—— КРИСТАЛЛОХИМИЯ —

УДК 546.65; 541.27

К 150-летию Периодической системы элементов Д.И. Менделеева

ТРИФТОРИДЫ ЛАНТАНА И ЛАНТАНОИДОВ: ЛАНТАНОИДНОЕ СЖАТИЕ И ОБЪЕМ ИОНА ФТОРА

© 2020 г. Б. П. Соболев^{1,*}

¹ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

* *E-mail: sobolevb@yandex.ru* Поступила в редакцию 03.04.2019 г. После доработки 03.04.2019 г. Принята к публикации 17.06.2019 г.

Лантаноидное сжатие лантана и 14 лантаноидов (*Ln*), вызывающее уменьшение на ~15% (к меньшему) ионных радиусов R^{3+} с ростом атомного номера элемента *Z*, – способ достижения плотной упаковки ионов F¹⁻ в трифторидах тяжелых *4f*-элементов Периодической системы элементов. Оценена эффективность лантаноидного (*Ln*) и актиноидного (*An*) сжатия для получения кристаллов неорганических фторидов с минимальным объемом элементарной ячейки на один фтор-ион (*V_F*). Для AnF_3 (*An* = Ac–Am) с ростом *Z* от 89 до 95 величина *V_F* понижается с ~20 до ~17.4 Å³. Недоступность тяжелых *An* делает эту величину окончательной. Плотнейшей упаковки фтор-иона во фторидах, используя эффекты лантаноидного и актиноидного сжатия и увеличения валентности катиона, достичь не удалось. Фториды LnF_3 (структурный тип β-YF₃) конца ряда от ErF₃ (15.86 Å³) до LuF₃ (15.48 Å³) ближе всего к плотнейшей упаковке анионов. Последняя величина *V_F* минимальна для всех изученных LnF_3 и фторидов актиноидов (простых и комплексных) и близка к насыщению. Ей отвечает оценочное значение ионного радиуса фтор-иона 1.246 Å.

DOI: 10.31857/S0023476120020228

введение

Атомные и ионные радиусы R и R^{3+} в семействе редкоземельных элементов (**P3** $\Theta - R$) растут с ростом атомного номера элемента Z при переходе по III группе от ²¹Sc к ³⁹Y и ⁵⁷La. Эта общая закономерность Периодической системы впервые нарушается у *Ln*. У следующего за лантаном церия начинается заполнение 4f-подоболочки. Более сильное взаимодействие электронов 4f-подоболочки с ядром порождает обратную зависимость радиусов R и R^{3+} – уменьшение с ростом Z. Этот эффект V.M. Goldschmidt (1925) назвал "лантаноидным сжатием". Лантаноидное сжатие атомов и ионов 14 лантаноидов (и актиноидное сжатие родственного семейства 14 Ап) является одним из фундаментальных явлений, определяющих изменения свойств и кристаллохимию соединений семейств 4f- и 5f-элементов.

Эффект сжатия ионных радиусов 4f- и 5f-элементов в неорганических фторидах с ионным характером химической связи и простой химической формулой давно представлял фундаментальный кристаллохимический интерес. Он выражался в поиске гомологического ряда соединений *Ln* или *An*, в которых при росте атомного номера элемента *Z* и лантаноидном (*4f*-элементы) или актиноидном (*5f*-элементы) сжатии достигается независимость параметров элементарной ячейки соединения от размера катиона (*Ln* или *An* соответственно). Это будет означать касание ионов фтора, по которому можно определить занимаемый одним F^{1-} объем V_F . При низкой поляризуемости F^{1-} и его сферичности из объема V_F можно независимо оценить ионный радиус фтора. Полагается, что V_F для фторидов лантаноидов и актиноидов близок или одинаков. Ранее был изучен эффект только актиноидного сжатия, не приводящий к плотнейшей упаковке фторионов.

Задача определения размеров анионов имеет исторические прецеденты, не все из которых завершились успешно. Проблема нахождения размера хотя бы одного иона, чтобы рассчитать размеры другого, образующего с первым химическое соединение, уходит корнями в историю выработки систем ионных радиусов. Для обоснованного деления межатомного расстояния "катион—анион" (абсолютной величины из структурного анализа) надо определить независимым методом размеры одного из них.

В 20-х гг. прошлого столетия А. Ланде предположил, что в кристаллах с "мелкими" катионами и крупными анионами, начиная с некоторого размера аниона A, между ними возникает контакт, и размер катиона перестает влиять на период элементарной ячейки соединения. Объем, приходящийся на один анион в гомологическом ряду соединений (с одинаковой формулой $R_m A_n$), становится постоянным. Он определяется расстоянием "анион–анион", из которого вычисляется размер аниона. Предположение подтверждено на изоструктурных NaCl рядах оксидов, сульфидов и селенидов Mg и Mn. Это направление поиска плотной анионной упаковки для крупных анионов завершилось успехом.

Для самого мелкого аниона, каким является F¹⁻, решение аналогичной задачи сложнее. При фиксированном анионе надо подобрать самые "мелкие" катионы в Периодической системе, образующие фториды. Полагали, что чем выше атомный номер Z, тем меньше размер его высокозарядного катиона [1]. Это предположение направило поиск плотноупакованных по фтору соединений на фториды Ап. Поиск определялся прогрессом получения 5*f*-элементов – $An = {}^{89}Ac$, ⁹⁰Th, ⁹¹Pa, ⁹²U и трансурановых элементов до лоуренсия 71 Lr. Однако тяжелые 5*f*-элементы (Bk, Cf, Es, Md, No, Fm, Lr) получены в виде короткоживущих радиоактивных изотопов в очень малых количествах и мало изучены. Для легких An поиск предпринят в конце 50-ых [2]. Он положительного результата не дал, в том числе, из-за недоступности фторидов тяжелых Ап.

Параллельно с этим направлением проверялось увеличение валентности катионов выше 3+. Оно не учитывало изменения характера химической связи и оказалось неэффективным.

Семейство *Ln* принадлежит к побочной подгруппе III группы 6 периода Периодической системы элементов, как и семейство актиноидов, располагающееся в 7 периоде. Изменение радиусов r_R ионов РЗЭ по ряду меняет знак с положительного (рост r_R при ²¹Sc \rightarrow ³⁹Y \rightarrow ⁵⁷La по III группе) на отрицательный (лантаноидное сжатие по 6 периоду от ⁵⁷La \rightarrow ⁷¹Lu). Преимущество *Ln* перед *An* в полной доступности *Ln*F₃ для всего ряда, кроме PmF₃. Сейчас его производство налажено и определены температура плавления, тип структуры и параметры элементарной ячейки.

Эффект лантаноидного сжатия уменьшает размеры Ln и позволяет использовать рост Z до крайнего члена семейства — ⁷¹Lu. Это может привести к плотной фторной упаковке с катионами в пустотах.

Сравнение лантаноидного и актиноидного сжатия в достижении минимальных $V_{\rm F}$ во фторидах *4f*- и легких *5f*-элементов проводится впервые.

Цель исследования — оценка возможности лантаноидного сжатия РЗЭ для достижения минимального объема элементарной ячейки $V_{\rm F}$ на один фтор-ион в кристаллах RF_3 и сравнение с изученным ранее с этой целью эффектом актиноидного сжатия в простых и комплексных фторидах легких An.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Ионные радиусы R^{3+} во фторидах РЗЭ. Для оценки эффекта лантаноидного сжатия надо выбрать систему ионных радиусов катионов РЗЭ. Подавляющее большинство систем имеют точность ±0.01 Å. С этой точки зрения системы Гольдшмидта (1926), Захариасена (1931), Кордеса (1940), Аренса (1952), Бокия (1954) и другие непригодны для анализа свойств РЗЭ и их соединений. При изменении Z РЗЭ на единицу r_R меняется в среднем на $\Delta r_R \sim 0.014$ Å. В абсолютной шкале сомнителен и второй знак, но для анализа свойств РЗЭ по ряду нужна система относительных радиусов до ±0.001 Å.

Для прецизионного анализа лантаноидного сжатия наиболее пригодна «специализированная» система радиусов R^{3+} в RF_3 для KЧ 9 по [3], рассчитанных из высокоточных (±0.0005 Å) измерений параметров решеток RF_3 структурных типов LaF₃ и β-YF₃. В этой системе лантаноидное сжатие монотонно уменьшает r_R на 15% (к меньшему) при росте Z от 57 до 71 в отличие от других систем, не обнаруживая "гадолиниевого" скачка (вклада).

Однако для сравнения лантаноидного и актиноидного сжатия требуется универсальная система "эффективных" ионных радиусов [4], в которой есть ионные радиусы актиноидов. Для РЗЭ эта система использовала их радиусы [3], к которым сделаны поправки: +0.030 Å для ионов La³⁺-Nd³⁺ с КЧ 9 и +0.025 Å для остальных РЗЭ с КЧ 9. Поправки обеспечивали универсализацию системы. Последствия поправок видны на рис. 1. Кривая 1 по [3] монотонна на всем интервале La-Lu, показывая изменение r_R (КЧ 9) с ростом Z. Кривая 2 по [4] (КЧ 9) с поправками, разными для разных групп РЗЭ. Пунктирная вертикаль разделяет поправки для цериевой (+0.030) и иттриевой (+0.025) подгрупп РЗЭ, порождающие излом между Nd и Pm.

Кривая *3* рис. 1 дает ионные радиусы легких актиноидов от ⁸⁹Ас до ⁹⁵Ат для состояния 3+ и КЧ 6 по [4]. Эти элементы имеют наиболее долгоживущие изотопы, и их свойства изучены лучше.

Рис. 1. Изменение ионных радиусов по рядам: лантаноидов (кривая *1* по [3], КЧ 9; кривая 2- те же данные с поправками [4], КЧ 9; кривая 4- по [4], КЧ 6; актиноидов (кривая *3* по [4], КЧ 6).

Все эти AnF_3 имеют тип LaF₃, и KЧ 6 не соответствует структурным данным. Для сравнения их с Ln пришлось использовать радиусы для Ln по [4] также для KЧ 6, кривая 4. Кривые 3 и 4 показывают, что лантаноидное сжатие приводит к более низким значениям ионных радиусов катионов R^{3+} (при сопоставимых KЧ). К сравнению лантаноидного и актиноидного сжатия вернемся ниже.

Лантаноидное сжатие в трифторидах РЗЭ. Лантаноидное сжатие проявляется в уменьшении радиуса r_R катиона R^{3+} по ряду РЗЭ. Соответственно, уменьшаются формульный объем V_{form} и объем V_F , приходящийся на один ион. Абсолютные величины влияния одного электрона на размер иона различны на участках ${}^{39}Y^{3+}-{}^{57}La^{3+}$ (переход по группе, $\Delta Z = 18$) и ${}^{57}La^{3+}-{}^{71}Lu^{3+}$ (переход внутри 6 периода, $\Delta Z = 14$).

При переходе по III группе прирост ионного радиуса 1.050–1.186 Å дает ~0.008 Å на одну атомную единицу. Лантаноидное сжатие R^{3+} уменьшает r_R по 6 периоду для 15 РЗЭ от La³⁺ до Lu³⁺ от 1.186 до 1.007 Å (радиусы по [3] для КЧ 9), что отвечает ~0.013 Å на одну атомную единицу. Количественно различие в ~2 раза усугубляется принципиально – изменением знака. Его связывают с различием между этими двумя участками Периодической системы электронов к внешним оболочкам на первом и "глубинной" 4*f*-подоболочке на втором. Лантаноидное сжатие велико, и размеры ионов тяжелых РЗЭ (Er–Lu) меньше, чем Y³⁺ с более низким (на 29 единиц) зарядом ядра. По

Рис. 2. Изменение $V_{\rm F}$ на один ${\rm F}^{1-}$ при лантаноидном ($1 - Ln{\rm F}_3$ тип La ${\rm F}_3$ ($R = {\rm La} - {\rm Sm}$) по [3], 2 - по [6], 3, $4 - Ln{\rm F}_3$ тип β -YF₃ ($R = {\rm Sm} - {\rm Lu}$) по [3]) и актиноидном сжатии ($5 - An{\rm F}_3$ тип La ${\rm F}_3$ ($An = {\rm Ac} - {\rm Am}$), 6 -*M*ThF₆ ($M = {\rm Ca}$, Sr, Pb, Ba) тип LaF₃, $7 - M{\rm UF}_6$ тип LaF₃ по [2, 7]).

свойствам YF_3 располагается во второй половине ряда LnF_3 .

Объем иона F^{1–} ($V_{\rm F}$) в трифторидах лантаноидов. В [5] при анализе внутренней периодичности фазовых превращений в трифторидах иттрия, лантана и лантаноидов (RF_3) впервые приведены изменения формульного объема V_{form} по всему ряду RF_3 (R = Y, La, Ln, включая Pm) для структурных типов LaF₃ и β-YF₃ по [3, 6]. Их V_{form} состоит из вклада объема катионов (меняется по ряду P3Э, определяется лантаноидным сжатием), анионного вклада (постулируется одинаковым для всех LnF_3) и вклада плотности структурной упаковки (может быть периодичным и разным для разных структур).

Интересен постоянный вклад — объем элементарной ячейки $V_{\rm F}$, приходящийся на один ион фтора, рис. 2. Для решения задачи о плотнейшей упаковке фтор-ионов в RF_3 надо найти трифторид, у которого $V_{\rm F}$ становится минимальным и остается постоянным при дальнейшем росте Z. Это выявит контакт анионов в структуре фторида. Из минимального $V_{\rm F}$ оценивается ионный радиус ${\rm F}^{1-}$ как радиус сферы, вписанной в куб с ребром $V_{\rm F}$. Обоснование величины радиуса ${\rm F}^{1-}$ требует отдельного рассмотрения.

Информация об изменении $V_{\rm F}$ по обоим рядам фторидов семейств 4f- (нижняя шкала) и 5f-элементов (верхняя шкала) содержится на рис. 2. Для всех лантаноидов, включая Pm, есть данные по V_{form} и $V_{\rm F}$. Расчет $V_{\rm F}$ всех RF_3 (кривые 1–4 рис. 2) сделан по V_{form} из параметров решетки. Для RF_3 типа LaF₃ ($R = {}^{57}La - {}^{62}Sm$) кривая 1 рассчитана по [3]. Значение V_F для α -PmF₃, полученное из параметров решетки по [8], хорошо ложится на кривую 1.

Кривая 2 получена [6] для тисонитовых диморфных α - RF_3 (R = Sm-Gd) экстраполяцией на RF_3 зависимостей параметров решетки от содержания MF_2 закаливающихся фаз $R_{1-y}M_yF_{3-y}$ (M = Ca, Sr).

Выводы. Из изменения $V_{\rm F}$ по ряду лантаноидов (рис. 2) следует: эффект лантаноидного сжатия для RF_3 изучен полностью; он приводит к существованию кристаллов β-LuF₃ с $V_{\rm F} = 15.48$ Å³, близким к плотнейшему; лантаноидное сжатие отчетливо на обоих участках ряда RF_3 со структурами типов LaF₃ (R = La-Gd) и β-YF₃ (R = Sm-Lu); в уменьшение $V_{\rm F}$ за счет лантаноидного сжатия дополнительный вклад к катионному вносит полиморфный переход от типа LaF₃ к типу β-YF₃ с $\Delta V_{\rm F}$ в среднем +4.2% (к меньшему); величины $V_{\rm F}$ для RF_3 от ErF₃ (15.86 Å³) до LuF₃ (15.48 Å³) близки к насыщению; этот интервал $V_{\rm F}$ минимален для LnF_3 . На рис. 2 он обозначен двойной вертикалью и надписью "4f-элементы".

Актиноидное сжатие в простых и комплексных фторидах An. Семейство 5f-элементов – актиноидов – начинается с родоначальника Ac, после которого с Th идет заполнение 5f-подуровня. Для An эффект актиноидного сжатия аналогичен сжатию у 4f-элементов (58 Ce $-{}^{71}$ Lu). Актиноидное сжатие уменьшает размеры катионов An³⁺ с ростом Z.

Изучение актиноидного сжатия в отличие от лантаноидного ограничено первой половиной ряда An. Это затрудняет сравнение, так как для легких Ln и An химические различия максимальны из-за электронной структуры последних. Для легких Ап более устойчивы 6d-орбитали, а для тяжелых – 5f. Для ⁹⁰Th-⁹⁵Am энергия 5f- и 6d-подуровней примерно одинакова, и элементы могут находиться в нескольких состояниях окисления. У тяжелых An по мере заполнения 5f-уровней электронные конфигурации стабилизируются, и переход 5f-электронов в 6d-состояние становится все более затрудненным. Поэтому ⁹⁷Bk-¹⁰³Lr по свойствам их AnF₃ должны приближаться к LnF₃ со степенью окисления Ln^{3+} . Однако эти AnF_3 недоступны и только можно полагать их подобие *Ln*F₃.

Участие в химической связи *5f*-электронов у *An* начала ряда приводит к высоким валентностям, в частности, Th^{4+} и U^{4+} . Это уменьшает их ионный радиус и открывает возможность получения комплексных фторидов, содержащих, как предполагалось, одни из самых «мелких» катионов $-An^{4+}$.

На рис. 2 в отличие от автора [2], использовавшего для анализа изменений $V_{\rm F}$ ионные радиусы *An* (определены неточно и требуют поправки на KЧ, рис. 1), сравнение объемных изменений в рядах LnF_3 и AnF_3 проводится в абсолютной шкале *Z*. Прямого сопоставления этих эффектов не было найдено.

Исследования кристаллохимии *5f*-элементов вызваны Манхэттенским проектом. В [2] показана принадлежность AcF₃ и фторидов актиноидов: UF₃, NpF₃, PuF₃, AmF₃ к типу LaF₃ и определены параметры их решетки. На рис. 2 на верхней оси – ряд *An* от ⁸⁹Ac до ¹⁰³Lr. Элементы – аналоги двух химических семейств – располагаются друг под другом. Кривая *5* отвечает величинам V_F трифторидов начала ряда *An*. Пропуская фторид Th (не имеет валентности 3+) и Pa (3+), она доходит до Am (3+) включительно [2].

С ростом $Zy AnF_3$ (An = Ac - Am) V_F заметно понижается на участке ряда с ~ 20 до ~ 17.4 Å³ и намечается тенденция к насыщению кривой 5 рис. 2. Недоступность тяжелых An делает эксперимент на рис. 2 по влиянию актиноидного сжатия в AnF_3 на V_F окончательным. Минимальное для изученных AnF_3 значение $V_F = 17.41$ Å³ у AmF₃ на рис. 2 отмечено верхней штрихпунктирной горизонталью. На этом заканчивается направление поиска [2] плотнейшей упаковки F^{1-} в AnF_3 , которая не получена.

Минимальное значение $V_{\rm F}$ для AnF_3 не предельно среди изученных в [2] соединений типа LaF₃. Получены двойные фториды гомологических рядов *M*ThF₆ (M = Ba, Pb, Sr, Ca) и *M*UF₆ (M = Ba, Pb, Sr). Пунктирные вертикали 6 и 7 на рис. 2 отвечают изменению их V_F. Соединение CaUF₆ синтезировано в [7]. Оно также имеет структуру типа LaF₃. Для всех *M*(Th,U)F₆ (вертикали 6 и 7), кроме Ba(Th,U)F₆, получены более низкие V_F, чем для соответствующих простых трифторидов AcF₃–AmF₃ (кривая 6).

Предположение [2] о минимизации объемов катиона с ростом валентности *An* подтверждено в [7] и найдено ограничение на понижение V_F у Ba(Th,U)F₆ с крупным катионом Ba²⁺. Переход к двойным соединениям сопровождается уменьшением среднего радиуса катиона $(M_{0.5}An_{0.5}^{4+})^{3+}$ и V_F с падением радиуса M^{2+} по ряду Ba²⁺ \rightarrow Pb²⁺ $\rightarrow \rightarrow$ Sr²⁺ \rightarrow Ca²⁺ от 20 до 16.38 Å³. Минимальные V_F среди изученных двойных фторидов с мелкими An^{4+} для CaThF₆ [2] и CaUF₆ [7] достаточно близки. Однако и для них общий ход зависимости V_F от ионного радиуса M^{2+} не имеет выраженного насыщения.

Минимальный $V_{\rm F} \sim 16.4$ Å³ для CaUF₆ выделен на рис. 2 второй штрихпунктирной горизонталью. До этой величины расширяется поле значений $V_{\rm F}$, полученных в простых и комплексных фторидах *An* начала ряда от Ac до Am. Все фазы в этом поле изоструктурны и принадлежат к плотноупакованному типу LaF₃. Интервал минимальных $V_{\rm F}$ для трифторидов и двойных фторидов актиноидов составляет 17.4—16.4 Å³. На рис. 2 он выделен двойной вертикалью и обозначен "*5f*элементы".

Выводы. Из [2], рис. 2 для AnF_3 следует: актиноидное сжатие отчетливо на участке первой половины ряда $An = AcF_3 - AmF_3$, доступной для исследования; минимальные V_F в AnF_3 составляют 16.4–17.4 Å³ и ниже опубликованного в [1] значения 18 Å³ как предела плотности упаковки F^{1–} во фторидах; эти V_F не минимальны для простых и комплексных фторидов An, поскольку есть более тяжелые, но недоступные An.

Лантаноидное и актиноидное сжатие во фторидах. Имеющиеся данные позволяют сравнить лантаноидное и актиноидное сжатие для фторидов 4f- и части легких 5f-элементов. При формальной идентичности заполнения f-подоболочек, химически роднящей семейства лантаноидов и актиноидов, между ними есть различия. Они проявляются для первых членов каждого ряда и выражаются в участии 5f-электронов некоторых актиноидов в химической связи. Оно порождает различие валентностей и химических свойств аналогов семейств, которое к концу рядов минимизируется.

Не углубляясь в различия, выходящие за рамки сообщения, используем данные по лантаноидному и актиноидному сжатию для сравнения. Неважно, из каких фторидов определены $V_{\rm F}$, важно, чтобы $V_{\rm F}$ было минимальным.

Рассмотрим величину ΔV_F уменьшения формульных объемов V_{form} на 1 Z, приведенную на рис. 3. Для первой группы доступных фторидов актиноидов от AcF₃ до NpF₃ усредненные изменения ΔV_F показаны кривой *1*.

На участке ряда AnF_3 (An = Ac-Np) ΔV_F падает от 0.53 до 0.21 Å³ на 1 Z. Затем на участке An == Np-Am падение ΔV_F замедляется, приближаясь к 0.21–0.15 на 1 Z. Все изученные AnF_3 (An == Ac-Am) изоструктурны, и морфотропных переходов не содержат. Недоступность оставшихся AnF_3 (An = Cf-Lr) оставляет открытым вопрос о близости лантаноидного и актиноидного сжатия для вторых половин рядов.

Для участка ряда RF_3 (R = La-Gd) типа LaF_3 ΔV_F падает от 0.30 до 0.24 Å³ на 1 Z, а для RF_3 (R = Sm-Lu) типа β -YF₃ от 0.24 до 0.13 Å³ на 1 Z.

Рис. 3. Изменение объемных эффектов сжатия ΔV_F трифторидов на один атомный номер *Z* по рядам *4f*-(лантаноидное) и *5f*-элементов (актиноидное).

У фторидов лантаноидов от Sm до Lu на эффект лантаноидного сжатия накладывается скачок $\Delta V_{\rm F}$ (кривые 2, 3) при морфотропной смене структуры типа LaF₃ на тип β -YF₃. Вклад морфотропии в $\Delta V_{\rm F}$ невелик из-за структурного родства типов. Для RF_3 типа β -YF₃ выделяются тяжелые РЗЭ (рис. 2, 3), для которых эффект лантаноидного сжатия близок к насыщению.

Для AnF_3 начала ряда (кривая *I*) величина эффекта сжатия ΔV_F приблизительно вдвое выше, чем для изоструктурных им LnF_3 начала ряда лантаноидов (La–Gd, кривая *2*). Отметим, что на этот же участок ряда актиноидов приходится увеличение ионного радиуса An^{3+} (кривая *3* на рис. 1). По-видимому, это не случайное совпадение, так как оно коррелирует с различием электронного строения элементов именно этих участков рядов.

Дальнейший поиск соединений с плотнейшей фторной упаковкой среди простых фторидов актиноидов для изучения эффекта актиноидного сжатия следует признать бесперспективным по причине недоступности тяжелых актиноидов и большой разнице $V_{\rm F}$ AmF₃ (17.41 Å³) и LuF₃ (15.48 Å³).

Выводы. Сравнивая поиск [1, 2] наиболее плотноупакованных по фтору простых и комплексных фторидов актиноидов и полученные в настоящей работе данные по LnF_3 , приходим к выводам: к плотнейшей упаковке F^{1-} приближаются RF_3 конца ряда (тип β-YF₃): ErF₃, HoF₃, TmF₃, YbF₃, LuF₃ (в порядке уменьшения ΔV_F); на начальных участках рядов LnF_3 и AnF_3 эффект актиноидного сжатия на ΔV_F преобладает над лантаноидным,

Рис. 4. Изменение температур плавления некоторых фторидов MF_m в зависимости от валентности катиона m^+ .

уравниваясь для начала второй половины обоих рядов.

Ограничения уменьшения размеров катионов во фторидах увеличением их валентности. Рассмотрим еще один путь получения плотнейшей упаковки ионов фтора – уменьшение размера катиона повышением его валентности, предложенный в [1]. Получены и изучены фториды урана с переменной валентностью: UF₃, UF₄, U₄F₉, α -UF₅, β-UF₅, UF₆. Ожидалось, что «мелкие» высокозарядные катионы урана должны располагаться в пустотах структуры, а упаковка анионов стать плотнейшей. Средняя величина V_F составила для перечисленных шести фторидов 18.3 Å³ на один F¹⁻. Эту величину автор [1] предложил считать некоторой предельной плотностью упаковки анионов в простых фторидах с "мелкими" катионами актиноидов. Его оценка вошла в литературу. Ей отвечает значение ионного радиуса фтора $r_{\rm F} =$ = 1.310 Å. близкое к принятым в нескольких системах ионных радиусов.

Может ли быть принята эта величина для всех фторидов? Из $V_{\rm F}$ для шести фторидов урана (18.1, 19.4, 16.9, 19.0, 17.0, 19.3 Å³ соответственно) следует вывод о большом разбросе (14% к меньшему), не отвечающем точности определения парамет-

ров решетки. Главное сомнение вызывает допущение независимости расстояний "катион фтор" от характера химической связи, которое негласно принимается [1] при усреднении приведенных величин $V_{\rm F}$.

Влияние характера химической связи на межатомные расстояния "катион—фтор" принципиально для выработки любой системы ионных радиусов. В рассмотренном ряде фторидов урана характер химической связи хорошо изучен в силу областей их применения. Оценка характера связи определяется температурами плавления. Возьмем три наиболее изученных фторида урана:

$$UF_3 \rightarrow UF_4 \rightarrow UF_6.$$

Ковалентизация связи с ростом валентности урана разительно уменьшает температуры плавления с 1500 до 1036 и 65°С соответственно. При этом $V_{\rm F}$ меняются как 18.1 \rightarrow 19.4 \rightarrow 19.3 Å³ по [1]. Все соединения имеют разный характер химической связи и тип структуры. Рост валентности урана не увеличивает плотность упаковки фтор-ионов, как предполагалось. Ковалентизация связей ведет к обратному эффекту – сохранению $V_{\rm F}$.

Эффект стабилизации фтор-ионом предельных состояний валентности металлов путем образования комплексных ионов с экранировкой центрального катиона малым лигандом с высокой электроотрицательностью хорошо известен. В случае урана UF₆ становится летучим, что выгодно для его практического применения. Но для оценки объема $F^{1-}An^{6+}$ не пригоден.

Выводы о влиянии валентности катионов на свойства фторидов урана распространяются и на фториды других высокозарядных катионов. На рис. 4 показано, что фториды 5- и 6-зарядных катионов обладают температурами плавления, более чем на 500°С низкими, чем 1–4-зарядные.

Разрыв происходит резко и не оставляет надежд на продолжение поиска высокозарядных "мелких" катионов для определения размера фтор-иона во фторидах. По-видимому, это направление не имеет перспектив.

В табл. 1 приведены объемы $V_{\rm F}$ (Å³) на один ион фтора, минимальные (min) и максимальные (max) по группам соединений *Ln* [3, 6] и *An* [1, 2, 7].

Таблица 1. Объемы $V_{\rm F}$ (Å³) на один ион фтора в некоторых изученных фторидах лантаноидов и актиноидов

Фториды лантаноидов					Фториды актиноидов		
Тип LaF ₃		Тип β-YF ₃			Тип LaF ₃		
LaF ₃	α -GdF ₃	β-SmF ₃	ErF ₃	β -LuF ₃	AcF ₃	AmF ₃	CaUF ₆
Объем элементарной ячейки $V_{ m F}$ на один ион ${ m F}^{1-}$ во фторидах							
18.26	16.16	17.28	15.86	15.48	19.94	17.41	16.38
[3]	[6]	[3]	[3]	[3]	[2]	[2]	[7]

ЗАКЛЮЧЕНИЕ

Достижение плотнейшей упаковки F^{1-} для определения его размера в неорганических фторидах, используя эффекты лантаноидного и актиноидного сжатия и увеличения валентности катиона до 4+, исчерпано. Результата достичь не удалось. Ближе всего к плотнейшей упаковке анионов *R*F₃ конца ряда (структурный тип β-YF₃): ErF₃, HoF₃, TmF₃, YbF₃, LuF₃ (в порядке роста плотности). Полученный минимальный *V*_F составляет 15.48 Å³, что отвечает оценочной величине ионного радиуса F¹⁻ $r_F = 1.246$ Å. Анализ кристаллохимии трифторидов РЗЭ приведет к несколько иному значению, вероятно, меньшему и зависящему от координационного окружения.

Автор выражает благодарность П.В. Костоглодову и Н.И. Сорокину за обсуждения.

Работа выполнена при поддержке Министерства науки и высшего образования в рамках работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Zachariasen W.H. // J. Am. Chem. Soc. 1948. V. 70. № 6. P. 2147.
- Zachariasen W.H. // Acta Cryst. 1949. V. 2. № 6. P. 388.
- 3. *Greis O., Petzel T.* // Z. Anorg. Allg. Chem. 1974. B. 403. № 1. S. 1.
- 4. *Shannon R.D.* // Acta Cryst. A. 1976. V. 32. № 5. P. 751.
- 5. *Соболев Б.П.* // Кристаллография. 2019. Т. 64. № 5. С. 701.
- 6. Соболев Б.П., Гарашина Л.С., Федоров П.П. и др. // Кристаллография. 1973. Т. 18. Вып. 4. С. 751.
- 7. Некрасова Н.П., Обломеев Е.Н., Безносикова А.В. // Атомная энергия. 1967. Т. 22. № 4. С. 293.
- 8. Волков А.И., Жарский И.М. Большой химический справочник. Минск: Современная школа, 2005. 608 с.