КРИСТАЛЛОГРАФИЯ, 2020, том 65, № 3, с. 341–345

МАТЕРИАЛЫ XV МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ "МЕССБАУЭРОВСКАЯ СПЕКТРОСКОПИЯ И ЕЕ ПРИМЕНЕНИЯ"

УДК 538.9, 523.6

ИССЛЕДОВАНИЕ МАГНЕТИЗМА МЕТЕОРИТА "ЧЕЛЯБИНСК" МЕТОДОМ ЯГРС

© 2020 г. М. М. Гусейнов^{1,*}, С. В. Таскаев², И. К. Камилов¹

¹Институт физики им. Х.И. Амирханова Дагестанского научного центра РАН, Махачкала, Россия ²Челябинский государственный университет, Челябинск, Россия

> **E-mail: gusmagm@yandex.ru* Поступила в редакцию 20.05.2019 г. После доработки 20.09.2019 г. Принята к публикации 15.10.2019 г.

Методом мессбауэровской спектроскопии исследованы три фрагмента метеорита "Челябинск" в интервале температур 300—830 К. В них обнаружено присутствие железа в составе различных минералов в разных физико-химических и кристаллографических состояниях. Показано аномальное поведение температурных зависимостей сверхтонких магнитных полей на ядрах железа во всех фрагментах. Предлагается качественное объяснение результатов исследований в рамках концепции структурно-магнитных фазовых переходов, в которых ионы железа играют роль центров стабилизации новых кристаллических структур в отдельных температурных интервалах.

DOI: 10.31857/S002347612003011X

введение

По структурному, минеральному, элементному и изотопному разнообразию и физико-химическим свойствам метеоритов накоплен огромный научный материал [1-7]. В известных метеоритах обнаружено около 100 минералов, в состав которых, за редким исключением, входят атомы железа. Важной характеристикой метеоритов являются их магнитные свойства. Магнетизм, свойственный практически всем метеоритам, используется для их классификации и понимания природы магнитных полей планет Солнечной системы. Важность исследования магнетизма метеоритов связана и с тем, что все планеты Солнечной системы и само Солнце обладают магнитными полями, а геомагнитное поле, причина которого только гипотетически обозначена, также требует дальнейшего исследования. В то же время достоверную информацию о свойствах внеземного вещества можно получить, если исследовать их сразу после падения – до длительного воздействия на него земных условий.

В настоящей работе предпринята попытка на основе исследований эволюции спектров ядер ⁵⁷Fe с изменением температуры выяснить характер структурных и магнитных фазовых переходов и возможную роль ионов железа в генезисе магнетизма в различных фрагментах метеорита "Челябинск".

КРАТКИЙ ОБЗОР ИССЛЕДОВАНИЙ МЕТЕОРИТА "ЧЕЛЯБИНСК"

В исследованиях [8-13] показано, что метеорит "Челябинск" является уникальным и относится к редкому типу каменного хондрита LL5 с ударной фракцией S4 и нулевой степенью выветривания W0. В отдельных фрагментах метеорита обнаружена фракция, не соответствующая типу LL5 и представляющая собой железокаменный метеорит с нетипичным содержанием химических элементов, выявлен основной химический состав метеорита – кислород и железо в разных массовых пропорциях в разных фрагментах. Магнетизму метеорита "Челябинск" посвящены работы [14-19]. В [14] показано, что среднее содержание металла в осколках метеорита "Челябинск" по намагниченности насыщения М_s в светлой и темной компонентах составляют 3.7 и 4.1 мас. % соответственно, а основными носителями магнитных свойств в температурном диапазоне выше 75 К являются тэнит и камасит, ниже 75 К – хромит; магнитная жесткость образцов максимальна при 10 К и составляет 606 мТл для светлой компоненты и 157 мТл для темной. Основные магнитные минералы метеорита представлены двумя группами Fe-Ni-сплавов с различными концентрациями никеля и Fe-сульфидами, а магнетитовые шарики образованы из троилита и других Fe-сульфидов, которые окислены до магнетита в процессе плавления метео-

Рис. 1. Результат модельной расшифровки спектра ⁵⁷ Fe во фрагментах 1 (а) и 3 (б) метеорита "Челябинск".

рита в земной атмосфере. Основным источником магнетизма считается камасит ($Fe_{1-x}Ni_{x(6\%)}$), затем шрейберзит и тэнит, которые редко встречаются в земной коре [16, 17]. Источником камасита считают железные метеориты, а резкий спад температурной зависимости намагниченности M(T) выше 973 К — признаком структурного фазового перехода камасит \rightarrow тэнит, обнаруженного в [18, 19]. Авторы [20] методом несегментной электронной голографии в сочетании с численным микромагнитным моделированием обнаружили устойчивость намагниченности зерен железосодержащего "пыльного оливина" из метеорита Бишунпур, нагретого до высокой температуры.

Мессбауэровским исследованиям метеорита "Челябинск" посвящен ряд работ. В [21, 22] в схожих с проводимыми в настоящей работе экспериментами (спектрометр MC-1104Eм, программа UnivemMS) регистрировали в разных осколках метеорита спектры ⁵⁷Fe, состоящие из одного секстета и четырех квадрупольных дублетов [21], трех—четырех секстетов и шести дублетов [22]. Спектры ⁵⁷Fe в них, как считают авторы, соответствуют кристаллам оливина, пироксена, троилита, камасита, тэнита и хромита.

ОБРАЗЦЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

Фрагменты метеорита "Челябинск" имели оплавленную поверхность черного цвета толщиной 0.1–0.2 мм, в их объемах имелись включения хондр разного размера, цвета и разной ориентации. Образцы представляли собой измельченный в агатовой ступке мелкодисперсный порошок из смеси поверхностной (оплавленной) и объемной частей, спрессованных в таблетки диаметром 1 см². Толщину таблеток для исключения самопоглощения подбирали по пропускной способности мессбауэровской линии спектра образцом. Спектры снимали на спектрометре MS-1104Em в геометрии пропускания. Источником γ-излучения служил изотоп ⁵⁷Co(Cr) с начальной активностью 1.14 мКи. Расшифровку спектров проводили с помощью программы UnivemMS. Качество аппроксимации спектров оценивали по минимуму функционала χ^2 . Калибровку спектрометра проводили по спектру α -Fe. Температура образцов выдерживалась с точностью до $\pm 0.2\%$.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Были исследованы более 150 спектров фрагментов в интервале температур 300-832 К. Огибающие всех экспериментальных спектров представляли собой суперпозицию зеемановских секстетов и квадрупольных дублетов, структура, сверхтонкие параметры которых по-разному изменялись с температурой для разных фрагментов метеорита.

На рис. 1 представлен результат модельной расшифровки спектров ядер ⁵⁷ Fe во фрагментах 2 и 3 метеорита при T = 300 К. Как видно из рисунка, формы спектров и значения H_n на ядрах ⁵⁷ Fe в обоих фрагментах заметно различаются при одинаковых температурах. Такое резкое различие при одинаковых температурах образцов наблюдается для всех трех фрагментов во всем интервале температур. Так, если для фрагментов 1 и 2 асимметрия огибающей квадрупольных дублетов такова, что интенсивность π -перехода больше интенсивности σ-перехода, то для фрагмента 3, наоборот, интенсивность σ-перехода больше интенсивности π-перехода. В отдельных температурных интервалах вид огибающих спектров разных фрагментов резко изменяется, что и отражается на характере температурных зависимостей сверхтонких магнитных полей (СМП) $H_n(T)$ (рис. 1б). Если при T = 300 К формы спектров для фрагментов 1 и 2 практически идентичны, а максимальные значения СМП на ядрах ⁵⁷Fe почти одинаковы - 311.14 и 311.10 кЭ соответственно, то

уже при T = 323 K значения H_n стали равны 508.06 кЭ (фрагмент 1) и 307.39 кЭ (фрагмент 2). При более высоких температурах эти различия в виде огибающих спектров и их параметров также имеют резкие различия при одинаковых температурах. При T = 548 К магнитная структура спектра ⁵⁷ Fe во фрагментах 1 и 3 сохраняется, но с различными значениями Н_n: 449.25 кЭ (фрагмент 1) и 398.63 кЭ (фрагмент 3), а во фрагменте 2 магнитная структура спектра заметно сужается, хотя и не исчезает полностью ($H_n = 76.85 \text{ к}$ Э). При T = 723 Kв спектре фрагмента 2 появляется дополнительный квадрупольный дублет с расщеплением $\Delta E =$ = 0.73(3) мм/с, сдвигом $I_s = 0.16$ (4) мм/с и увеличением асимметрии огибаюшей исходного дублета. При этом поля на ядрах железа во фрагментах 1 и 2 остаются практически одинаковыми — 386.16 и 384.63 кЭ соответственно, а во фрагменте 3 H_n = = 374.63 кЭ. Приведенные данные по H_n и вариации вида огибающих спектров с температурой vказывают на локальную неоднородность метеорита "Челябинск" по составу и структуре, что, в принципе, соответствует представлению о сложности состава и структуры космических объектов. Как видно из рис. 2, зависимости $H_n(T)$ имеют аномалии в виде резких скачков в отдельных интервалах температур. В интервале 300-323 К и других отдельных температурных интервалах скачки поля Н_n достигают 200-350 кЭ, характер зависимостей $H_n(T)$ вне интервалов соответствует температурной зависимости спонтанной намагниченности магнитоупорядоченных веществ. При этом H_n не исчезают во всем интервале температур, что указывает на отсутствие магнитных фазовых переходов типа "магнитный порядокбеспорядок", в связи с чем можно предположить, что аномальное поведение $H_{\mu}(T)$ связано с последовательными структурными фазовыми переходами, способствующими образованию в метеорите с изменением температуры более благоприятных для возникновения магнитного упорядочения кристаллических структур. Действительно, в сложных по содержанию и структуре метеоритах как локально-неоднородных системах вполне возможна реализация самых разнообразных кристаллических систем, устойчивость которых определяется природой химической связи ионов и характером изменения параметров решетки с температурой. Как известно, в состав многих метеоритов-хондритов входят различные минералы железа (троилит, камасит, вюстит, оливин, магнетит, гематит) с устойчивыми при определенных условиях кристаллическими структурами и физико-химическими свойствами. С изменением температуры в метеорите могут реализоваться полиморфные превращения, образование новых структур, физические свойства которых, в том числе параметры мессбауэровских спектров, за-

КРИСТАЛЛОГРАФИЯ том 65 № 3 2020

Рис. 2. Температурная зависимость сверхтонких магнитных полей на ядрах ⁵⁷Fe во фрагментах метеорита "Челябинск".

висят от температуры. Известно, что для устойчивости любой физической системы требуется минимум ее потенциальной энергии. Можно допустить, что в исследованных фрагментах метеорита минимум для стабилизации конкретной кристаллической структуры может быть обеспечен ионами железа, валентность которых в зависимости от условий может изменяться в пределах $Fe^{2+}-Fe^{6+}$ и обеспечить устойчивую химическую связь с разным числом ионов других элементов, способных в конкретных условиях образовать различные минералы. Согласно модели случайной плотной упаковки жестких сфер Бернала,

Компо- нента	Параметр	"Челябинск" [21]		"Челябинск" [настоящая работа]			"Челябинск" [22]		Данные [25]	
		Образец 1	Образец 2	Фрагмент 1	Фрагмент2	Фрагмент 3	№ 1a	№ 2a	Jilin	Xinyang
Секстет 1	I_s , мм/с	0.76	0.76	0.76	0.77	- 0.52	0.73	0.74	0.67	0.61
	Q_s , мм/с	0.18	-0.18	-0.18	-0.20	-0.79	_	_	0.16	0.31
	<i>H_n</i> , кЭ	310.6	310.7	311.4	311.1	497.0	311.4	311.5	310.2	300.2
	<i>S</i> , %	12.8	26.0	11.2	12.6	15.4	18.0	19.0	13.0	16.0
	G, мм/с	0.37	0.44	0.37	0.28	0.17	0.251	0.251	0.30	0.31
Секстет 2	Is			0.72	1.23	-0.28				
	$Q_{\rm s}$			-0.19	0.82	-0.06				
	H _n			302.5	301.2	488.8				
	S			8.12	5.33	7.04				
	Γ			0.77	0.77	0.27				

Таблица 1. Параметры мессбауэровских спектров ядер ⁵⁷ Fe в метеоритах

атомы металла с определенной вероятностью могут иметь в ближайшем координационном контакте от 7 до 13 соседей [23]. Наиболее существенно на состояние вещества и его физико-химические свойства влияет температура, ее изменение способствует структурным и магнитным фазовым переходам, образованию различных дефектов. Симметрия координационных полиздров и количество ближайших соседей ионов железа могут изменяться с температурой, с ростом температуры ионы железа с разной валентностью могут оказаться в центрах полиэдров различной симметрии, образованных анионами других элементов, и стабилизировать в определенном температурном интервале конкретные структуры, в которых ядрам ⁵⁷ Fe соответствуют конкретные СМП. Этот процесс носит вероятностный характер, о чем говорит случайный характер появления аномалий зависимости H_n(T). Согласно принципу Неймана-Войта группа симметрии любого физического свойства должна включать в себя все элементы точечной группы симметрии кристалла [24]. На основании данного принципа, считая энергетический спектр ядер железа и его параметры физическими свойствами, можно предположить, что резкое изменение структуры мессбауэровских спектров и аномальное поведение их параметров в отдельных температурных интервалах отражают соответствующие изменения кристаллической структуры метеорита в этих же интервалах температур. Это может служить подтверждением предположения, что причиной аномалий зависимостей $H_n(T)$ являются структурные фазовые переходы, в результате которых в каждом температурном интервале стабилизируется структура конкретного минерала железа с учетом валентности последнего. Иными словами, можно предположить, что ионы железа играют ключевую роль в реализации в метеоритах-хондритах структурных фазовых переходов с последователь-

образованием новых кристаллических ным структур в соответствующих интервалах температур. Изменение температуры может привести к замене устойчивой при одной температуре модификации кристаллической решетки энергетически более выгодной другой модификацией при другой температуре. В этой связи нужно отметить уникальность роли атомов железа в кристаллохимии метеоритов. Именно в метеоритах, где огромное многообразие химических элементов, образующих различные минералы, появляется возможность ионам железа проявить все свои уникальные свойства поливалентности, которые в зависимости от окружения могут реализовать любую из возможных валентностей и связать в структуре разное количество ионов других элементов, образующих новую кристаллическую структуру. Как следует из рис. 1б, во фрагменте 1 реализуются по крайней мере пять структурных фазовых переходов, во фрагменте 2 – четыре, во фрагменте 3 – два перехода. «Выброс» экспериментальной точки со значением $H_n = 513 \text{ к} \Im$ при T = 733 K (рис. 26) неоднократно проверялся и соответствует действительному состоянию метеорита. Секстеты со значениями сверхтонких полей 311.4 и 311.10 кЭ (при T = 300 К) для фрагментов 1 и 2, полагаем, относятся к антиферромагнетику с низкой намагниченностью - троилиту, что хорошо согласуется с данными [21] для всех трех параметров спектра ($H_n = 310$ кЭ, $I_s =$ = 0.76 мм/с и Q_s = -0.18 мм/с), данными [22] для *H_n* и изомерных сдвигов для светлого фрагмента (№ 1a) и для фрагмента из светлого и темного (№ 2) частей метеорита (311.4 и 311.5 кЭ, 0.736 и 0.747 мм/с соответственно), а также с данными H_n для метеорита Jilin [25] (табл. 1).

Принадлежность секстета к фазе троилита авторы [21] связывают, в частности, с большим значением изомерного сдвига, который имеет ион

<i>Т</i> , К	$FeOOH + FeO_nH$	Fe ₃ O ₄	Fe ₂ O ₃					
Фрагмент 1								
300	70.7 ± 1.8	5.4 ± 5.4	23.8 ± 3.7					
313	58.3 ± 1.0	37.0 ± 3.8	4.8 ± 4.8					
323	61.6 ± 1.6	38.4 ± 1.6	0.0					
Фрагмент 2								
300	70.5 ± 2.5	6.3 ± 6.3	25.2 ± 3.8					
313	64.5 ± 3.7	26.7 ± 12.5	8.8 ± 8.8					
323	61.6 ± 1.6	38.4 ± 1.6	0.0					
Фрагмент 3								
300	98.6 ± 1.4	1.0 ± 1.0	0.4 ± 0.4					
313	98.3 ± 1.7	1.2 ± 1.2	0.0					
323	99.0 ± 1.0	1.0 ± 1.0	0.0					

Таблица 2. Зависимость фазового состава фрагментов метеорита "Челябинск" от температуры

Примечание. Фаза FeO в исчезающе малом количестве обнаружена только во фрагменте 3 при 313 K, а фаза α -Fe не обнаружена ни в одном из фрагментов.

Fe²⁺ в этом минерале, что подтверждается и настоящими данными. А значения сверхтонких полей 497.0 и 488.8 кЭ для фрагмента 3, вероятно, принадлежат магнетиту и гематиту, идентифицированных с помощью программы UnivemMS во всех трех фрагментах. С ростом температуры меняется фазовый состав фрагментов во всем интервале температур (в табл. 2 приведены данные только для трех близких температур фрагмента 1). Как видно из таблицы, в состав фрагментов 1 и 2 входят гетит, магнетит и гематит, а фрагмент 3 состоит из гетита и практически исчезающей примеси Fe₃O₄ и FeO. Этот факт также является косвенным подтверждением, что причиной "магнитных аномалий" в зависимости $H_n(T)$ в исследованных фрагментах метеорита являются структурные фазовые переходы.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ульянов А.А.* // Соросовский образовательный журнал. 2001. Т. 7. № 2. С. 200.
- 2. Геологический словарь в 2-х томах. М.: Недра, 1973. 1978.
- The Meteoritical Society // International Society for Meteoritics and Planetary Science. http://meteoritical society.org.

- 4. Войткевич Г.В., Кокин А.В., Мирошников А.Е. // Справочник по геохимии. М.: Недра, 1990. 480 с.
- Кринов Е.Л. // Каталог метеоритов коллекции АН СССР на 1 января 1946 г. и Краткий каталог метеоритов СССР. М.: Метеоритика, 1949. Вып. V.
- 6. Заварицкий А.Н., Кваша Л.Г. Метеориты СССР. Коллекция академии наук СССР. М.: Изд-во АН СССР, 1952. 246 с.
- 7. Мезенин Н.А. Занимательно о железе. М.: Металлургия, 1972. 200 с.
- 8. Галимов Э.М. // Астрон. вестн. 2013. Т. 4. С. 278.
- 9. Галимов Э.М., Колотов В.П., Назаров М.А. и др. // Геохимия. 2013. № 7. С. 580.
- Таскаев С.В., Галимов Д.М., Жеребцов Д.А. и др. // Вестн. Челяб. гос. ун-та. Физика. 2014. № 1 (330). Вып. 19. С. 68.
- Анфилогов В.Н., Белогуб Е.В., Блинов И.А. и др. // Литосфера. 2013. № 3. С. 118.
- Бахтин И.А., Шиловский О.П., Осин Ю.Н. // Ученые зап. Казан. ун-та. Естественные науки. 2014. Т. 156. Кн. 1.
- 13. Берзин С.В., Ерохин Ю.В., Иванов К.С., Хиллер В.В. // Литосфера. 2013. № 3. С. 106.
- 14. Безаева Н.С., Бадюков Д.Д., Назаров М.А. и др. // Геохимия. 2013. № 7. С. 629.
- 15. *Марков Г.П., Печерский Д.М., Цельмович В.А. //* Астрон. вестн. 2015. Т. 49. № 5. С. 340.
- 16. Антипин В.С., Кузьмин М.И., Печерский Д.М. и др. // Докл. РАН. 2014. Т. 458. № 1. С. 57. https://doi.org/10.7868/S0869565214250136
- Печерский Д.М., Марков Г.П., Цельмович В.А., Шаронова З.В. // Физика Земли. 2012. № 7-8. С. 103.
- Печерский Д.М., Кандинов М.Н., Марков Г.П. и др. // Магнитные минералы метеоритов. http://paleomag.ifz.ru/books/pecherskiy-2011.pdf.
- Печерский Д.М., Марков Г.П., Цельмович В.А. // Чистое железо и другие магнитные минералы в метеоритах. https://elibrary.ru/item.asp.
- 20. Jay Shah, Wyn Williams, Trevor P. et al. // Nature Commun. 2018. V. 9. Article № 1173.
- 21. Лютоев В.П., Потапов С.С., Исаенко С.И. и др. // Вестн. Института геологии Коми НЦ УрО РАН, 2013. № 7. С. 2.
- Maksimova A.A., Oshtrakh M.I., Klencsar Z. et al. // J. Mol. Struct. 2014. V. 1073. P. 196.
- 23. Шаскольская М.П. // Кристаллография. М.: Высшая школа, 1976. С. 183.
- 24. *Урусов В.С.* // Теоретическая кристаллохимия. М.: Изд-во МГУ, 1987. С. 22.
- 25. *Zhang Yu., Stevens J.G., Li Z.* // Hyperfine Interaction. 1994. V. 91. P. 547.