УДК 548.736

_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ _ СОЕДИНЕНИЙ

СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА НОВОГО ЙОДАТА Na₃Fe[IO₃]₆ ИЗ СТРУКТУРНОГО СЕМЕЙСТВА A_3M [IO₃]₆ (A = Na, K, Rb, Cs, Tl; M = Ti, Fe, Ge, In, Pt)

© 2020 г. О. В. Реутова¹, Е. Л. Белоконева^{1,*}, О. В. Димитрова¹, А. С. Волков¹

¹Московский государственный университет им. М.В. Ломоносова, Москва, Россия

**E-mail: elbel@geol.msu.ru* Поступила в редакцию 26.08.2019 г. После доработки 14.11.2019 г. Принята к публикации 14.11.2019 г.

Методом гидротермального синтеза получены кристаллы нового йодата Na₃Fe[IO₃]₆ (параметры ячейки: a = 6.6886(2), b = 6.7756(3), c = 10.1396(6) Å, $\alpha = 74.590(4)^{\circ}$, $\beta = 71.510(4)^{\circ}$, $\gamma = 79.960(4)^{\circ}$; пр. гр. $P\overline{1}$, R = 2.7%). Соединение относится к семейству, содержащему структурный блок { $M[IO_3]_6$ } (M = Ti, Ge, In, Pt, Fe³⁺), состоящий из MO_6 -октаэдра и шести групп [IO₃]⁻, прикрепленных к каждой вершине. В структуре Na₃Fe[IO₃]₆ впервые обнаружено заполнение октаэдрической M-позиции катионами Fe³⁺. Атомы Na распределены по двум позициям между блоками {Fe[IO₃]₆}³, они располагаются в кислородных октаэдрах. Проведено сопоставление структуры с Rb₃In[IO₃]₆ и выявлено различное заполнение щелочными металлами Na и Rb центров инверсии.

DOI: 10.31857/S0023476120030273

ВВЕДЕНИЕ

Йодаты представляют собой класс неорганических соединений с полярными анионными группами [IO₃]⁻ с зонтичной координацией ионов I⁵⁺, обладающих неподеленной электронной парой, которая достраивает группу до тетраэдра. При условии полярного расположения таких группировок в структурах кристаллов возможно получение новых перспективных нелинейно-оптических и сегнетоэлектрических материалов. В последние годы [1, 2] активно синтезируют новые йодаты самых разных металлов.

Среди разнообразных йодатов можно выделить соединения со схожим строением. Так, достаточно давно был синтезирован и структурно изучен $K_2Ge[IO_3]_6$ [3] — родоначальник семейства, содержащего изолированный структурный блок из октаэдра и шести групп [IO_3]⁻, прикрепленных к каждой вершине. Оно включает в себя такие соединения, как $K_2Ti[IO_3]_6$, $Rb_2Ti[IO_3]_6$, $Cs_2Ti[IO_3]_6$, $Tl_2Ti[IO_3]_6$ [4], $Ba_2Ti[IO_3]_6$ [5] и $Rb_2Zr[IO_3]_6$ [6] с Ті и Zг в октаэдрической позиции, и соединения с Pt: β -(H₃O)₂Pt[IO₃]_6, $Na_2Pt[IO_3]_6$, $Rb_2Pt[IO_3]_6$, $Rb_2Pt[IO_3]_6$, $Cs_2HIn[IO_3]_6$, [8], а также исследованные недавно ($K_{0.6}Na_{0.4}Ba$)In[IO₃]_6 [9] и группа соединений с Ge: $K_2Ge[IO_3]_6$ (повторно), $Rb_2Ge[IO_3]_6$, $Cs_2Ge[IO_3]_6$

[10]. При замене крупных щелочных металлов более мелкими Na и Li образуются иные структуры [4, 11, 12].

В настоящей работе приведены результаты гидротермального синтеза и исследования кристаллической структуры нового йодата натрия и железа $Na_3Fe[IO_3]_6$ (I), пополняющего данное семейство представителем с атомами Fe. Впервые обнаружено, что атомы железа занимают октаэдрическую позицию. Проведено его сопоставление с $Rb_3In[IO_3]_6$ и выявлено различное заполнение центров инверсии в зависимости от ионного радиуса щелочного металла.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез и свойства кристаллов. Кристаллы I получены в гидротермальных условиях из исходных компонентов NaIO₃: Fe₂O₃: NaNO₃, взятых в массовых соотношениях 1:1:1. Далее шихту заливали водой, соотношение жидкой и твердой фаз по массе составляло 1:5. Синтез проводили в стандартных автоклавах объемом 5–6 см³, футерованных фторопластом, при T = 280°C и $P \sim 100$ атм. Нижний предел температуры был ограничен кинетикой гидротермальных реакций, верхний – возможностями аппаратуры. Коэффициент заполнения автоклава выбран таким образом, чтобы давление оставляло 18–20 сут, что

Химическая формула	Na ₃ Fe ³⁺ [IO ₃] ₆
М	587.11
Сингония, пр. гр., Z	Триклинная, $P\overline{1}$, 1
<i>a</i> , <i>b</i> , <i>c</i> , Å	6.6886(3), 6.7756(3), 10.1397(6)
α, β, γ , град	74.589(4), 71.511(4), 79.965(3)
<i>V</i> , Å ³	418.09(8)
D_x , г/см ³	4.660(1)
Излучение; λ, Å	$MoK_{\alpha}; 0.71073$
μ, мм ⁻¹	12.151
<i>Т</i> , К	293
Размер образца, мм	$0.162 \times 0.025 \times 0.02$
Дифрактометр	XCalibur S
Тип сканирования	Ω
θ _{max} , град	32.60
Пределы <i>hkl</i>	$-10 \le h \le 9, -10 \le k \le 10, \\ -15 \le l \le 14$
Количество рефлексов: измеренных/независ. с $I \ge 1.96\sigma/R_{ycp}$	8537/2498/0.0352
Метод уточнения	МНК по F ² (hkl)
Весовая схема	$1/[\sigma^2(F_o)^2 + (0.0199P)^2 + 0.0P],$ $P = [\max(F_o)^2 + 2(F_c)^2]/3$
Число параметров	130
<i>R</i> _{all}	0.0329
R_{gt}, R_{wgt}	0.0270, 0.0557
S	1.059
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-1.432/1.054
Программы	CSD, SHELX

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры $Na_3Fe^{3+}[IO_3]_6$

было необходимо для полного завершения реакции, после чего кристаллы промывали водой. В бежевой шихте обнаружены прозрачные, бежевые и желтоватые мелкие призматические кристаллы и их сростки размером до 0.5 мм. Длина полученных кристаллов была до 0.1 мм, поперечный размер 0.025 мм. Выход кристаллов невелик и составлял ~30%.

Состав кристаллов определили с помощью рентгеноспектрального анализа, выполненного в лаборатории локальных методов исследования вещества МГУ на микрозондовом комплексе на базе растрового электронного микроскопа Jeol JSM-6480LV. Он показал присутствие атомов Na, Fe и I в кристаллах I. Был проведен тест на генерацию второй оптической гармоники. Сигнал отсутствовал, что говорило о центросимметричности кристаллов.

Параметры элементарной ячейки соединений определены на монокристальном дифрактометре XCalibur S с CCD-детектором. Для этого был выбран мелкий прозрачный игольчатый монокристалл размером $0.025 \times 0.02 \times 0.162$ мм. Параметры триклинной ячейки составили: a = 6.6886(3), b = 6.7756(3), c = 10.1397(6) Å, $\alpha = 74.6^{\circ}$, $\beta = 71.7^{\circ}$, $\gamma = 80.0^{\circ}$. Аналогов в базе данных ICSD [13] найдено не было: данное соединение оказалось новым, для него проведена структурная расшифровка.

Рентгеноструктурное исследование. Трехмерный экспериментальный набор интенсивностей получен для того же монокристалла в полной сфере обратного пространства, обработка данных выполнена по программе CrysAlis [14]. Для кристалла I определена пр. гр. $P\overline{1}$.

По программе SHELXS [15] прямыми методами найдены позиции тяжелых атомов, однако развить модель не удалось (R = 17%). Далее был опробован метод "тяжелого атома" с анализом функции *Р_{иуw}* по программе CSD (версия 1989 г.) [16]. Найдены новые позиции тяжелых атомов: три для I, одна для Fe и две для Na. Координационное окружение катионов атомами О, выявленными из разностных синтезов, отвечало сортам катионов. Всего было найдено девять позиций для атомов О, и уточнение модели показало, что она верна при $R_{hkl} = 0.045$ в изотропном приближении. Межатомные расстояния в октаэдре (среднее 2.020 Å) однозначно соответствовали трехвалентному состоянию Fe³⁺, и полученная формула Na₃Fe[IO₃]₆ (Z = 1) была электронейтральной. Поглощение в кристалле с учетом его малых размеров и призматической формы для найденной формулы пренебрежимо мало ($\mu r_{cp} =$ $= \sim 0.3$ при $\mu r_{\text{макс}} = \sim 0.99$ лишь в направлении оси призмы). Заключительное уточнение позиционных параметров и тепловых смещений атомов в анизотропном приближении выполнено методом наименьших квадратов с использованием комплекса программ SHELXL [15] с учетом аномального рассеяния Мо-излучения и варьирования весовой схемы. Все полуоси тепловых эллипсоидов были положительные, а межатомные расстояния соответствовали найденным сортам атомов. Итоговый фактор расходимости составил R = 0.0270. Параметры эксперимента и результаты уточнения приведены в табл. 1, координаты атомов – в табл. 2, основные межатомные расстояния – в табл. 3. Информация о структуре имеется в банке данных ССDС (CSD) 1938629.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В кристаллической структуре Na₃Fe³⁺[IO₃]₆ атомы Fe находятся в правильных октаэдрах, изолированных друг от друга и окруженных шестью зонтичными группами [IO₃]⁻, причем расстояния Fe-O и I-O отвечают валентным состояниям Fe³⁺ и I⁵⁺ (табл. 3). Атомы Na1. Na2 расположены в пустотах между блоками и имеют октаэдрическую координацию, причем для Na2 имеются два более удаленных атома O1 (2.992 Å). Октаэдры соединены в цепочки, вытянутые вдоль оси а. Вдоль самой длинной оси с NaO₆- и FeO₆-октаэдры чередуются на уровнях 0 и 1/2. Структурный блок ${M[IO_3]_6}$, в данном случае ${Fe^{3+}[IO_3]_6}^{3-}$, выполняет функцию аниона, характерен для многих йодатов и был найден впервые в структуре К₂Ge[IO₃]₆[12]. Отметим, что октаэдрическая позиция может быть заселена различными металлами (M) при варьировании щелочных катионов (A), что отражено в общей формуле $A_3 M[IO_3]_6$, где A == Na, K, Rb, Cs, Ba, Tl; M = Ti, Fe, Ge, In, Pt, a saполнение ее Fe³⁺ обнаружено впервые. Для большинства соединений семейства характерна тригональная симметрия. Новый йодат триклинный, наиболее близок ему триклинный Rb₃In[IO₃]₆ (пр. гр. $P\overline{1}_{1}$, a = 7.076(3), b = 7.091(4), c = 10.728(6) Å, $\alpha = 88.22(2)^{\circ}, \beta = 71.49(2)^{\circ}, \gamma = = 72.75(1)^{\circ}$ [8]. Pasмеры ячейки больше вследствие увеличения ионных радиусов, так как Rb и In существенно крупнее Na и Fe. Однако структуры отличаются и положениями щелочных металлов. Атомы Na1, Na2 (последний находится в центре инверсии) в новой структуре образуют тройки между слоями, параллельными плоскости ab, в которых находятся структурные блоки {Fe³⁺[IO₃]₆}³⁻ (рис. 1). Rb1 (в центре инверсии) находится на том же уровне, что и InO₆-октаэдры, а Rb2 располагается между слоями со структурными блоками $\{In^{3+}[IO_3]_6\}^{3-}$ в плоскости bc структуры (рис. 2), как и Na1. Таким образом, в каждой структуре один из двух независимых атомов щелочных металлов занимает позиции в различных центрах инверсии. Свободные центры инверсии, которые альтернативно заняты в другой структуре, отмечены на соответствующих рисунках квадратами. Более крупные атомы Rb расширяют пространство между слоями со структурными блоками, что приводит к относительному увеличению параметра *а* в Rb-йодате.

Структурные блоки $M[IO_3]_6^{3-}$ топологически подобны группировкам, состоящим из октаэдра и шести тетраэдров с симметрией 32 и $\overline{3}$, в различных структурах классов силикатов, фосфатов, галлатов и германатов [17]. Например, одно из соединений — фосфат Li₃In₂[PO₄]₃ (пр. гр. $R\overline{3}$), относящийся к структурному типу NASICON, — из-

Таблица 2. Координаты базисных атомов и эквивалентные изотропные параметры в структуре $Na_3Fe^{3+}[IO_3]_6$

Атом	x/a	y/b	z/c	$U_{ m _{3KB}},{ m \AA}^2$
I1	0.22935(4)	0.07401(4)	0.11299(3)	0.00908(6)
I2	0.36711(4)	0.96066(4)	0.69841(3)	0.00819(6)
13	0.69141(4)	0.46765(4)	0.60737(3)	0.00986(6)
Fe	0	0	0.5	0.00911(15)
Na1	0.0857(3)	0.4579(3)	0.8033(2)	0.0180(4)
Na2	0.5	0.5	0	0.0253(6)
01	0.6504(5)	0.3130(4)	0.2586(3)	0.0165(6)
O2	0.2614(4)	0.0399(4)	0.5407(3)	0.0123(6)
O3	0.1452(5)	0.1072(5)	0.2971(3)	0.0157(6)
O4	0.4619(5)	0.3397(4)	0.6330(4)	0.0180(6)
O5	0.1320(4)	0.0475(4)	0.8265(3)	0.0159(6)
O6	0.5024(5)	0.1184(5)	0.0887(3)	0.0166(6)
O 7	0.7415(5)	0.3680(5)	0.7779(3)	0.0201(7)
O 8	0.9000(5)	0.3105(4)	0.5004(3)	0.0163(6)
09	0.1519(5)	0.3310(4)	0.0304(3)	0.0175(6)

Таблица 3. Основные межатомные расстояния d между катионами и анионами в структуре Na₃Fe³⁺[IO₃]₆

Связь	Расстояние, Å	Связь	Расстояние, Å
Na1–O1	2.378(3)	Na2 $-$ O6 × 2	2.500(3)
09	2.388(3)	O7 × 2	2.596(3)
O9'	2.490(3)	O9 × 2	2.667(3)
07	2.586(3)		
O4	2.689(3)	Среднее	2.588
05	2.699(3)		
Среднее	2.538		
$Fe-O3 \times 2$	1.972(3)	I2–O1	1.804(3)
$O2 \times 2$	1.995(3)	05	1.815(3)
$O8 \times 2$	2.094(3)	O2	1.864(3)
Среднее	2.020	Среднее	1.828
I1–O9	1.785(3)	13–07	1.796(3)
O3	1.835(3)	O4	1.807(3)
O6	1.831(3)	08	1.842(3)
Среднее	1.817	Среднее	1.815

Рис. 1. Проекция кристаллической структуры $Na_3Fe^{3+}[IO_3]_6$ на плоскость *bc*: показаны FeO_6 -октаэдры; шариками обозначены атомы Na, I, O; жирными линиями выделены связи I–O; квадратом обозначена позиция в центре инверсии, занятая Rb1 в структуре йодата Rb₃In³⁺[IO₃]₆.

вестный литиевый проводник, обладает подобным блоком симметрии $\overline{3}$ при замене зонтичных группировок [IO₃]⁻ с четвертой вершиной — неподеленной парой — PO₄-тетраэдрами [9, 17]. В ряде соединений — представителей семейства NASICON — октаэдрическая позиция занята атомами Ti и Zr, как и в йодатах.

выводы

Синтезирован и структурно исследован новый йодат Na₃Fe³⁺[IO₃]₆, расширяющий семейство йодатов щелочных металлов и бария с общей формулой $A_3M[IO_3]_6$, где A = Na, K, Rb, Cs, Tl, Ba; M = Ti, Fe, Ge, In, Pt. Заполнение M-октаэдра катионами Fe³⁺ обнаружено впервые. Родоначальник данного обширного структурного семейства — $K_2Ge[IO_3]_6$ — содержит в октаэдрической позиции атомы Ge⁴⁺. Для большинства соединений семейства характерна тригональная симметрия. Новый йодат триклинный, наиболее близок ему триклинный Rb₃In[IO₃]₆ (пр. гр. $P\overline{1}$). В каждой структуре один из двух независимых атомов щелочных металлов занимает различные центры инверсии. Более крупные атомы Rb расширяют про-

Рис. 2. Проекция кристаллической структуры $Rb_3In^{3+}[IO_3]_6$ [8] на плоскость *ac*: показаны InO_6 -октаэдры; шариками обозначены атомы Rb, I, O; жирными линиями выделены связи I–O; квадратом обозначена позиция в центре инверсии, занятая Na2 в структуре йодата Na₃Fe³⁺[IO₃]₆, и выделена его ячейка.

странство между слоями со структурными блоками, что приводит к относительному увеличению параметра *a* в Rb-йодате. Отмечено сходство топологии йодатного блока с топологией ряда блоков, в которых центральный октаэдр занят атомами Ti, Zr, In, а к его концам присоединяются PO₄-, SiO₄-, GeO₄-тетраэдры.

Авторы выражают благодарность Н.В. Зубковой за помощь в получении экспериментальных данных и введение необходимых поправок, С.Ю. Стефановичу за измерение сигнала ГВГ, а также сотрудникам лаборатории локальных методов исследования вещества МГУ за определение состава кристаллов.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 17-03-000886а, 18-33-01129 мол_а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Sun C.-F., Yang B.-P., Mao J.-G. // Sci China Chem. 2011. V. 54. P. 911.
- 2. *Hu C-L., Mao J-G.* // Coord. Chem. Rev. 2015. V. 288. P. 1.
- Schellhaas F., Hartl H., Frydrich R. // Acta Cryst. B. 1972. V. 28. P. 2834.

КРИСТАЛЛОГРАФИЯ том 65 № 3 2020

- Chang H.-Y., Kim S.-H., Ok K.M., Halasyamani P.S. // J. Am. Chem. Soc. 2009. V. 131. P. 6865.
- Ok K.M., Halasyamani P.S. // Inorg. Chem. 2005. V. 44. P. 2263.
- Shehee T.C., Pehler S.F., Albrecht-Schmitt T.E. // J. Alloys Compd. 2005. V. 388. P. 225.
- Yang B.-P., Hu C.-L., Xu X., Mao J.-G. // Inorg. Chem. 2016. V. 55. P. 2481.
- Yang B.P., Sun C.-F., Hu C.-L., Mao J.-G. // Dalton Trans. 2011. V. 40. P. 1055.
- 9. Белоконева Е.Л., Карамышева А.С., Димитрова О.В., Волков А.С. // Кристаллография. 2018. Т. 63. № 5. С. 719.
- Liu H., Jiang X., Wang X. et al. // J. Mater. Chem. C. 2018. V. 6. P. 4698.

- 11. Yang B.-P., Sun C.-F., Hu C.-L., Mao J.-G. // Dalton Trans. 2011. V. 40. P. 1055.
- 12. Белоконева Е.Л., Карамышева А.С., Димитрова О.В., Волков А.С. // Кристаллография. 2018. Т. 62. № 1. С. 59.
- Inorganic Crystal Structure Data Base ICSD. Fachinformationzentrum (FIZ) Karlsruhe. 2011. I version.
- Agilent Technologies (2014) CrysAlisPro Software System, Version 1.171.37.35, Agilent Technologies UK Ltd, Oxford, UK.
- 15. Sheldrick G.M. // Acta Cryst. A. 2008. V. 64. P. 112.
- 16. Аксельруд Л.Г., Гринь Ю.Н., Завалий П.Ю., Печарский В.К. // XII Eur. Cryst. Meeting. 1989. Т. 3. С. 155.
- 17. *Гурбанова О.А., Белоконева Е.Л.* // Кристаллография. 2006. Т. 51. № 4. С. 618.