd_2 и Pd_4 (рис. 2) обладают симметрией т. Для них установлены базовые сетки: 2D 4⁴ и 3D с KЧ = 4 (в слое)+1+1. Первичная цепь S_3^1 формируется в результате связывания ($P_c = 4$) металлокластеров Li_2Pd_2 и Pd_4 (рис. 3), слой S_3^2 –

Рис. 2. Металлокластеры-прекурсоры кристаллических структур Li-интерметаллидов.

при связывании параллельно расположенных цепей ($P_c = 7$). Расстояния между металлокластерами Li₂Pd₂ и Pd₄ вдоль осей *X* и *Y* соответствуют длине вектора трансляции a = 5.371 Å и удвоенной длине вектора трансляции $b = 2 \times 2.725$ Å. Каркас S_3^3 формируется при упаковке микрослоев S_3^2 . Удвоенное расстояние между слоями в направлении оси Z равно модулю вектора трансляции c = 7.658 Å.

Структурный тип $Li_2(Pt_4)$ -cF24 [15] (табл. 1, 5). Металлокластер Pt_4 (рис. 2) обладает симметрией $\overline{43m}$. В тетраэдре длины связей Pt—Pt 2.678 Å соответствуют длинам связей в Pt-cF4 (рис. 1). Установлены базовые сетки: 2D 4⁴ и 3D-сетка с KЧ =

Интерметаллид	<i>a</i> , <i>b</i> , <i>c</i> , Å	<i>V</i> , Å ³
Li ₂ Pd ₂	2.977, 2.977, 2.977	26.4
Li_2Au_2	3.090, 3.090, 3.090	29.5
Li_2Ag_2	3.170, 3.170, 3.170	31.9
Li_2Hg_2	3.294, 3.294, 3.294	35.7
Li_2Tl_2	3.431, 3.431, 3.431	40.4
Li_2Pb_2	3.529, 3.529, 3.529	43.9

Таблица 8. Кристаллохимическое семейство Li₂Pd₂-*cP*2 [1, 2]

Таблица 9. Кристаллохимическое семейство Li₂Rh₂-*hP*2 [1, 2]

Интерметаллид	<i>a</i> , <i>b</i> , <i>c</i> , Å	$V, Å^3$
Li ₂ Ir ₂	2.649, 2.649, 4.397	26.7
Li_2Pt_2	2.728, 2.728, 4.226	27.2
Li_2Pd_2	2.767, 2.767, 4.131	27.4

Таблица 10. Кристаллохимическое семейство $Li_4(Li_{12}Ag_{10})-cI52$ [1, 2]

Интерметаллид	<i>a</i> , <i>b</i> , <i>c</i> , Å	<i>V</i> , Å ³
$Zn_4(Ag_{10}Zn_{12})$	9.341, 9.341, 9.341	815.0
$Li_4(Ag_{10}Li_{12})$	9.602, 9.602, 9.602	885.2
$Cd_4(Cu_{10}Cd_{12})$	9.615, 9.615, 9.615	888.9
$Cd_4(Ag_{10}Cd_{12})$	9.983, 9.983, 9.983	994.8

Таблица 11. Кристаллохимическое семейство Li₃Pd-*cF*16 [1, 2]

<i>a</i> , <i>b</i> , <i>c</i> , Å	<i>V</i> , Å ³
6.187, 6.187, 6.187	236.8
6.302, 6.302, 6.302	250.3
6.548, 6.548, 6.548	280.8
6.573, 6.573, 6.573	284.0
6.671, 6.671, 6.671	296.9
6.687, 6.687, 6.687	299.0
6.708, 6.708, 6.708	301.8
	<i>a</i> , <i>b</i> , <i>c</i> , Å 6.187, 6.187, 6.187 6.302, 6.302, 6.302 6.548, 6.548, 6.548 6.573, 6.573, 6.573 6.671, 6.671, 6.671 6.687, 6.687, 6.687 6.708, 6.708, 6.708

= 4 (в слое)+4+4. Первичная цепь S_3^1 формируется в результате связывания металлокластеров ($P_c = 6$) в плоскости XY (рис. 3). Атомы Li, расположенные между металлокластерами Pt₄, фиксируют в пространстве их взаимное расположение. Расстояние между металлокластерми Pt₄ соответ-

ствует половине диагонали. Микрослой S_3^2 образуется при связывании параллельно расположенных первичных цепочек из атомов Li–Li–Li в плоскости *XY*. Взаимное расположение двух цепей в плоскости фиксируется в пространстве. Расстояние между центрами тетраэдров Pt_4 из соседних цепей вдоль осей Хи Усоответствует пери-

одам трансляции a = b = 7.60 Å. Каркас S_3^3 формируется при связывании (со сдвигом) двух микрослоев. Расстояние между микрослоями определяет половину периода трансляции c = 7.600 Å.

Структурный тип Li_{1.84}Ag_{2.16}-cF4 [16] (табл. 1, 6). В кристаллической структуре атомы Ag и Li статистически заселяют позицию 4a. Металлокластер Li_{1.84}Ag_{2.16} (рис. 2) обладает симметрией $\overline{43m}$. Длины связей Ag–Li равны 2.858 Å. Установлены базовые сетки: 2D 4⁴ и 3D с KЧ = 4 (в слое) + 1 + 1. Первичная цепь S_3^1 формируется в результате связывания металлокластеров Li_{1.84}Ag_{2.16} ($P_c = 4$) (рис. 4). Расстояние между металлокластерами Li_{1.84}Ag_{2.16} определяет вектор трансляции a = 4.042 Å. Слой S_3^2 образуется при связывании ($P_c = 8$) параллельно расположенных цепей, каркас S_3^3 – при упаковке слоев. Расстояния между тетраэдрами в направлении осей Y и Z соответствуют периодам трансляции.

Структурный тип Li_2Ag_2 -t18 [16] (табл. 1, 7). Металлокластер Li_2Ag_2 (рис. 2) обладает симметрией 2. Установлены базовые сетки: 2D 4⁴ и 3D с KЧ = 4 (в слое) + 1 + 1. Первичная цепь S_3^1 формируется в результате связывания ($P_c = 4$) металлокластеров Li_2Ag_2 (рис. 4). Расстояние между кластерами Li_2Ag_2 определяет модуль вектора трансляции a = 3.965 Å. Образование слоя S_3^2 происходит при связывании параллельно распо-

происходит при связывании параллельно расположенных цепей ($P_c = 8$). Расстояние между тетраэдрами Li₂Ag₂ из соседних цепей в направлении оси *Y* соответствует периоду трансляции *b* = 3.965 Å.

Каркас S_3^3 формируется при упаковке слоев. Расстояние между микрослоями определяет половину периода трансляции c = 8.280 Å.

Структурный тип Li₂Ag₂-cP2 [16] (табл. 1, 8). Металлокластер Li₂Ag₂ (рис. 2) обладает симметрией тт2. Установлены базовые сетки: 2D 4⁴ и 3D с KЧ = 4 (в слое) + 1 + 1. Первичная цепь S_3^1 формируется в результате связывания ($P_c = 8$) кластеров Li₂Ag₂ (рис. 4). Расстояние между кластерами Li₂Ag₂ определяет длину вектора трансляции a = 3.170 Å. Слой S_3^2 формируется при связывании ($P_c = 10$) параллельно расположенных цепей, каркас структуры S_3^3 – при упаковке слоев. Расстояния между первичными цепями из соседних слоев соответствуют размеру диагонали кубической ячейки.

Структурный тип $(Li_3Ir)(LiIr_3)$ -оI8[13] (табл. 1, 9). Металлокластеры Li₃Ir и LiIr₃ (рис. 1) обладают

Рис. 3. Слои S_3^2 из кластеров-прекурсоров кристаллических структур интерметаллидов: а – (LiPd₃)(Pd₄)-*cF*32, б – LiAu₃-*cP*4, в – (Li₂Ir₂)(Ir₄)-*oI*8, г – (Li₂Pd₂)(Pd₄)-*mP*4, д – Li₂(Pt₄)-*cF*24. Здесь и далее разным цветом выделены эквивалентные структурные единицы.

симметрией 3*m*. Для них установлены базовые сетки: 2D 3⁶ и 3D с KЧ = 6 (в слое) + 3 + 3. Первичная цепь S_3^1 формируется в результате связывания ($P_c = 6$) тетраэдрических металлокластеров Li₃Ir и LiIr₃. Расстояние между центрами димеров Li₂Ir₂ + Ir₄ определяет удвоенный период трансляции $a = 2 \times 2.649$ Å (рис. 4). Слой S_3^2 образуется в результате связывания ($P_c = 7$) параллельно расположенных цепей. Расстояние между центрами димеров Li₂Ir₂ + Ir₄ вдоль оси *Z* определяет период трансляции c = 4.670 Å. Каркас структуры форми-

руется при упаковке слоев со сдвигом. Удвоенное расстояние между слоями в направлении оси Y соответствует модулю вектора трансляции b = 8.694 Å.

Структурный тип $(Li_4)(Li_{12}Ag_{10})$ -c152 [17] (табл. 1, 10). Металлокластер Li₄ (рис. 2) обладает симметрией $\overline{4}$ 3*m*. В тетраэдре Li₄ расстояния Li–Li 3.174 Å соответствуют длинам связей в Li-*hP*2 (рис. 1). На поверхности тетраэдра Li₄ образуется оболочка из 22 атомов состава Li₁₂Ag₁₀. Кристаллохимическая формула двухслойного тетраэдри-

Рис. 4. Слои S_3^2 из кластеров-прекурсоров кристаллических структур интерметаллидов: a – Li_{1.84}Ag_{2.16}-*cF*4, 6 – Li₂Ag₂-*tI*8, в – Li₂Ag₂-*cP*2, г – (Li₃Ir)(LiIr₃)-*oI*8, д – (Li₄)(Li₁₂Ag₁₀)-*cI*52, е – Li₃Pd-*cF*16.

ческого кластера $0@M_4@M_{22}$. Такой кластер Li₄(Li₁₂Ag₁₀) аналогичен 26-атомному кластеру Zn₄(Zn₁₂Cu₁₀), установленному в кристаллической структуре γ -латуни Cu₅Zn₈ [5]. Длины связей Li–Li = 3.174 Å, Ag–Li = 2.873 Å, Ag–Ag = 2.921 Å. Установлены базовые сетки: 2D 4⁴ и 3D с KЧ = = 4 (в слое) + 1 + 1. Первичная цепь S_3^1 формируется в результате связывания ($P_c = 8$) кластеров Li₁₆Ag₁₀ (рис. 4). Расстояние между кластерами Li₁₆Ag₁₀ определяет длину вектора трансляции a = 3.170 Å. Образование слоя S_3^2 происходит при связывании ($P_c = 10$) параллельно расположенных цепей, каркаса S_3^3 – при упаковке слоев. Расстояния между цепями из соседних слоев соответствуют длине диагонали кубической ячейки.

Структурный тип Li_3Pd -cF16 [11] (табл. 1, 11). Металлокластер Li_3Pd (рис. 1) обладает симмет-

КРИСТАЛЛОГРАФИЯ том 65 № 2 2020

рией *m*. Установлены базовые сетки: 2D 4⁴ и 3D с КЧ = 4 (в слое) + 1 + 1. Первичная цепь S_3^1 формируется в результате связывания ($P_c = 8$) металлокластеров Li₃Pd. Удвоенное расстояние между ними определяет период трансляции c = 7.837 Å (рис. 4). Слой S_3^2 формируется в результате связывания ($P_c = 10$) параллельно расположенных цепей, каркас S_3^3 – при упаковке слоев. Расстояния между осями первичных цепей из соседних слоев вдоль осей X и Y соответствуют периодам трансляций a = b = 6.187 Å.

ЗАКЛЮЧЕНИЕ

Проведен геометрический и топологический анализ 13 структурных типов интерметаллидов лития, образующихся в системах Li-M с атомами *d*-элементов M = Ag, Au, Pt, Pd, Ir, Rh. С исполь-

зованием алгоритмов разложения структурных графов на кластеры для 11 структурных типов Liинтерметаллидов определены тетраэдрические

металлокластеры-прекурсоры S_3^0 . Реконструирован симметрийный и топологический код процессов самосборки кристаллических структур Liинтерметаллидов из металлокластеров-прекурсо-

ров S_3^0 в виде: первичная цепь $S_3^1 \to$ микрослой $S_3^2 \to$ микрокаркас S_3^3 .

Автор выражает благодарность В.А. Блатову за предоставление для расчетов пакета программ ToposPro. Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках государственного задания ФНИЦ "Кристаллография и фотоника" РАН и Российского фонда фундаментальных исследований (грант № 19-02-00636).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Villars P., Cenzual K.* Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- 2. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- Dshemuchadse J., Steurer W. // Inorg. Chem. 2015. V. 54. № 3. P. 1120.

- 4. *Blatov V. A., Shevchenko A.P., Proserpio D.M.* // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576.
- Pankova A., Blatov V., Ilyushin G., Proserpio D. // Inorg. Chem. 2013. V. 52. P. 13094.
- 6. *Ilyushin G.D.* // Crystallogr. Rep. 2017. V. 62. № 5. P. 670.
- Ilyushin G.D. // Crystallogr. Rep. 2018. V. 63. № 4. P. 543.
- Ilyushin G.D. // Russ. J. Inorg. Chem. 2017. V. 62. 13. P. 1730.
- Ilyushin G.D. // Russ. J. Inorg. Chem. 2018. V. 63. 14. P. 1786.
- Ковальчук М.В., Алексеева О.А., Благов А.Е., Илюшин Г.Д. и др. // Кристаллография. 2019. Т. 64. № 1. С. 10.
- 11. Van Vucht J.H.N., Buschow K.H.J. // J. Less-Common Metals. 1976. V. 48. P. 345.
- Kienast G., Verma J. // Z. Anorg. Allg. Chem. 1961. B. 310. S. 143.
- 13. Donkersloot H.C., van Vucht J.H.N. // J. Less-Common Metals. 1976. V. 50. P. 279.
- Loebich O., Wopersnow W. // J. Less-Common Metals. 1979. V. 63. P. 83.
- Fischer D., Jansen M. // Z. Anorg. Allg. Chem. 2003. B. 629. S. 1934.
- Pavlyuk V.V., Dmytriv G.S., Tarasiuk I.I. et al. // Solid State Sci. 2010. V. 12. P. 274.
- Noritake T., Aoki M., Towata S. et al. // Acta Cryst. B. 2007. V. 63. P.726.