— РОСТ КРИСТАЛЛОВ —

УДК 548.5.55

РАСЧЕТ КОЭФФИЦИЕНТА РАСПРЕДЕЛЕНИЯ Sr²⁺ В КРИСТАЛЛЕ LaF₃ ПРИ БЕСКОНЕЧНОМ РАЗБАВЛЕНИИ ИЗ ДАННЫХ ПО НАПРАВЛЕННОЙ КРИСТАЛИЗАЦИИ ТВЕРДЫХ РАСТВОРОВ La_{1-v}Sr_vF_{3-v}

© 2020 г. Н. И. Сорокин^{1,*}, Е. А. Кривандина¹

¹ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

* *E-mail: nsorokin1@yandex.ru* Поступила в редакцию 19.06.2019 г. После доработки 19.06.2019 г. Принята к публикации 27.06.2019 г.

Из данных по направленной кристаллизации твердых растворов $La_{1-y}Sr_yF_{3-y}$ (0.01 $\leq y \leq$ 0.15, структурный тип тисонита – LaF₃) определен термодинамический коэффициент распределения примеси Sr²⁺ в кристалле LaF₃ при бесконечном разбавлении ($c \rightarrow 0$) – $k_0 = 1.60 \pm 0.02$. Полученная величина k_0 хорошо согласуется с оценкой коэффициента распределения $k_0 = 1.7$, ранее найденной модифицированным методом криоскопии из диаграммы плавкости системы SrF₂–LaF₃.

DOI: 10.31857/S0023476120020241

введение

Трифториды RF_3 (R = редкоземельные элементы La, Ce, Pr, Nd) со структурой тисонита (тип LaF₃) и гетеровалентные твердые растворы на их основе $R_{1-\nu}M_{\nu}F_{3-\nu}$ (M = щелочноземельные элементы Ca, Sr, Ba) широко используются как модельные кристаллы для изучения взаимосвязи дефектной структуры и физических свойств твердых тел с сильным структурным разупорядочением [1-5]. Они являются перспективными функциональными фторидными материалами для разных областей твердотельной фотоники и ионики: оптические элементы для ВУФ- и ИК-лиапазона спектра, сшинтилляторы, фторид-селективные электроды, твердые электролиты для малогабаритных источников тока [6-9].

Кристаллы тисонитовых матриц RF_3 и твердых растворов $R_{1-y}M_yF_{3-y}$, как правило, выращивают из расплава методами направленной кристаллизации Бриджмена—Стокбаргера [10—13] или Чохральского [14, 15]. Коэффициенты распределения примесных катионов M^{2+} являются важными характеристиками при росте нестехиометрических кристаллов $R_{1-y}M_yF_{3-y}$.

Для экспериментального определения термодинамического (равновесного) коэффициента k_0 распределения примеси во фторидных кристаллах при бесконечном разбавлении традиционно применяют метод высокотемпературной криоскопии. Этот метод является весьма трудоемким, поскольку необходимо тщательно измерять в области разбавленных твердых растворов температурные изменения (ΔT) кривых ликвидуса или солидуса при малых вариациях концентрации примеси (Δc) и далее проводить экстраполяцию отношений $\Delta T/\Delta c$ на $c \rightarrow 0$. Для щелочноземельных примесей Ca²⁺, Sr²⁺ и Ba²⁺ (особенно важных в ионике фторидных материалов) в тисонитовых матрицах RF_3 (R = La–Nd) значения термодинамических коэффициентов k_0 непосредственно в экспериментах не измерялись.

В бинарных системах MF_2-RF_3 (M = Ca, Sr, Ba; R = La-Nd) [16] имеет место аномально высокая растворимость щелочноземельных дифторидов (десятки мольных процентов), приводящая к протяженным областям гомогенности тисонитовых твердых растворов $R_{1-y}M_yF_{3-y}$. Для этих систем [17] проведена оценка величины k_0 распределения примесей M^{2+} при бесконечном разбавлении в кристаллах RF_3 из кривых ликвидуса (модифицированный метод криоскопии).

Особенностью систем MF_2-RF_3 (M = Ca, Sr, Ba; R = La-Nd) является наличие максимумов на кривых плавкости тисонитовых фаз (гетеровалентных твердых растворов) $R_{1-y}M_yF_{3-y}$. Состав твердого раствора, отвечающий максимуму, характеризуется конгруэнтным плавлением. Только вблизи состава, отвечающего максимуму плавко-

Таблица 1. Зависимость эффективного коэффициента распределения примеси Sr^{2+} в монокристаллах твердого раствора $La_{1-y}Sr_yF_{3-y}$ от концентрации SrF_2 в исходном расплаве

Концентрация SrF ₂ в расплаве		Коэффициент
у, мольная доля	<i>c</i> = 100 <i>y</i> , мол. %	распределения примеси в кристаллах, k _{eff}
0.01	1	1.50
0.03	3	1.18
0.05	5	1.08
0.055	5.5	1.06
0.061	6.1	1.02
0.07	7	1.00
0.078	7.8	0.97
0.10	10	0.93
0.15	15	0.75

сти, можно вырастить из расплава монокристаллы твердых растворов $R_{1-y}M_yF_{3-y}$ с однородным распределением примеси M^{2+} по длине.

В системах $SrF_2 - RF_3$ с R = La, Ce, Pr, Nd [18] максимумы на кривых плавления тисонитовых фаз R_{1-v} Sr_vF_{3-v} имеют вырожденный (тангенциальный) характер, не позволяющий из фазовых диаграмм точно определить состав, отвечающий конгруэнтному плавлению. По данным термического анализа [16] составы максимумов практически одинаковы (10-11 мол. % SrF₂). В [19, 20] максимумы в этих системах были уточнены методом направленной кристаллизации по эффективным коэффициентам распределения примеси k_{eff} для твердых растворов R_{1-y} Sr_yF_{3-y} ($y \ge 0.01$). Функция распределения примесного компонента Sr²⁺ в объеме монокристаллов твердых растворов R_{1-v} Sr_vF_{3-v} находилась по измерениям плотности (R = La, Ce, Pr, Nd) [19] или методом рентгеноспектрального флуоресцентного анализа (R = La) [20]. В этих работах обнаружены значительные отклонения (±3 мол. % SrF₂) уточненных методом направленной кристаллизации составов максимумов от составов максимумов 10-11 мол. % SrF₂ на кривых плавкости систем $SrF_2 - RF_3$.

Для системы SrF_2 —La F_3 экспериментально найденные эффективные коэффициенты примеси k_{eff} в твердых растворах La_{1-y}Sr_yF_{3-y} ($y \ge 0.01$) [20] применялись только для уточнения максимума на кривых плавления тисонитовой фазы. Однако эти экспериментальные данные можно использовать для определения термодинамического коэффициента k_0 распределения примеси при бесконечном разбавлении. Целью работы является определение коэффициента распределения Sr^{2+} в тисонитовом кристалле LaF₃ при бесконечном разбавлении из экспериментальных данных по направленной кристаллизации концентрированных твердых растворов La_{1-y}Sr_yF_{3-y} (0.01 $\leq y \leq$ 0.15) и его сравнение с расчетом, выполненным модифицированным методом криоскопии.

ТЕРМОДИНАМИЧЕСКИЙ КОЭФФИЦИЕНТ РАСПРЕДЕЛЕНИЯ ПРИМЕСИ Sr²⁺ В ТИСОНИТОВОЙ МАТРИЦЕ LaF₃

Монокристаллы твердых растворов $La_{1-y}Sr_yF_{3-y}$ (0.01 $\leq y \leq 0.15$) выращены из расплава методом направленной кристаллизации Бриджмена-Стокбаргера в установке КРФ-1 (конструкция и изготовление СКБ Института кристаллографии РАН). Рост кристаллов проводился с добавлением в шихту PbF_2 (5 мас. %) для очистки от примеси кислорода в инертной атмосфере (Не) [20]. Скорость опускания графитового тигля с расплавом равна 2.9 ± 0.1 мм/ч. Кристаллические були имели диаметр D = 10 мм и длину L = 45 - 55 мм. Изменение концентрации примесного компонента Sr²⁺ по длине кристаллической були измеряли методом рентгеноспектрального флуоресцентного анализа на приборе Carl Zeiss VRA-20R (напряжение 30 кВ, ток 30 мА, кристалл-анализатор LiF).

Экспериментальные кривые концентрационного профиля c(L) обрабатывали в рамках модели Пфанна [21] для случая конвективного механизма массопереноса в расплаве. Значения неравновесного эффективного (зависящего от условий кристаллизации) коэффициента распределения примеси в выращенных кристаллах $La_{1-y}Sr_yF_{3-y}$ от концентрации SrF_2 в исходном расплаве приведены в таблице 1. Экспериментальная погрешность в определении k_{eff} составляет ±0.02 [18].

При концентрации y = 0.07 имеет место максимум на кривой плавкости твердого раствора La_{1-y}Sr_yF_{3-y} (k_{eff} =1), при этом примесный компонент распределяется равномерно по объему кристалла. В интервалах концентраций 0.01 $\leq y <$ < 0.07 и 0.07 $< y \leq 0.15$ происходит соответственно обеднение ($k_{eff} > 1$) и обогащение ($k_{eff} < 1$) примесным компонентом растущего кристалла.

На рис. 1 представлена зависимость обратной величины квадрата эффективного коэффициента распределения Sr^{2+} в кристаллах твердого раствора $La_{1-y}Sr_yF_{3-y}$ от концентрации компонента SrF_2 (c = 100y, мол. %) в исходном расплаве. Как показано в [18], концентрационная зависимость эффективного коэффициента распределения примеси $k_{eff}(c)$ может быть сведена к линейному

Рис. 1. Зависимость обратной величины квадрата эффективного коэффициента распределения Sr^{2+} в монокристаллах твердого раствора $\mathrm{La}_{1-y}\mathrm{Sr}_{y}\mathrm{F}_{3-y}$ от концентрации $\mathrm{Sr}\mathrm{F}_{2}$ в исходном расплаве: I – экспериментальные точки, 2 – аналитическая зависимость; R^{2} – коэффициент корреляции.

уравнению в координатах $[k_{eff}]^{-2}$ от концентрации *с* (коэффициент корреляции $R^2 = 0.976$):

$$[k_{eff}(c)]^{-2} = 0.392 + 0.088c, \qquad (1)$$

где $a = [k_{eff}(c = 0)]^{-2} = 0.392$. Из уравнения (1) можно определить коэффициент распределения k_0 катионов Sr²⁺ в кристалле LaF₃ при бесконечном разбавлении, если экстраполировать прямую к нулевой концентрации c = 0:

$$k_0 = a^{-1/2} = 1.60 \pm 0.02.$$
 (2)

Полученная величина термодинамического коэффициента $k_0 = 1.60 \pm 0.02$ хорошо согласуется со значением $k_0 = 1.7$ [17], найденным модифицированным методом высокотемпературной криоскопии путем аппроксимации экспериментальных данных ликвидуса для твердых растворов La_{1-y}Sr_yF_{3-y} (0 ≤ y ≤ 0.17).

Таким образом, расчеты коэффициента распределения примеси Sr²⁺ в кристалле LaF₃ при бесконечном разбавлении методом направленной кристаллизации и модифицированным методом криоскопии дали практически одинаковые результаты. Этот факт свидетельствует о возможности использования в практике роста фторидных кристаллов коэффициентов распределения примесей M^{2+} (M = Ca, Sr, Ba) в тисонитовых матрицах RF_3 (R = La, Ce, Pr, Nd), найденных модифицированным методом криоскопии [17] в двенадцати системах $MF_2 - RF_3$.

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Хрыкина О.Н., Сорокин Н.И., Верин И.А. и др. //* Кристаллография. 2017. Т. 62. № 4. С. 559.
- 2. Болотина Н.Б., Черная Т.С., Калюканов А.И. и др. // Кристаллография. 2015. Т. 60. № 3. С. 391.
- 3. Сорокин Н.И., Голубев А.М., Соболев Б.П. // Кристаллография. 2014. Т. 59. № 2. С. 275.
- 4. *Соболев Б.П., Голубев А.М., Эрреро П. //* Кристаллография. 2003. Т. 48. № 1. С. 148.
- 5. Радаев С.Ф., Кривандина Е.А., Мурадян Л.А. и др. // Кристаллография. 1991. Т. 36. Вып. 2. С. 369.
- Sobolev B.P., Sorokin N.I., Bolotina N.B. // Photonic and electronic properties of fluoride materials / Eds. Tressaud A., Poeppelmeier K. Amsterdam: Elsevier, 2016. P. 465.
- Anji Reddy M., Fichtner M. // J. Mater. Chem. 2011. V. 21. P. 17059.
- Frant M.S., Ross J.W. // Science. 1966. V. 154. № 3756. P. 1553.
- 9. Потанин А.А. // Журн. Рос. хим. о-ва им. Д.И. Менделеева. 2001. Т. XLV. № 5-6. С. 58.
- 10. *Кривандина Е.А., Жмурова З.И., Лямина О.И. и др. //* Кристаллография. 1996. Т. 41. № 5. С. 958.
- 11. *Мелешина В.А., Лямина О.И., Кривандина Е.А. и др. //* Кристаллография. 1993. Т. 38. № 1. С. 177.
- 12. Roos A. // Mater. Res. Bull. 1983. V. 18. № 4. P. 405.
- Jones D.A., Shand W.A. // J. Cryst. Growth. 1968. V. 2. P. 361.
- Vasyliev V., Michiue Y., Vilora E.G. et al. // Z. Kristallogr. 2013. B. 228. S. 576.
- 15. Ананьева Г.В., Баранова Е.Н., Заржицкая М.Н. и др. // Неорган. материалы. 1980. Т. 16. № 1. С. 68.
- 16. *Sobolev B.P.* The Rare Earth Trifluorides. The High Temperature Chemistry of Rare Earth Trifluorides, Institute of Crystallography, Moscow, and Institut d'Estudis Catalans, Barcelona: Institut d'Estudis Catalans, Spain, 2000. 520 p.
- Федоров П.П., Туркина Т.М., Лямина О.И. и др. // Высокочистые вещества. 1990. № 6. С. 67.
- Sobolev B.P., Seiranian K.B. // J. Solid State Chem. 1981. V. 39. P. 337.
- 19. *Кривандина Е.А., Жмурова З.И., Глушкова Т.М. и др.* // Кристаллография. 2003. Т. 48. № 5. С. 940.
- 20. *Кривандина Е.А., Жмурова З.И., Лямина О.И. и др. //* Кристаллография. 1996. Т. 41. № 5. С. 958.
- 21. Pfann W.G. // Trans. AJME. 1952. V. 194. P. 747.