КРИСТАЛЛОГРАФИЯ, 2020, том 65, № 3, с. 379–383

МАТЕРИАЛЫ XV МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ "МЕССБАУЭРОВСКАЯ СПЕКТРОСКОПИЯ И ЕЕ ПРИМЕНЕНИЯ"

УДК 541.128.13

ИССЛЕДОВАНИЕ КАТАЛИТИЧЕСКОЙ СИСТЕМЫ Fe/γ-Al₂O₃ ПРИ ВАРЬИРОВАНИИ АТМОСФЕРЫ И ТЕМПЕРАТУРЫ

© 2020 г. А. Р. Бродский^{1,*}, В. И. Яскевич¹

¹АО "Институт топлива, катализа и электрохимии им. Д.В. Сокольского", Алма-Ата, Республика Казахстан *E-mail: albrod@list.ru

Поступила в редакцию 20.05.2019 г. После доработки 20.09.2019 г. Принята к публикации 15.10.2019 г.

Проведено исследование каталитической системы Fe/ γ -Al₂O₃ в атмосфере воздуха, CO и H₂ в интервале 293–773 К. В исходном состоянии система содержит как минимум две парамагнитные формы Fe³⁺ с близкими значениями изомерных сдвигов и различными квадрупольными расщеплениями. В атмосфере CO и H₂ при 423–773 К железо в системе восстанавливается до состояния Fe²⁺, которое также находится как минимум в двух формах. Обсуждаются процессы, происходящие в системе, и природа обнаруженных форм железа.

DOI: 10.31857/S0023476120030066

введение

Система Fe/ γ -Al₂O₃ проявляет каталитическую активность во многих химических процессах, таких как производство аммиака [1–3] и углеродных нанотрубок [4, 5], в реакциях гидрирования CO (синтез Фишера–Тропша) [6, 7], в процессах окисления сероводорода в элементарную серу [8], глубокой переработке твердого ископаемого и возобновляемого органического сырья [9], в реакциях риформинга бензинов [10], а также многих других процессах [11]. Таким образом, являясь практически многофункциональной и удобным объектом для приложения мессбауэровской спектроскопии, система Fe/ γ -Al₂O₃ может быть использована в качестве модельной.

МЕТОДИКА ИССЛЕДОВАНИЙ

В работе проведено исследование с помощью мессбауэровской спектроскопии *in situ* в условиях, приближенных к реальным условиям работы катализатора, состава системы Fe/γ -Al₂O₃ в атмосфере воздуха, CO и водорода при варьировании температуры в интервале 293—773 К. Состав атмосферы был выбран исходя из того, что аналогичная газовая среда присутствует в тех или иных перечисленных выше каталитических процессах.

Систему готовили методом пропитки из ацетата железа с 30%-ным обогащением по изотопу Fe^{57} . Источником служил Co⁵⁷ в матрице Cr активностью 100 мКи. Спектры снимали при комнатной температуре. Изомерные сдвиги (**ИС**) даны относительно α-Fe.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведены мессбауэровские спектры системы Fe/γ -Al₂O₃, а в табл. 1 — результаты их обработки.

В исходном состоянии спектры представляют собой суперпозицию как минимум двух дублетов, отвечающих двум парамагнитным высокоспиновым формам Fe³⁺ с близкими значениями ИС и различными квадрупольными расщеплениями (**КР**).

Поскольку в спектрах системы даже при температуре жидкого азота не наблюдается зеемановского сверхтонкого магнитного расщепления, размеры агрегатов Fe^{3+} на γ -Al₂O₃ следует оценивать как не превышающие 5–6 нм.

Можно полагать, что формы Fe_1^{3+} и Fe_2^{3+} отвечают неэквивалентным положениям ионов железа на носителе (различным конфигурациям ближайшего окружения атомов Fe^{3+}). Значения KP свидетельствуют о значительном отклонении окружения атомов железа от сферической симметрии.

При повышении температуры в атмосфере воздуха у обеих форм наблюдаются температурный (доплеровский) ИС и рост значений КР. Но если у формы Fe_1^{3+} увеличение КР – только некоторая тенденция, то у формы Fe_2^{3+} (с большим КР) рост является более существенным (табл. 1).

Рис. 1. Экспериментальные мессбауэровские спектры системы Fe/γ -Al₂O₃ при варьировании атмосферы и температуры с расчетными компонентами, соответствующими различным формам Fe; а, б, в, г, д – в атмосфере воздуха; е, ж, з, и, к – в атмосфере водорода; л, м, н, о, п – в атмосфере оксида углерода; а, е, л – 293 K; б, ж, м – 473 K; в, з, н – 573 K; г, и, о – 673 K; д, к, п – 773 K.

	Fe ₁ ³⁺			Fe ₂ ³⁺			Fe_1^{2+}			Fe ₂ ²⁺		
<i>Т</i> , К	ИС, мм/с	КР, мм/с	<i>S</i> , %	ИС, мм/с	КР, мм/с	<i>S</i> , %	ИС, мм/с	КР, мм/с	<i>S</i> , %	ИС, мм/с	КР, мм/с	<i>S</i> , %
Атмосфера — воздух												
298	0.31	0.98	70	0.32	1.62	30						
373	0.26	0.99	66	0.28	1.60	34						
423	0.23	1.03	68	0.23	1.67	32						
473	0.20	1.04	68	0.21	1.68	32						
573	0.13	1.06	68	0.13	1.74	32						
673	0.07	1.08	70	0.08	1.77	30						
773	0.01	1.05	70	0.02	1.78	30						
Атмосфера – СО												
298	0.31	0.95	64	0.32	1.55	36						
373	0.27	0.98	69	0.28	1.60	31						
423	0.22	1.02	60	0.22	1.62	17	0.99	1.92	16	0.80	1.52	7
473	0.21	1.05	52	0.21	1.56	8	0.96	1.83	28	0.76	1.41	12
573	0.13	1.03	24				0.90	1.68	49	0.74	1.23	27
673	0.05	1.03	16				0.84	1.53	51	0.65	1.13	33
773	0.00	0.85	8				0.79	1.44	55	0.62	1.06	37
Атмосфера – H ₂												
298	0.31	0.99	70	0.32	1.60	30						
373	0.26	0.99	68	0.28	1.60	32						
423	0.22	1.01	69	0.24	1.64	31						
473	0.19	1.03	71	0.21	1.67	29						
573	0.13	1.03	42	0.13	1.49	11	0.86	1.71	24	0.78	1.20	23
673	0.03	1.01	13				0.81	1.51	46	0.69	1.15	41
773							0.75	1.43	50	0.60	1.03	50

Таблица 1. Мессбауэровские параметры каталитической системы Fe/γ-Al₂O₃ при варьировании атмосферы и температуры

Примечание. ИС – изомерный сдвиг, КР – квадрупольное расщепление, S – относительное содержание различных форм Fe. Δ ИС $\approx \pm 0.02$ мм/с; Δ KP $\approx \pm 0.02$ мм/с; Δ S $\approx \pm 2\%$.

Замена атмосферы воздуха на СО при температурах до 373 К не приводит к существенным изменениям. Начиная с 423 К, наблюдается процесс восстановления Fe^{3+} до Fe^{2+} , появляются два высокоспиновых состояния Fe^{3+}_1 и Fe^{3+}_2 , которые имеют различные ИС и КР. С увеличением температуры относительное содержание (*S*, %) форм Fe^{2+} растет, а форм Fe^{3+} падает, причем более существенно для формы Fe^{2+}_2 (табл. 1).

Начиная с 573 K, остается лишь форма Fe_1^{3+} , относительное содержание которой с повышением температуры продолжает уменьшаться. С повышением температуры для всех форм железа наблюдается доплеровский ИС и для обеих форм Fe^{2+} сильное уменьшение величины KP.

КРИСТАЛЛОГРАФИЯ том 65 № 3 2020

Формы Fe_1^{3+} и Fe_2^{3+} отвечают неэквивалентным положениям ионов железа на носителе. Форма с большим КР, по-видимому, соответствует поверхностным атомам железа, а с меньшим – более глубоко расположенным. В пользу такого допущения может свидетельствовать существенное различие между температурными зависимостями КР для форм Fe_1^{3+} , Fe_2^{3+} (табл. 1). Так, для высоко-спинового состояния Fe^{3+} температурные изменения квадрупольного взаимодействия связаны только с тепловым расширением (тепловыми колебаниями узлов) кристаллической решетки [12]. Поскольку для атомов поверхности средний квадрат смещения перпендикулярно поверхности и вдоль поверхности может в 2 раза и на 30% превышать соответствующие значения для атомов внутри твердого тела [13], то для ионов железа, расположенных ближе к поверхности, можно ожидать более сильной температурной зависимо-

сти КР, что и наблюдается для формы Fe_2^{3+} .

Большее уменьшение относительного содер-

жания формы Fe_2^{3+} по сравнению с формой Fe_1^{3+} при увеличении температуры в атмосфере CO также является определенным аргументом в пользу того, что именно эта форма расположена ближе к поверхности носителя и поэтому более доступна для CO.

Вероятно, каждой форме Fe^{2+} должен отвечать свой предшественник — соответствующая форма Fe^{3+} . Логично предположить, что "поверхностная" форма железа будет иметь в ближайшем окружении меньшее количество атомов кислорода носителя, чем более глубоко расположенная. В этом случае последняя форма будет обладать несколько меньшим изомерным сдвигом за счет более значительного переноса электронной плотности с *d*-орбитали железа на большее количество координированных атомов кислорода. Повидимому, этот эффект заметнее должен проявляться для форм с состоянием Fe^{2+} , чем Fe^{3+} , изза разницы в плотности (количестве) *d*-электронов и, как следствие, донорной способности.

Действительно, если ИС обеих форм Fe^{3+} мало различаются, то ИС для формы Fe_1^{2+} заметно меньше, чем у формы Fe_2^{2+} (табл. 1). Следовательно, предшественником формы Fe_1^{2+} наиболее вероятно является форма Fe_1^{3+} , а формы $Fe_2^{2+} - Fe_2^{3+}$.

Замена атмосферы CO на атмосферу H₂ (водорода) не приводит к существенным качественным различиям, поскольку как таковой механизм восстановления оксидов железа водородом идентичен механизму восстановления оксидов железа CO [14–16]. Вместе с тем наблюдаются некоторые особенности в процессе восстановления системы Fe/ γ -Al₂O₃ в атмосфере водорода. В частности, восстановление форм Fe³⁺ начинается при значительно более высокой температуре (рис. 1, табл. 1). Кроме того, восстановление форм Fe³⁺ приводит к их полному исчезновению при 773 K (табл. 1).

Эти особенности, видимо, связаны с различным химическим сродством у СО и H_2 к кислороду. При температурах меньше 1083 К химическое сродство к кислороду выше у СО [14–16], соответственно выше и восстановительная способность.

Исчезновение Fe^{3+} в атмосфере водорода при 773 К, в том числе формы Fe_1^{3+} , отнесенной к глубоко расположенным от поверхности носителя атомам железа, можно связать с меньшей молекулярной массой и линейными размерами водорода по сравнению с молекулой СО. Разница в параметрах водорода и СО обусловливает большую проникающую способность первого и, как следствие, восстановление всего Fe^{3+} до Fe^{2+} независимо от глубины расположения.

Отметим, что ширина линий для всех обнаруженных форм железа находится в пределах 0.6— 0.7 мм/с. Такая ширина, вероятно, связана с тем, что каждая форма железа — суперпозиция близких состояний с близкими мессбауэровскими параметрами, т.е. интегральный спектр формы является суперпозицией подспектров.

ЗАКЛЮЧЕНИЕ

Исследования показали, что система Fe/γ-Al₂O₃ в зависимости от условий может содержать различные формы железа. Наличие в системе нескольких форм железа указывает на потенциальную возможность образования каталитически активных центров с различными электронными характеристиками и, как следствие, различными каталитическими свойствами (каждая форма катиона железа на носителе может являться специфическим активным центром). Зависимость состава системы от режима восстановления и газовой среды дает возможность путем построения лиаграмм типа состав-свойство, параметр-свойство выявить формы железа, играющие определяющую роль в том или ином каталитическом процессе. Такой подход, в свою очередь, может позволить проводить целенаправленный синтез и более точную настройку систем (варьируя условия формирования - температуру, газовую среду, лисперсность и т.д.). обладающих оптимальными каталитическими свойствами для конкретных каталитических процессов.

Работа выполнена при финансовой поддержке ГУ "Комитет науки Министерства образования и науки Республики Казахстан" (грант № АР05130654).

СПИСОК ЛИТЕРАТУРЫ

- 1. Семенов В.П. Производство аммиака. М.: Химия, 1985. 368 с.
- Сибилева С.В., Нефедова Н.В. // Успехи в химии и химической технологии: сб. науч. трудов. 2008. Т. 22. № 10 (90). С. 9.
- 3. Сибилева С.В., Нефедова Н.В. Михайличенко А.И. // Химическая промышленность сегодня. 2011. № 6. С. 14.
- 4. Царева С.Ю., Жариков Е.В., Аношкин И.В., Коваленко А.Н. // Изв. вузов. Электроника. 2003. № 1. С. 20.
- 5. *Мищенко С.В., Ткачев А.Г.* Углеродные наноматериалы. Производство, свойства, применение. М.: Машиностроение, 2008. 320 с.
- 6. Хаджиев С.Н., Лядов А.С., Крылова М.В. // Нефтехимия. 2011. Т. 51. № 1. С. 25.

КРИСТАЛЛОГРАФИЯ том 65 № 3 2020

- Sai P, Jong W.B., Ki-Won J. // Catal. Surv. Asia. 2008. V. 12. № 3. P. 170.
- 8. *Крылов О.В.* Гетерогенный катализ. М.: ИКЦ "Академкнига", 2004. 663 с.
- 9. Шарыпов В.И., Кузнецов П.Н., Кричко А.А. и др. Патент РФ 2036950 от 09.06.1995.
- 10. *Хатмуллина Д.Д.* // Молодой ученый. 2014. № 1. С. 136.
- 11. Коботаева Н.С., Скороходова Т.С., Сироткина Е.Е. // Нефтепереработка и нефтехимия. 2010. № 2. С. 18.

- 12. Вертхейм Г. Эффект Мессбауэра (Принципы и применения). М.: Мир, 1966. 172 с.
- Суздалев И.П. Динамичные эффекты в гамма-резонансной спектроскопии. М.: Атомиздат, 1979. 192 с.
- Сенин А.В. // Вестн. ЮУрГУ. Сер. Металлургия. 2013. Т. 13. № 1. С. 14.
- 15. Jozwiak W.K., Kaczmarek E., Maniecki T.P. et al. // Appl. Catal. A. 2007. V. 326. P. 17.
- Дильдин А.Н., Соколова Е.В. Теория металлургических процессов (Учебное пособие к практическим занятиям). Челябинск.: Изд-во ЮУрГУ, 2007. 33 с.