# \_\_\_\_\_ СТРУКТУРА ОРГАНИЧЕСКИХ \_\_\_\_ СОЕДИНЕНИЙ

УДК 548.737

# СТРУКТУРА КРИСТАЛЛОВ МОНОГИДРАТА ДИЦИТРАТОБОРАТА ГЛИЦИНИЯ

© 2020 г. С. В. Тютрина<sup>1</sup>, М. А. Осина<sup>1</sup>, Н. В. Мясникова<sup>1,\*</sup>, Ф. М. Долгушин<sup>2,\*\*</sup>

<sup>1</sup> Национальный исследовательский университет "МЭИ", Москва, Россия <sup>2</sup> Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва, Россия

> \* E-mail: miasnikovanv@mpei.ru \*\* E-mail: fedya@ineos.ac.ru Поступила в редакцию 24.09.2018 г. После доработки 24.09.2018 г. Принята к публикации 26.11.2018 г.

Синтезированы и выделены кристаллы моногидрата дицитратобората глициния  $H_3NCH_2COOH[B(C_6H_6O_7)_2] \cdot H_2O$  и методом рентгеноструктурного анализа определена их структура: триклинные, пр. гр.  $P\overline{1}$ , Z=2. Кристаллы построены из катион-анионных слоев, все структурные единицы в которых (дицитратоборат-анион, катион глициния и молекула кристаллизационной воды) прочно связаны многочисленными водородными связями.

DOI: 10.31857/S0023476120020289

## введение

Соединения бора широко используются в качестве антипиренов, ингибиторов коррозии, микроудобрений, антиоксидантов, фунгицидов. Описаны комплексные соединения на основе дицитратоборат-аниона, обладающие антимикробным действием: дицитратоборат оксихинолиния [1] и дицитратоборат гуанидиния [2]. Синтезированы и исследованы дицитратобораты с различными катионами: одно- и двухзарядных металлов [3-6], моно-, ди- и триалкиламмония [7-9], алкиланилиния [10, 11], аминохинолиния [12]. Возможность практического применения комплексных соединений бора стимулирует поиск новых веществ, всестороннее исследование их структуры и свойств. В литературе подробно описаны структуры и свойства дицитратоборатов с алкилзамещенными катионами аммония и сделан вывод, что замена в катионе аммония одного, двух или трех атомов водорода алкильными группами сопровождается изменением свойств и кристаллической структуры дицитратоборатов [7, 8]. Однако среди исследованных ранее солей дицитратоборат-аниона нет производных α-аминокислот, присутствие в которых разных донорных и акцепторных центров образования водородных связей (ВС) может существенно повлиять на свойства и строение солей.

Координационное соединение, имеющее во внешней сфере катион  $\alpha$ -аминокислоты — моногидрат дицитратобората глициния  $H_3NCH_2COOH[B(C_6H_6O_7)_2] \cdot H_2O$ , впервые син-

тезировано в [13]. Особенности процесса образования его кристаллов изучали в [13] с использованием поляризационного микроскопа. В [14] методом ИК-спектроскопии в составе комплекса установлено наличие бора, находящегося в тетракоординированном состоянии, выявлены характеристические полосы поглощения, отвечающие ионной структуре катиона глициния. Также в [14] на основании термогравиметрического анализа и метода дифференциально-сканирующей калориметрии изучены особенности процесса термической деструкции соединения и подтверждено присутствие во внешней сфере комплекса одной молекулы кристаллизационной воды, что позволило предложить эмпирическую формулу дицитратобората глициния.

Цель настоящей работы — определение структуры кристаллов дицитратобората глициния методом рентгеноструктурного анализа.

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. Вещества в количестве 0.05 моль (3.09 г) борной и 0.1 моль (21.03 г) лимонной кислот растворяли в 30 мл дистиллированной воды при нагревании. В полученный раствор при перемешивании добавляли 0.05 моль (3.75 г) глицина. Реакционную смесь медленно охлаждали до комнатной температуры. Образовавшиеся кристаллы выдерживали в растворе в течение суток, затем отделяли фильтрованием, промывали диэтиловым эфиром и сушили на воздухе.

| Сингония, пр. гр., Z                             | Триклинная, $P\overline{1}$ , 2       |
|--------------------------------------------------|---------------------------------------|
| <i>a</i> , <i>b</i> , <i>c</i> , Å               | 9.8923(6), 10.3466(6),                |
|                                                  | 10.6726(7)                            |
| $\alpha, \beta, \gamma$ , град                   | 78.003(1), 89.413(1),                 |
|                                                  | 64.707(1)                             |
| $V, Å^3$                                         | 962.25(10)                            |
| $D_x$ , г/см <sup>3</sup>                        | 1.674                                 |
| Излучение; λ, Å                                  | $MoK_{\alpha}; 0.71073$               |
| μ, см <sup>-1</sup>                              | 1.56                                  |
| Т, К                                             | 120                                   |
| Размер образца, мм                               | $0.42 \times 0.38 \times 0.30$        |
| Дифрактометр                                     | Bruker APEX DUO                       |
| Тип сканирования                                 | ω                                     |
| Учет поглощения;                                 | Полуэмпирический;                     |
| $T_{\min}, T_{\max}$                             | 0.804, 0.862                          |
| $\theta_{max}$ , град                            | 30.0                                  |
| Пределы $h, k, l$                                | $-13 \le h \le 13, -14 \le k \le 14,$ |
|                                                  | $-15 \le l \le 15$                    |
| Число отражений: изме-                           | 12922/5595, 0.0239/4746               |
| ренных/независимых                               |                                       |
| $(N_1), R_{int}/c I > 2\sigma(I) (N_2)$          |                                       |
| Метод уточнения                                  | полноматричный МНК                    |
|                                                  | $\Pi O F_1$                           |
| Число параметров                                 | 338                                   |
| <i>R</i> 1/ <i>wR</i> 2 по <i>N</i> <sub>1</sub> | 0.0436/0.0912                         |
| <i>R</i> 1/ <i>wR</i> 2 по <i>N</i> <sub>2</sub> | 0.0355/0.0860                         |
| S                                                | 1.042                                 |
| $\Delta \rho_{min} / \Delta \rho_{max}$          | -0.252/0.480                          |
| Программы                                        | SADABS [15], SHELX,                   |
|                                                  | версия 2014/1 [16]                    |
|                                                  |                                       |

**Таблица 1.** Кристаллографические характеристики, данные эксперимента и уточнения структуры  $H_3NCH_2COOH[B(C_6H_6O_7)_2] \cdot H_2O$ 

Рентгеноструктурное исследование. Кристаллографические характеристики, данные эксперимента и уточнения структуры приведены в табл. 1. Структура расшифрована прямым методом и уточнена в анизотропном приближении для неводородных атомов. Атомы водорода ОН- и NH<sub>3</sub>-групп и молекулы воды найдены из фурье-синтеза и уточнены изотропно, остальные атомы водорода помещены в геометрически рассчитанные положения и включены в уточнение в модели "наездника" с  $U_{изо}(H) = 1.2U_{экв}(C)$ .

Кристаллографические данные депонированы в Кембриджский банк структурных данных (КБСД) (ССDС № 1903125).

Плотность дицитратобората глициния по гелию измеряли на автоматическом пикнометре ACCU Pic 1340 при температуре 295 К.

#### РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Глицин в кислой среде протонируется до катиона и образует внешнюю сферу комплексной соли дицитратоборат-аниона: Н<sub>3</sub>NCH<sub>2</sub>COOH<sup>+</sup>  $[B(C_6H_6O_7)_2]^-$  · H<sub>2</sub>O. Синтезированное соединение представляет собой устойчивое на воздухе бесцветное кристаллическое вещество, растворимое в воде и практически не растворимое в неполярных органических растворителях. Плотность кристаллов 1.674 г/см<sup>3</sup>, рассчитанная теоретически из данных рентгеноструктурного анализа. незначительно отличается от значения 1.66 г/см<sup>3</sup>. полученного с помощью пикнометрического анализа. Как теоретическое, так и экспериментальное значение плотности заметно больше полученных для кристаллов других солей дицитратоборат-аниона с органическими катионами, среди которых наибольшее значение 1.580 г/см<sup>3</sup> сообшалось для структуры дицитратобората метиламмония [7].

Структурными единицами кристаллов являются дицитратоборат-анион  $[B(C_6H_6O_7)_2]^-$ , катион глициния  $H_3NCH_2COOH^+$  и молекула воды. Строение моногидрата дицитратобората глициния с обозначением и нумерацией атомов показано на рис. 1, величины основных длин связей и валентных углов приведены в табл. 2.

В дицитратоборат-анионе атом бора тетраэдрически координирован двумя молекулами лимонной кислоты через атомы кислорола карбоксилатной и депротонированной α-гидроксильной групп. Псевдоось симметрии тетраэдра проходит через атом бора и делит пополам ребра тетраэдра О1-О8 и О2-О9. Образованные разными функциональными группами связи В-О отличаются друг от друга, что приводит к искажению тетраэдра. Длины связей с атомами кислорода депротонированных α-гидроксильных групп В-О1 и B-O8 (1.443(1) и 1.448(1) Å) меньше длин связей с атомами кислорода карбоксилатных групп В-О2 и B-O9 (1.507(1) и 1.510(1) Å). Сопряженные с борокислородным тетраэдром связи С-О также различны: длины связей C(sp<sup>3</sup>)-O (C1-O1 1.421(1) и C7-O8 1.426(1) Å) больше длин связей С(*sp*<sup>2</sup>)-О (С2-О2 1.313(1) и С8-О9 1.319(1) Å). В тетраэдре ВО₄ валентные углы О–В–О, включенные в пятичленные гетероциклы (О1-В-О2 105.06(9)° и О8-В-О9 104.18(8)°), уменьшены по сравнению с остальными четырьмя углами, среднее значение которых  $111.9^{\circ} \pm 3.3^{\circ}$ . В карбоксильных группах, расположенных на концах цитратлигандов, средняя длина связей  $C(sp^2)=O$  составляет 1.215  $\pm$  0.002 Å, а связей C(*sp*<sup>2</sup>)-OH 1.325  $\pm$  $\pm 0.006$  Å; в центральных карбоксильных группах средняя длина связи  $C(sp^2)=O$  составляет 1.217 ±  $\pm 0.002$  Å. Средние значения длин связей между атомами углерода составляют:  $C(sp^3) - C(sp^3) 1.532 \pm$   $\pm 0.005$  Å; C(*sp*<sup>3</sup>)–C(*sp*<sup>2</sup>) с концевыми карбоксильными группами 1.507  $\pm 0.003$  Å; C(*sp*<sup>3</sup>)–C(*sp*<sup>2</sup>) с центральными карбоксильными группами 1.529  $\pm \pm 0.002$  Å. Пятичленные гетероциклы BO<sub>2</sub>C<sub>2</sub> плоские с точностью 0.05 Å, их средние плоскости пересекаются под углом 88.77(6)°. Суммы внутрициклических углов 540.0° и 538.5° близки к расчетному значению 540° для плоского выпуклого пятиугольника.

Все отмеченные особенности строения дицитратоборат-аниона согласуются с литературными данными для дицитратоборат-анионов с различными катионами в ранее описанных кристаллических структурах (25 структур согласно КБСД, некоторые из них приведены в ссылках [3–12]). Далее при сравнении кристаллических структур различных солей дицитратоборат-аниона использованы идентификационные шестибуквенные коды из КБСД.

Строение катиона глициния описывается стандартными величинами соответствующих длин связей и углов и совпадает со структурными данными для катиона глициния в кристаллах других солей (например, в структуре глицинфосфита [17]).

Кристаллическая структура упрочнена системой ВС, геометрические параметры которых приведены в табл. 3. Одиннадцать контактов типа О-H····O и N-H···O образуют все активные протоны катиона глициния, оба протона молекулы воды и четыре протона карбоксильных групп дицитратоборат-аниона. В качестве акцепторов в образовании ВС участвуют атом кислорода молекулы воды и все атомы кислорода дицитратоборат-аниона, за исключением атомов О5, О12, О14 – ОН-групп концевых карбоксильных групп и атома О2 борогетероцикла.

Дицитратоборат-анионы в структуре образуют водородносвязанный слой, параллельный диагональной плоскости (110), в котором можно выделить характерные тетрамеры (рис. 2). В формировании слоя участвуют протоны всех четырех карбоксильных групп аниона (ВС 8–11). Все анионы в слое ориентированы в одном направлении таким образом, что длинные оси бициклических фрагментов перпендикулярны плоскости слоя. Катион глициния и молекула воды находятся внутри полости тетрамера и связаны со всеми четырьмя анионами за счет шести ВС 2–7. Кроме того, катион глициния и молекула воды связаны между собой одной ВС 1.

Таким образом, кристаллическая структура полученного соединения построена из катионанионных слоев (рис. 3), все структурные единицы в которых прочно связаны многочисленными BC. Слои объединены между собой за счет вандер-ваальсовых контактов С–Н…О-типа (кратчайшее расстояние О…Н в контакте С11–Н11*В*…О14 (1-x, -y, 1-z) равно 2.54 Å).

КРИСТАЛЛОГРАФИЯ том 65 № 2 2020



**Рис. 1.** Общий вид структурных элементов кристалла с нумерацией атомов (атомы водорода метиленовых групп не показаны). Эллипсоиды тепловых колебаний неводородных атомов приведены с вероятностью 50%.

Отметим, что образование аналогичных слоистых структур характерно для солей дицитратоборат-аниона с однозарядными катионами щелочных металлов K<sup>+</sup>[KBDCTA], Cs<sup>+</sup>[HAGTIS], Rb<sup>+</sup>[KBDCTB], с небольшими аммонийными катионами NH<sub>4</sub><sup>+</sup>[OKOBIZ], CH<sub>3</sub>NH<sub>3</sub><sup>+</sup>[ELUBOD], (CH<sub>3</sub>)<sub>2</sub>NH<sup>+</sup><sub>2</sub>[JOKRIL] и с катионами хинолинового ряда [AYEYAG, QEMFIX]. Более того, во всех этих структурах, как и в описанной здесь, можно выделить элементарный фрагмент слоя, состоящий из четырех водородносвязанных дицитратоборат анионов, в полости которого расположен катион. В формировании подобных водородносвязанных тетрамеров в некоторых случаях участвуют молекулы воды, входящие в состав гидратов солей. Топологическое подобие тетрамеров, повидимому, определяется строением центрального бициклического спиро-фрагмента, в котором ортогональные плоскости двух гетероциклов задают общее направление системы ВС с участием концевых карбоксильных групп. Это свойство не зависит от конформации концевых карбоксильных групп цитратных лигандов, которые могут разли-

| Связь                    | d        | Валентный угол | ω        |  |  |  |  |
|--------------------------|----------|----------------|----------|--|--|--|--|
| Тетраэдр ВО <sub>4</sub> |          |                |          |  |  |  |  |
| O1-B1                    | 1.443(1) | O1-B1-O8       | 115.2(1) |  |  |  |  |
| O2-B1                    | 1.507(1) | O1-B1-O2       | 105.1(1) |  |  |  |  |
| O8-B1                    | 1.448(1) | O8-B1-O2       | 111.4(1) |  |  |  |  |
| O9-B1                    | 1.510(1) | O1-B1-O9       | 111.9(1) |  |  |  |  |
|                          |          | O8-B1-O9       | 104.2(1) |  |  |  |  |
|                          |          | O2-B1-O9       | 109.2(1) |  |  |  |  |
| Цитрат-лиганды           |          |                |          |  |  |  |  |
| 01–C1                    | 1.421(1) | C1-O1-B1       | 109.8(1) |  |  |  |  |
| O2–C2                    | 1.313(1) | C2-O2-B1       | 109.4(1) |  |  |  |  |
| O3–C2                    | 1.218(1) | C7–O8–B1       | 111.5(1) |  |  |  |  |
| O4–C4                    | 1.216(1) | C8-O9-B1       | 110.1(1) |  |  |  |  |
| O5-C4                    | 1.323(1) | O1-C1-C2       | 104.0(1) |  |  |  |  |
| O6-C6                    | 1.217(1) | O2-C2-C1       | 110.2(1) |  |  |  |  |
| O7–C6                    | 1.329(1) | O4-C4-O5       | 123.5(1) |  |  |  |  |
| O8–C7                    | 1.426(1) | O4–C4–C3       | 124.1(1) |  |  |  |  |
| O9–C8                    | 1.319(1) | O5-C4-C3       | 112.4(1) |  |  |  |  |
| O10-C8                   | 1.215(1) | O6-C6-O7       | 119.4(1) |  |  |  |  |
| O11-C10                  | 1.215(1) | O6-C6-C5       | 123.7(1) |  |  |  |  |
| O12-C10                  | 1.330(1) | O7-C6-C5       | 116.9(1) |  |  |  |  |
| O13-C12                  | 1.213(1) | O8-C7-C8       | 103.6(1) |  |  |  |  |
| O14-C12                  | 1.319(1) | O9–C8–C7       | 110.6(1) |  |  |  |  |
| Катион глициния          |          |                |          |  |  |  |  |
| 01G-C1G                  | 1.200(1) | 01G-C1G-02G    | 125.2(1) |  |  |  |  |
| O2G-C1G                  | 1.329(1) | O1G-C1G-C2G    | 121.6(1) |  |  |  |  |
| N1G-C2G                  | 1.484(2) | O2G-C1G-C2G    | 113.2(1) |  |  |  |  |
| C1G–C2G                  | 1.517(2) | N1G-C2G-C1G    | 113.0(1) |  |  |  |  |

**Таблица 2.** Некоторые длины связей d (Å) и валентные углы  $\omega$  (град)

Таблица 3. Параметры водородных связей

чаться ориентацией атома водорода. Так, в рассматриваемом случае (рис. 1) для трех концевых карбоксильных групп реализуется наиболее распространенная геометрия с транс-положением водорода к связи С-С (соответствующие торсионные углы С-С-О-Н составляют 166(1)°, 171(1)° и 176(1)°); для карбоксильной группы C6O6O7H7 реализуется иис-расположение водорода к связи С-С (торсионный угол C5C6O7H7 равен -6(1)°). Для сравнения в слоистой структуре дицитратобората метиламмония  $CH_3NH_3^+[B(C_6H_6O_7)_2]^-$  [ELUBOD] подобные водородносвязанные тетрамеры образуются из дицитратоборат-анионов, в которых все четыре концевые карбоксильные группы имеют одинаковое строение с *транс*-положением водорода к связи С-С.

С другой стороны, несмотря на такое же, как в данном случае, строение концевых карбоксильных групп в дицитратоборат-анионе и такой же стехиометрический состав (катион—анион—вода), структура моногидрата дицитратобората триэтиламмония ( $C_2H_5$ )<sub>3</sub>NH<sup>+</sup> [B( $C_6H_6O_7$ )<sub>2</sub>]<sup>-</sup> · H<sub>2</sub>O [RUJZOM] состоит из чередующихся анионных и катионных слоев. Это согласуется с установленной ранее закономерностью строения солей дицитратоборатаниона с алкилзамещенными катионами аммония [8], согласно которой с увеличением размера катиона нарушается устойчивость катион-анионного слоя с формированием отдельных структурных ассоциатов из анионов и катионов.

Таким образом, синтезировано новое координационное соединение — моногидрат дицитратобората глициния  $H_3NCH_2COOH[B(C_6H_6O_7)_2] \cdot H_2O$ . Методом PCA определена структура его кристаллов. Строение дицитратоборат-аниона и катиона глициния совпадает со строением этих ионов в различных солях, рассмотренных в литературе ранее. В кристаллической структуре все структурные

| BC | $D-\mathrm{H}\cdots A$                         | <i>D</i> –H, Å | H…∕A, Å | <i>D</i> …A, Å | <i>D</i> —Н··· <i>A</i> , град |
|----|------------------------------------------------|----------------|---------|----------------|--------------------------------|
| 1  | N1 <i>G</i> -H1 <i>GB</i> ···O1 <i>W</i>       | 0.95(2)        | 1.79(2) | 2.703(1)       | 160(2)                         |
| 2  | N1 <i>G</i> -H1 <i>GC</i> ···O4                | 0.91(2)        | 2.03(2) | 2.872(1)       | 154(2)                         |
| 3  | N1 <i>G</i> –H1 <i>GA</i> ···O13 <sup>1)</sup> | 0.91(2)        | 2.27(2) | 2.919(1)       | 129(1)                         |
| 4  | N1 <i>G</i> -H1 <i>GA</i> ···O7 <sup>2)</sup>  | 0.91(2)        | 2.36(2) | 3.160(1)       | 148(2)                         |
| 5  | O2 <i>G</i> -H2 <i>G</i> ···O9 <sup>2)</sup>   | 0.88(2)        | 2.12(2) | 2.978(1)       | 166(2)                         |
| 6  | O1 <i>W</i> –H1 <i>WA</i> ···O1 <sup>3)</sup>  | 0.83(2)        | 2.12(2) | 2.947(1)       | 172(2)                         |
| 7  | O1 <i>W</i> –H2 <i>WA</i> ···O11 <sup>2)</sup> | 0.81(2)        | 2.34(2) | 3.126(1)       | 162(2)                         |
| 8  | O5-H5···O8 <sup>3)</sup>                       | 0.89(2)        | 1.78(2) | 2.631 (1)      | 160(2)                         |
| 9  | O7–H7…O10 <sup>4)</sup>                        | 0.89(2)        | 1.80(2) | 2.685(1)       | 174(2)                         |
| 10 | O12-H12···O6 <sup>4)</sup>                     | 0.90(2)        | 1.72(2) | 2.614(1)       | 170(2)                         |
| 11 | O14–H14···O3 <sup>1)</sup>                     | 0.87(2)        | 1.78(2) | 2.619(1)       | 163(2)                         |

Симметрические преобразования: <sup>1)</sup> -x + 2, -y, -z + 1; <sup>2)</sup> x, y, z - 1; <sup>3)</sup> -x + 1, -y + 1, -z + 1; <sup>4)</sup> -x + 1, -y + 1, -z + 2.



**Рис. 2.** Фрагмент плоской водородносвязанной сетки из дицитратоборат-анионов. Симметрические преобразования: A - 2 - x, -y, 2 - z; B - 1 - x, 1 - y, 2 - z; C - x, y, 1 + z.



**Рис. 3.** Фрагмент кристаллической упаковки, иллюстрирующий слоистую структуру (проекция вдоль оси *с* кристалла).

КРИСТАЛЛОГРАФИЯ том 65 № 2 2020

компоненты соединения, дицитратоборат-анион  $[B(C_6H_6O_7)_2]^-$ , катион глициния  $H_3NCH_2COOH^+$  и молекула воды, объединены разветвленной системой BC типа O—H…O и N—H…O в слои, которые объединены в кристалле слабыми ван-дерваальсовыми контактами. Показано, что формирование аналогичных катион-анионных слоев определяется структурой дицитратоборат-аниона и не зависит от природы катиона.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 16-29-06184-офи-м) и Министерства науки и высшего образования Российской Федерации.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Сергеева Г.С., Черепанова Т.А., Лутцева М.А., Бурнашова Н.Н. Дицитратоборат оксихинолиния, проявляющий антимикробные свойства. Пат. 2071477 (РФ). 1994 (опубл. 1997).
- Бурнашова Н.Н., Хатькова А.Н., Тютрина С.В. и др. Дицитратоборат гуанидиния, проявляющий антимикробные свойства. Пат. 2474584 (РФ). 2011 (опубл. 2013).
- Звиедре И.И., Фундаменский В.С., Красников В.В., Колесникова Г.П. // Журн. структур. химии. 1984. Т. 25. № 4. С. 95.
- 4. Звиедре И.И., Беляков С.В. // Журн. неорган. химии. 2011. Т. 56. № 3. С. 417.

- Wu H., Pan S., Jia D. et al. // Z. Anorg. Allg. Chem. 2012. B. 638. S. 856.
- Wu H., Pan S., Yu H. et al. // J. Mol. Struct. 2012. V. 1027. P. 111.
- 7. Звиедре И.И., Беляков С.В. // Журн. неорган. химии. 2009. Т. 54. № 9. С. 1460.
- 8. Звиедре И.И., Беляков С.В., Зариня И.И. // Журн. неорган. химии. 2011. Т. 56. № 12. С. 1996.
- 9. Звиедре И.И., Беляков С.В. // Журн. структур. химии. 2009. Т. 50. № 1. С. 121.
- 10. Звиедре И.И., Беляков С.В. // Журн. неорган. химии. 2012. Т. 57. № 10. С. 1433.
- 11. Звиедре И.И., Беляков С.В. // Журн. неорган. химии. 2017. Т. 62. № 5. С. 671.
- 12. Звиедре И.И., Беляков С.В., Токмаков А.Г. // Журн. неорган. химии. 2008. Т. 53. № 2. С. 318.
- Тютрина С.В., Юргенсон Г.А., Осина М.А., Мясникова Н.В. // Журн. прикл. химии. 2017. Т. 90. Вып. 7. С. 841.
- 14. *Тютрина С.В., Мясникова Н.В., Осина М.А.* // Успехи современного естествознания. 2018. № 11. Ч. 2. С. 224.
- 15. Sheldrick G.M. // SADABS, 1997, Bruker AXS Inc., Madison, WI-53719, USA.
- 16. Sheldrick G.M. // Acta Cryst. A. 2008. V. 64. P. 112.
- 17. Лапшин А.Е., Смолин Ю.И., Панкова Г.А. // Журн. структур. химии. 2005. Т. 46. № 2. С. 323.