КРИСТАЛЛОГРАФИЯ, 2020, том 65, № 3, с. 346-351

МАТЕРИАЛЫ XV МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ "МЕССБАУЭРОВСКАЯ СПЕКТРОСКОПИЯ И ЕЕ ПРИМЕНЕНИЯ"

УДК 548.11

МЕССБАУЭРОВСКОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ КАТИОННЫХ ЗАМЕЩЕНИЙ НА МАГНИТНЫЕ ФАЗОВЫЕ ПЕРЕХОДЫ В ТВЕРДЫХ РАСТВОРАХ BiFe_{1 – x}Cr_xO₃ И (1 – x)BiFeO₃ – xPbFe_{0.5}Sb_{0.5}O₃

© 2020 г. С. П. Кубрин^{1,*}, И. П. Раевский², Н. М. Олехнович³, А. В. Пушкарев³, Ю. В. Радюш³, В. В. Титов¹, М. А. Малицкая¹, Гуоронг Ли⁴, С. И. Раевская²

¹Научно-исследовательский институт физики, Южный федеральный университет, Ростов-на-Дону, Россия

²Южный федеральный университет, Ростов-на-Дону, Россия

³НПЦ НАН Беларуси по материаловедению, Минск, Беларусь

⁴Шанхайский институт керамики, Академия наук Китая, Шанхай, Китай

*E-mail: stasskp@gmail.com

Поступила в редакцию 20.05.2019 г. После доработки 20.09.2019 г.

Принята к публикации 15.10.2019 г.

В твердом растворе BiFeO₃ с упорядоченным перовскитом PbFe_{0.5}Sb_{0.5}O₃ и в неупорядоченном твердом растворе BiFe_xCr_{1-x}O₃ исследованы концентрационные зависимости температуры T_N магнитного фазового перехода, определявшейся по изменению мессбауэровских спектров. Установлено, что в BiFe_{1-x}Cr_xO₃ изменение типа магнитного порядка с антиферромагнитного на спин-стекольный происходит при более высокой степени разбавления подрешетки железа по сравнению с твердыми растворами на основе PbFe_{0.5}Nb_{0.3}O₃, что связывается с меньшей величиной параметра решетки у BiFeO₃. Локальное упорядочение ионов Fe³⁺ и Sb⁵⁺ в твердых растворах (1-x)BiFeO₃ - xPbFe_{0.5}Sb_{0.5}O₃ приводит к более быстрому, чем в BiFe_{1-x}Cr_xO₃, понижению T_N с уменьшением содержания Fe³⁺ в решетке.

DOI: 10.31857/S0023476120030169

введение

Мультиферроики – материалы, обладающие одновременно магнитным и сегнетоэлектрическим упорядочениями, привлекают большой интерес. Это обусловлено возможностью управления их магнитными свойствами с помощью электрического поля и, наоборот, **VПравления** электрическими свойствами с помощью магнитного поля, что открывает широкие перспективы для различных применений [1, 2]. Наиболее перспективным мультиферроиком является BiFeO₃, в котором температуры магнитного (T_N) и сегнетоэлектрического фазовых переходов значительно выше комнатной температуры, в то время как у других известных мультиферроиков T_N ниже комнатной температуры [1–3]. Так же, как и другие железосодержащие однофазные мультиферроики, BiFeO₃ является антиферромагнетиком [1, 3]. Это ограничивает возможные применения данного материала, поскольку в антиферромагнетиках возможен только квадратичный магнитоэлектрический эффект, величина которого существенно меньше линейного эффекта. Поэтому поиск новых соединений с достаточно высокой T_N и ферримагнитным упорядочением является актуальной задачей.

Ранее на основе первопринципных расчетов было предсказано, что при замещении в BiFeO₃ Fe на Cr в случае упорядоченного расположения ионов Cr³⁺ и Fe³⁺ могут возникать ферромагнитные свойства [3, 4]. Наиболее привлекательным составом данной системы является BiFe_{0.5}Cr_{0.5}O₃, в котором может возникать ферримагнитное упорядочение [4]. Однако исследования показали, что ионы Cr³⁺ и Fe³⁺ в BiFe_{0.5}Cr_{0.5}O₃ разупорядочены, и при комнатной температуре данный состав находится в парамагнитной фазе [5]. Исследования намагниченности [6] показали, что в BiFe_{0.5}Cr_{0.5}O₃ возникает не антиферромагнитное, а спин-стекольное состояние ниже $T_{SG} \approx 130$ K.

Принято считать, что в железосодержащих перовскитах магнитные и сегнетоэлектрические подсистемы независимы, поскольку магнитные свойства обусловлены ионами Fe^{3+} , а сегнетоэлектрические — ионами Pb^{2+} и Bi^{3+} [1]. Таким образом, величина T_N в железосодержащих окси-

Рис. 1. Зависимость температуры магнитного фазового перехода T_N от концентрации катионов Fe³⁺ для железосодержащих перовскитовых мультиферроиков. Треугольниками, ромбами, кругами и квадратами обозначены экспериментальные значения T_N , звездочками – теоретически рассчитанные значения T_N для случая полного разупорядочения катионов *B*-подрешетки. Для PFN приведены как наименьшие, так и наибольшие экспериментально наблюдавшиеся [14, 15] значения T_N .

дах преимущественно зависит от концентрации цепочек Fe–O–Fe [7, 8]. Данное предположение подтверждается практически линейной зависимостью T_N от содержания железа в решетке (рис. 1) для железосодержащих перовскитовых мультиферроиков [1, 9-11]. Отметим, что в тройных перовскитах, таких как PbFe_{0.5}Nb_{0.5}O₃ (PFN) или $PbFe_{2/3}W_{1/3}O_3$ (**PFW**), существует возможность управлять T_N, изменяя степень упорядочения В-катионов [11, 12], поскольку при этом изменяется количество цепочек Fe-O-Fe. В частности, в упорядоченном перовските $PbFe_{0.5}Sb_{0.5}O_3$ (**PFS**) величина T_N значительно ниже, чем в разупорядоченных PFN и PbFe_{0.5}Ta_{0.5}O₃ (**PFT**) (рис. 1) [13]. Хотя считается, что в PFN и PFW катионы В-подрешетки разупорядочены, значения T_N этих соединений ниже, чем предсказывает теория [12] для случая полного разупорядочения В-катионов (рис. 1). Для PFN [14, 15] и его аналога PFT [9, 14, 16, 17] установлено, что величина T_N может сильно изменяться в зависимости от способа приготовления образцов. Наблюдаемые в PFN и PFT изменения T_N, по-видимому, обусловлены изменением степени ближнего порядка или кластеризацией ионов Fe³⁺ [14, 17]. Таким образом, изменять *T_N* в железосодержащих перовскитах можно изменяя степень катионного упорядочения. Вместе с тем данные о влиянии упорядочения ионов на величину T_N в твердых растворах BiFeO₃ отсутствуют. В данной работе исследуются концентрационные зависимости T_N в твердом растворе BiFeO₃ с упорядоченным перовскитом PFS и в неупорядоченном твердом растворе BiFe_xCr_{1-x}O₃.

МЕТОДЫ ИССЛЕДОВАНИЯ

Твердые растворы $BiFe_{1-x}Cr_xO_3$ (x = 0.05-0.85) и (1-x) $BiFeO_3 - xPbFe_{0.5}Sb_{0.5}O_3$ (x = 0.05, 0.1, 0.3, 0.5, 0.7, 0.9) приготовлены твердофазным синтезом под высоким давлением из оксидов высокой чистоты Bi_2O_3 , PbO, Cr_2O_3 , Fe_2O_3 , Sb_2O_5 . Оксиды смешивали в стехиометрическом соотношении в шаровой мельнице в среде этанола, высушивали и спрессовывали в таблетки. Полученные таблетки отжигали при температурах 750–900°C от 10 мин до 2 ч. Дальнейшую термообработку проводили в камере высокого давления DO-138A. Образцы синтезировали под давлением 4–6 ГПа при температурах 900–1400°C в течение 1–5 мин и затем быстро охлаждали до комнатных температур.

Рентгенодифракционные исследования проводили при комнатной температуре на дифрактометре ДРОН-3 с Си K_{α} -излучением.

Мессбауэровские исследования проводили с помощью спектрометра MS1104Em. Образцы помещали в камеру гелиевого рефрижераторного криостата CCS-850. В качестве источника γ-квантов использовали ⁵⁷Со в матрице Fe. Анализ спектров проводили с помощью программы SpectrRelax. Изомерные сдвиги определяли относительно металлического α-Fe.

Для оценки T_N использовали метод температурного сканирования [15, 18]. В его основе лежит трансформация мессбауэровского спектра из парамагнитного дублета в зеемановский секстет в области T_N , что сопровождается значительным снижением амплитуды парамагнитных линий. Определяя количество импульсов в скоростном диапазоне 0–1 мм/с, т.е. в области резонанса, и на крыле спектра при скорости 12 мм/с, по разности импульсов можно определить интенсивность I_m парамагнитных линий мессбауэровского спектра. Проводя указанные измерения при различных температурах, по резкому уменьшению I_m можно оценить величину T_N .

РЕЗУЛЬТАТЫ

Рентгендифракционные исследования образцов $BiFe_{1-x}Cr_xO_3$ и $(1-x)BiFeO_3 - xPbFe_{0.5}Sb_{0.5}O_3$ показали, что они имеют структуру перовскита и являются однофазными.

Мессбауэровские спектры образцов системы $BiFe_{1-x}Cr_xO_3$, измеренные при комнатной темпера-

Puc. 2. Мессбауэровские спектры образов (1 - x)BiFeO₃ – xPbFe_{0.5}Sb_{0.5}O₃, измеренные при комнатной температуре.

туре, обсуждались в [5]. Мессбауэровские спектры образцов системы (1 - x)ВіFеO₃ – *x*PbFe_{0.5}Sb_{0.5}O₃ приведены на рис. 2. Параметры спектров представлены в табл. 1. Изомерные сдвиги компонент всех спектров соответствуют ионам Fe³⁺ в октаэдрическом кислородном окружении. Спектры образов с *x* = 0.05 и 0.1 состоят из двух секстетов, что обусловлено наличием в BiFeO₃ пространственной спин-модулированной структуры (**ПСМС**) [5, 19, 20]. При наличии ПСМС секстет

с меньшей величиной сверхтонкого магнитного поля (H_1) соответствует ионам Fe³⁺ с магнитными моментами, перпендикулярными оси третьего порядка, а секстет с большей величиной H_2 обусловлен ионами Fe³⁺ с магнитными моментами, параллельными оси третьего порядка. Спектры образцов с x = 0.3 и 0.5 состоят из одного секстета, что указывает на разрушение ПСМС в результате катионных замещений. Спектры образцов с x == 0.7 и 0.9 состоят из парамагнитных компонент.

КРИСТАЛЛОГРАФИЯ том 65 № 3 2020

x	Компонента	$\delta \pm 0.02$, мм/с	$\epsilon/\Delta\pm0.02$, мм/с	$H\pm 1,$ кЭ	$A \pm 1, \%$	$G \pm 0.02$, мм/с
0.05	Секстет 1	0.39	-0.07	487	48	0.42
	Секстет 2	0.39	0.14	490	52	0.42
0.1	Секстет 1	0.39	-0.07	480	45	0.49
	Секстет 2	0.39	0.14	485	55	0.49
0.3	Секстет	0.39	0.07	441	100	1.11
0.5	Секстет	0.41	0.01	333	100	1.76
0.7	Дублет 1	0.43	0.36		24	0.26
	Дублет 2	0.44	0.60		76	0.38
0.9	Синглет	0.47			13	0.34
	Дублет	0.45	0.48		87	0.37

Таблица 1. Параметры мессбауэровских спектров образцов $(1 - x)BiFeO_3 - xPbFe_{0.5}Sb_{0.5}O_3$, измеренных при комнатной температуре

Примечание. δ – изомерный сдвиг, ε – квадрупольное смещение, Δ – квадрупольное расщепление, H – сверхтонкое магнитное поле, A – площадь компонент спектра, G – ширина линий.

В спектре образца с x = 0.7 наблюдаются два парамагнитных дублета, различающиеся величиной квадрупольного расщепления. Наличие двух дублетов связано с возникновением областей локального упорядочения (кластеризацией). В пользу данной точки зрения свидетельствует тот факт, что на распределении $p(\Delta)$ для спектра образца с x = 0.7имеются два пика, координаты которых близки к величинам квадрупольных расщеплений дублетов. Кроме того, при x = 0.9 в спектре наблюдаются дублет и синглет. Синглетная компонента, как и в случае высокоупорядоченного PFS, соответствует ионам Fe³⁺ в областях с высокой степенью упорядочения катионов В-подрешетки [11]. Таким образом, для образцов системы (1 - x)ВіFеO₃ – *x*PbFe_{0.5}Sb_{0.5}O₃ с ростом *x* происходит частичное упорядочение В-катионов.

На рис. 3 представлены температурные зависимости интенсивности I_m парамагнитных линий мессбауэровских спектров для образцов систем BiFe_{1-x}Cr_xO₃ (а) и (1-x)BiFeO₃-xPbFe_{0.5}Sb_{0.5}O₃ (б). Спад зависимости $I_m(T)$ соответствует T_N . Результаты оценки T_N по середине спада $I_m(T)$ обобщены в виде зависимости T_N от содержания у железа в решетке, представленной на рис. 4. Зависи-

Рис. 3. Температурные зависимости интенсивности парамагнитных линий мессбауэровских спектров образцов $BiFe_{1-x}Cr_xO_3$ (а) и $(1-x)BiFeO_3 - xPbFe_{0.5}Sb_{0.5}O_3$ (б), нормированные на их значения при максимальной температуре.

КРИСТАЛЛОГРАФИЯ том 65 № 3 2020

Рис. 4. Зависимость температуры магнитного фазового перехода T_N от концентрации *у* ионов Fe³⁺ в решетке для систем BiFe_{1 – x}Cr_xO₃ (*y* = 1 – *x*) и (1 – *x*)BiFeO₃ – *x*PbFe_{0.5}Sb_{0.5}O₃ (*y* = 1 – 0.5*x*).

мость $T_N(y)$ для BiFe_{1 – x}Cr_xO₃ линейно убывает в диапазоне $0.4 \le y \le 1$ приблизительно с такой же скоростью, как и при замене Fe на немагнитный Sc [10], что, вероятно, обусловлено слабым взаимодействием между ионами хрома и железа. Это согласуется с данными о малом значении обменного интеграла для суперобмена катион-анионкатион между октаэдрическими позициями катионов 3*d*³(Cr³⁺) и 3*d*⁵(Fe³⁺) [8]. При *у* < 0.4 значения Т_N изменяются слабо, что обусловлено изменением типа магнитного порядка с антиферромагнитного на спин-стекольное, как это имеет место в системах твердых растворов на основе PFN и PFT при разбавлении подрешетки железа [9, 21, 22]. Вместе с тем в твердых растворах на основе PFN и PFT плато на зависимости $T_N(y)$ возникает при более высокой концентрации у железа в решетке, чем в $BiFe_{1-x}Cr_xO_3$. Возможно, это связано с тем, что параметр решетки, с ростом которого сильно уменьшается величина магнитного суперобмена, в PFN, PFT и твердых растворах на их основе [9, 21–23] больше, чем в BiFe_{1 – r}Cr_rO₃ [5]. Кроме того, при низких концентрациях Fe значительный вклад в формирование магнитного упорядочения, по-видимому, вносят ионы Cr.

 $T_N(y)$ Зависимость для $(1-x) \times$ \times BiFeO₃ – *x*PbFe_{0.5}Sb_{0.5}O₃ монотонно убывает во всем концентрационном диапазоне. При этом T_N с уменьшением у убывает быстрее, чем в системе $BiFe_{1-x}Cr_xO_3$, что связано с локальным упорядочением катионов Fe³⁺ и Sb⁵⁺. В пользу такого предположения свидетельствуют данные исследования спектров ядерного магнитного резонанca (**MMP**) твердых растворов $(1-x) \times$ \times PbFe_{0.5}Nb_{0.5}O₃ – xPbFe_{0.5}Sb_{0.5}O₃ [24]. Хотя на мессбауэровских спектрах этих твердых растворов синглетная компонента, как и в случае (1 - x)BiFeO₃ – *x*PbFe_{0.5}Sb_{0.5}O₃, появляется только при больших значениях *x* [11], в спектрах ЯМР компонента, соответствующая упорядоченным областям, заметна уже при *x* = 0.4–0.5 [24].

выводы

В твердых растворах $BiFe_{1-x}Cr_xO_3$ изменение типа магнитного порядка с антиферромагнитного на спин-стекольное происходит при более высокой степени разбавления подрешетки железа по сравнению с твердыми растворами на основе PbFe_{0.5}Nb_{0.5}O_3 и PbFe_{0.5}Ta_{0.5}O_3. Это, вероятно, связано с тем, что параметр решетки, с ростом которого сильно уменьшается величина магнитного суперобмена, в PbFe_{0.5}Nb_{0.5}O_3, PbFe_{0.5}Ta_{0.5}O_3 и твердых растворах на их основе больше, чем в BiFe_{1-x}Cr_xO_3.

Более быстрое понижение T_N в твердых растворах (1 - x)ВіFеO₃ – *x*РbFe_{0.5}Sb_{0.5}O₃ с ростом *x* по сравнению с ВіFe_{1 – x}Cr_xO₃, связано с локальным упорядочением катионов Fe³⁺ и Sb⁵⁺.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (проект 18-52-00029 Бел_а), Белорусского республиканского фонда фундаментальных исследований (проект T18R-048), Министерства науки и высшего образования РФ (проекты № 3.1649.2017/4.6 и 3.5346.2017/8.9) и стипендии президента академии наук КНР (проект 2018VEA0011).

СПИСОК ЛИТЕРАТУРЫ

- Khomskii D.I. // J. Magn. Magn. Mater. 2006. V. 306. P. 1.
- Laguta V.V., Morozovska A.N., Eliseev E.I. et al. // J. Mater. Sci. 2016. V. 51. P. 5330.
- Baettig P., Spaldin N.A. // Appl. Phys. Lett. 2005. V. 86. P. 012505.
- Goffinet M., Iniguez J., Ghosez P. // Phys. Rev. B. 2012. V. 86. P. 024415.
- Raevski I.P., Kubrin S.P., Pushkarev A.V. et al. // Ferroelectrics. 2018. V. 525. P. 1.
- Suchomel M.R., Thomas C.I., Allix M. et al. // Appl. Phys. Lett. 2007. V. 90. P. 112909.
- 7. Gilleo M.A. // J. Phys. Chem. Solid. 1960. V. 13. P. 33.
- 8. *Goodenough J.B.* Magnetism and chemical bond. N-Y.; London: Interscience Publisher, 1963.
- Raevski I.P., Titov V.V., Malitskaya M.A. et al. // J. Mater. Sci. 2014. V. 49. P. 6459.
- 10. *Khalyavin D.D., Salak A.N., Olekhnovich N.M. et al.* // Phys. Rev. B. 2014. V. 89. P. 174414.
- 11. Raevski I.P., Olekhnovich N.M., Pushkarev A.V. et al. // Ferroelectrics. 2013. V. 444. P. 47.

КРИСТАЛЛОГРАФИЯ том 65 № 3 2020

- 12. Nomura S., Takabayashi H., Nakagawa T. // Jpn. J. Appl. Phys. 1968. V. 7. P. 600.
- 13. *Laguta V.V., Stephanovich V.A., Savinov M. et al.* // New J. Phys. 2014. V. 16. P. 11304.
- 14. Gusev A.A., Raevskaya S.I., Titov V.V. et al. // Ferroelectrics. 2016. V. 496. P. 231.
- 15. Raevski I.P., Kubrin S.P., Raevskaya S.I. et al. // Ferroelectrics. 2008. V. 373. P. 121.
- 16. *Shvorneva L.I., Venevtsev Yu.N. et al.* // Sov. Phys. JETP. 1965. V. 22. P. 722.
- 17. Gusev A.A., Raevskaya S.I., Titov V.V. et al. // Ferroelectrics. 2015. V. 475. P. 41.
- 18. Raevski I.P., Kubrin S.P., Raevskaya S.I. et al. // Ferroelectrics. 2010. V. 398. P. 16.

- Pokatilov V.S., Pokatilov V.V., Sigov A.S. // Phys. Solid State. 2009. V. 51. P. 552.
- 20. Rusakov V.S., Pokatilov V.S., Sigov A.S. et al. // JETP Lett. 2014. V. 100. P. 463.
- 21. *Raevski I.P., Kubrin S.P., Laguta V.V. et al.* // Ferroelectrics. 2015. V. 475. P. 20.
- Kozakov A.T., Kochur A.G., Nikolskii A.V. et al. // J. Mater. Sci. 2017. V. 52. P. 10140.
- 23. Sitalo E.I., Raevski I.P., Lutokhin A.G. et al. // IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2011. V. 58. P. 1914.
- 24. Zagorodniy Yu.O., Kuzian R.O., Kondakova I.V. et al. // Phys. Rev. Mater. 2018. V. 2. P. 014401.