= ТЕОРИЯ КРИСТАЛЛИЧЕСКИХ СТРУКТУР

УДК 548.736

ИНТЕРМЕТАЛЛИДЫ Na_kM_n (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): ГЕОМЕТРИЧЕСКИЙ И ТОПОЛОГИЧЕСКИЙ АНАЛИЗ, КЛАСТЕРНЫЕ ПРЕКУРСОРЫ И САМОСБОРКА КРИСТАЛЛИЧЕСКИХ СТРУКТУР

© 2020 г. Г. Д. Илюшин^{1,*}

 1 Институт кристаллографии им. А.В. Шубникова Φ НИЦ "Кристаллография и фотоника" РАН, Москва, Россия

**E-mail: gdilyushin@gmail.com* Поступила в редакцию 05.07.2019 г. После доработки 05.07.2019 г. Принята к публикации 20.07.2019 г.

С помощью компьютерных методов (пакет программ ToposPro) осуществлен геометрический и топологический анализ и проведено моделирование самосборки кристаллических структур интерметаллидов, образующихся в системах Na-M, где M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb. Металлокластеры-прекурсоры кристаллических структур Na_k M_n определены с использованием алгоритмов разложения структурных графов на кластерные структуры и построения базисной сетки структуры в виде графа, узлы которого соответствуют положению центров кластеров. Установлены тетраэдрические металлокластеры M_4 , образующие упаковки в кристаллических структурах Na₃Bi-hP8, Na₂Bi₂-tP4, Na₂Sb₂-mP16, тетраэдрические металлокластеры M_4 и спейсеры для каркасных структур Na₂(Au₄)-cF24 и Ba₂(Na₄)-hP12, октаэдрические кластеры M_6 для Na₄Au₂-tI12, октаэдрические M_6 и тетраэдрические M_4 металлокластеры для Na₂(Na₄)(Ba₆)-cF96 и Au₂(In₄)(Na₆)-cF96 и икосаэдрические металлокластеры M_{13} для Na(Zn_{13})-cF116. Реконструирован симметрийный и топологический код процессов самосборки кристаллических структур интерметаллидов Na_k M_n из металлокластеров-прекурсоров S_3^0 в виде: цепь $S_3^1 \rightarrow$ микрослой $S_3^2 \rightarrow$ микрокаркас S_3^3 .

DOI: 10.31857/S0023476120030121

введение

В двойных системах А-В с участием атомов щелочных металлов A = Li, Na установлено образование 130 интерметаллидов Li_nM_k и 79 интерметаллидов Na_n M_k [1, 2]. В [3] проведен геометрический и топологический анализ интерметаллидов лития, образующихся в системах Li-M с атомами d-элементов M = Ag, Au, Pt, Pd, Ir, Rh. Из 13 установленных структурных типов интерметаллидов лития для 11 определены тетраэдрические типы металлокластеров-прекурсоров S_3^0 и реконструирован симметрийный и топологический код процессов самосборки кристаллических структур интерметаллидов. Алгоритм определения кластеров-прекурсоров S_3^0 реализован в комплексе программ ТОРОЅ [4].

Кристаллизация Na-интерметаллидов установлена в 18 системах Na–M [1, 2]. В пяти системах Na–M с атомами M = K, Cs, Ag, Pt, Zn образуется только по одному интерметаллиду, в четырех системах с атомами M = Ba, Au, Bi, Sb – по два интерметаллида. Наибольшее число интерметаллидов – 6, 7 и 10 – образуется в системах с атомами M = Ge, Hg, Sn. В настоящей работе осуществлен геометрический и топологический анализ и проведено моделирование самосборки кристаллических структур интерметаллидов, образующихся в системах Na-M, где M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb. Реконструирован симметрийный и топологический код процессов самосборки кристаллических структур интерметаллидов из металлокластеров-прекурсоров S_3^0 в виде: цепь $S_3^1 \rightarrow$ микрослой $S_3^2 \rightarrow$ микрокаркас S_3^3 .

Работа продолжает исследования [3, 5–9] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением компьютерных методов (пакета программ ToposPro [4]).

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro, позволяющего проводить исследование кристаллической структуры в автоматиче-

ИНТЕРМЕТАЛЛИДЫ

Структурный	Группа симметрии,		Локальное	Координационные последовательности				
тип	последовательность Уайкова	Атом окр	окружение	N_1	N_2	N_3	N_4	N_5
Na ₃ Bi- <i>hP</i> 8	<i>P</i> 6 ₃ / <i>mmc</i> (194), <i>fcb</i>	Na1	6Na + 3Bi	9	33	92	155	237
		Na2	7Na + 4Bi	11	38	89	158	242
		Bi1	11Na	11	41	86	155	245
Na_2Bi_2 - <i>tP</i> 4	P4/mmm (123), eca	Na1	4Na + 8Bi	12	42	92	162	252
		Bi1	8Na + 4Bi	12	42	92	162	252
		Bi2	8Na + 4Bi	12	42	92	162	252
Na ₂ Sb ₂ - <i>mP</i> 16	$P2_1/c$ (14), e4	Na1	4Na + 6Sb	10	37	81	150	236
		Na2	5Na + 6Sb	11	37	83	148	233
		Sb1	6Na + 2Sb	8	32	78	41	226
		Sb2	6Na + 2Sb	8	33	79	40	230
Na_4Au_2-tI12	<i>I</i> 4/ <i>mcm</i> (140), <i>ha</i>	Na1	7Na+ 4Au	11	42	95	170	263
		Au1	8Na+2Au	10	38	86	158	258
$Na_2(Na_4)(Ba_6)-cF96$	$Fd\overline{3}m$ (227), fed	Na1	6Na + 6Ba	12	43	111	196	328
		Na2	6Na + 6Ba	12	44	114	210	330
		Ba1	6Na + 8Ba	14	53	115	218	352
$\operatorname{Au}_2(\operatorname{In}_4)(\operatorname{Na}_6)$ - <i>cF</i> 96	$Fd\overline{3}m$ (227), fed	In1	6Na + 6Ba	12	43	111	196	328
		Au1	6Na + 6Ba	12	44	114	210	330
		Na1	6Na + 8Ba	14	53	115	218	352
Ba ₂ Na ₄ - <i>hP</i> 12	<i>P</i> 6 ₃ / <i>mmc</i> (194), <i>hfa</i>	Ba1	4Ba + 12Na	16	52	125	232	358
		Na1	6Ba + 6Na	12	50	120	230	374
		Na2	6Ba + 6Na	12	50	110	212	348
Na_2Au_4 - $cF24$	$Fd\overline{3}m$ (227), da	Na1	12Ag +4Na	16	52	130	244	380
		Au1	6Ag +6Na	12	50	110	216	356
NaZn ₁₃ - <i>cF</i> 112	$Fm\overline{3}c$ (226), <i>iba</i>	Na1	24Zn	24	62	132	254	384
		Zn1	12Zn	12	32	126	188	330
		Zn2	2Na + 10Zn	12	55	129	239	376

Таблица 1. Кристаллохимические и топологические данные структурных типов Na-интерметаллидов

ском режиме, используя представление структур в виде "свернутых графов" (фактор-графов).

Алгоритм разложения в автоматическом режиме структуры любого интерметаллида, представленного в виде свернутого графа, на кластерные единицы основывается на следующих принципах: структура образуется в результате самосборки из кластеров-прекурсоров; кластеры-прекурсоры образуют каркас структуры, пустоты в котором заполняют спейсеры; многослойные нанокластерыпрекурсоры не имеют общих внутренних атомов, но они могут иметь общие атомы на поверхности; кластеры-прекурсоры занимают высокосимметричные позиции; набор нанокластеров-прекурсоров и кластеров-спейсеров включает в себя все атомы структуры.

Кристаллохимические и топологические данные для Na-интерметаллидов представлены в табл. 1. Параметры и объемы элементарных ячеек представителей кристаллохимических семейств Na-интерметаллидов приведены в табл. 2–7. На рис. 1 даны длины связей атомов в кластерах-прекурсорах кристаллических структур металлов, на рис. 2 и 3 – в кластерах-прекурсорах кристаллических структур интерметаллидов.

СИММЕТРИЙНЫЙ И ТОПОЛОГИЧЕСКИЙ КОД (ПРОГРАММА) САМОСБОРКИ КРИСТАЛЛИЧЕСКИХ СТРУКТУР ИНТЕРМЕТАЛЛИДОВ

При моделировании кристаллической структуры интерметаллидов определяется иерархическая последовательность ее самосборки в кристаллографическом пространстве *XYZ*, т.е. восстанавливается симметрийный и топологический код формирования макроструктуры в виде последовательности значимых элементарных событий, характеризующих самую короткую (быструю) программу кластерной самосборки из тетраэдрических металлокластеров S_3^0 в виде: первичная

цепь $S_3^1 \to$ микрослой $S_3^2 \to$ микрокаркас S_3^3 .

Структурный тип $Na_3Bi-hP8$ [10]. Кристаллохимическое семейство состоит из 16 интерметаллидов [1, 2]. К семейству щелочных интерметаллидов относятся восемь соединений (табл. 2). В локальном окружении атомов Na1 и Na2 находятся 9 и 11 атомов, атома Bi – 11 атомов (табл. 1). Металлокластер-прекурсор M_4 представляет собой тетраэдр Na₃Bi с симметрией *m* (рис. 2). Длины связей Na–Bi и Na–Na равны 3.152 и 3.542 и 3.231 и 3.542 Å соответственно. Для кластеров M_4 установлена базовая 2D-сетка 3⁶.

Первичная цепь S_3^1 формируется в результате связывания металлокластеров Na₃Bi с индексом связанности $P_c = 4$ (рис. 4). Расстояние между тетраэдрами вдоль оси *X* определяет модуль вектора трансляции a = 5.459 Å. Слой S_3^2 образуется в процессе связывания параллельно расположенных цепей со сдвигом. Расстояние между тетраэдрами вдоль оси *Y* определяет модуль вектора трансляции b = 5.4598 Å. Каркас структуры S_3^3 формиру-

Таблица 2. Кристаллохимическое семейство Na₃Bi-*hP*8, пр. гр. *P*6₃/*mmc*

Интерметаллид [1, 2]	<i>a</i> , <i>b</i> , <i>c</i> , Å	<i>V</i> , Å ³
Li ₃ Sb	4.710, 4.710, 8.326	160.0
Na ₃ Sb	5.365, 5.365, 9.515	237.2
Na ₃ Bi	5.459, 5.459, 9.675	249.7
Na ₃ Hg	5.433, 5.433, 9.795	250.4
K ₃ Sb	6.037, 6.037, 10.717	338.3
K ₃ Bi	6.190, 6.190, 10.955	363.5
Rb ₃ Sb	6.320, 6.320, 11.190	387.1
Rb ₃ Bi	6.490, 6.490, 11.490	419.1

Таблица 3. Кристаллохимическое семейство Na₂Bi₂*tP*4, пр. гр. *P*4/*mmm*

Интерметаллид [1, 2]	<i>a</i> , <i>b</i> , <i>c</i> , Å	<i>V</i> , Å ³
Li ₂ Bi ₂	4.753, 4.753, 4.247	95.9
Na ₂ Bi ₂	4.910, 4.910, 4.809	115.9

Таблица 4. Кристаллохимическое семейство Na₂Sb₂*mP*16, пр. гр. *P*2₁/*c*

Интерметаллид [1, 2]	<i>a, b, c</i> , Å β, град	<i>V</i> , Å ³
Na ₂ Sb ₂	6.800, 6.340, 12.480 117.60	476.8
Na ₂ As ₂	6.242, 5.849, 11.550 117.10	375.4

ется при упаковке слоев со сдвигом. Расстояние между слоями в направлении оси Z соответствует длине вектора трансляции c = 9.657 Å.

Рис. 1. Тетраэдрические кластеры в кристаллических структурах металлов. Здесь и далее цифры обозначают длины связей (Å).

Интерметаллид [1, 2]	<i>a</i> , <i>b</i> , <i>c</i> , Å	<i>V</i> , Å ³	
$Na_2(Pt_4)$	7.480, 7.480, 7.480	418.5	
$Na_2(Au_4)$	7.812, 7.812, 7.812	476.7	
$Na_2(Ag_4)$	7.923, 7.923, 7.923	497.4	

Таблица 5. Кристаллохимическое семейство Na₂(Au₄)*mP*16, пр. гр. *Fd*3*m*

Структурный тип Na_2Bi_2 -tP4 [11]. Кристаллохимическое семейство включает 47 интерметаллидов. К семейству щелочных интерметаллидов относятся два соединения (табл. 3). Металлокластер-прекурсор представляет собой тетраэдр Na_2Bi_2 (рис. 2) с симметрией *т.* Длины связей Na-Bi = 3.436, Na-Na = 3.472 и Bi-Bi = 3.436 Å. Для металлокластеров установлена базовая 2D-сет-

ка 4⁴. Первичная цепь S_3^1 формируется в результате связывания ($P_c = 4$) тетраэдрических кластеров-прекурсоров Na₂Bi₂. Расстояние между центрами кластеров определяет длину вектора трансляции *b* (рис. 4). Слой S_3^2 образуется вдоль оси *Y* в результате связывания параллельно рас-

Рис. 2. Металлокластеры-прекурсоры кристаллических структур Na, M-интерметаллидов с M = Bi, Sb, As.

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

Таблица 6. Кристаллохимическое семейство Ba₂(Na₄)-*hP*12, пр. гр. *P*6₃/*mmc*

Интерметаллид [1, 2]	<i>a</i> , <i>b</i> , <i>c</i> , Å	<i>V</i> , Å ³
$Ba_2(Na_4)$	7.393, 7.393, 11.999	568.0
$K_2(Na_4)$	7.480, 7.480, 12.270	594.5
$Cs_2(Na_4)$	7.861, 7.861, 13.062	699.0

Таблица	7.	Кристаллохимическое	семейство
$Na_2(Na_4)($	Ba ₆)-c	<i>F</i> 96, пр. гр. <i>Fm</i> 3 <i>c</i>	

Интерметаллид [1, 2]	<i>a</i> , <i>b</i> , <i>c</i> , Å	<i>V</i> , Å ³
$Na_2(Na_4)(Ba_6)$	17.027, 17.027, 17.027	4936
$Au_2(In_4)(Na_6)$	13.533, 13.533, 13.533	2478

положенных цепей с индексом $P_c = 10$. Каркас структуры S_3^3 формируется при упаковке слоев S_3^2 . Расстояние между осями первичных цепей из соседних слоев соответствует периоду трансляции *a*.

Структурный тип Na₂Sb₂-mP16. К семейству Na-интерметаллидов относятся Na₂Sb₂ [12], Na₂As₂ [13] (табл. 4). Металлокластер-прекурсор представляет собой тетраэдр Na₂As₂ (рис. 2). Длины связей Na-Sb равны 4.124 и 4.152 Å, Na-Na -3.707 и 3.542 Å, Sb–Sb – 2.485 Å. Для кластеров *M*₄ установлена базовая 2D-сетка 4⁴. Первичная цепь S_{3}^{1} формируется в результате связывания ($P_{c} = 8$) тетраэдрических металлокластеров Na₂As₂ осью симметрии 2₁ (рис. 4). Удвоенное расстояние между тетраэдрами в направлении оси У определяет период трансляции b = 6.340 Å. Образование слоя S_3^2 происходит в ходе связывания параллельно расположенных цепей (рис. 4). Удвоенное расстояние между осями первичных цепей вдоль оси Z равно длине вектора трансляции c = 12.480 Å.

Каркас структуры S_3^3 формируется при связывании слоев. Расстояние между слоями в направлении оси *X* соответствует модулю вектора трансляции *a* = 6.800 Å.

Структурный тип $Na_2(Au_4)$ -cF24 [14]. Число представителей в кристаллохимическом семействе 224. К Na-интерметаллидам относятся Na₂(Au₄), Na₂(Ag₄), Na₂(Pt₄) (табл. 5). Металлокластер-прекурсор представляет собой тетраэдр с симметрией $\overline{4}$ 3*m* (рис. 3). В тетраэдрах длины связей Pt–Pt = 2.645, Au–Au = 2.762, Ag–Ag = 2.801 Å соответствуют длинам связей атомов в кристаллических структурах Pt-*cF*4, Ag-*cF*4, Au-*cF*4 (рис. 1). Для металлокластеров установлена базовая 2D-сетка 4⁴. Самосборка первичных цепей S₁³ ИЛЮШИН

Рис. 3. Металлокластеры-прекурсоры кристаллических структур Na, M-интерметаллидов с M = Ba, In, Au.

из кластеров Au₄ происходит в направлении диагонали в плоскости *XY* (рис. 5). Образование слоя S_3^2 происходит при связывании параллельно расположенных первичных цепей в плоскости *XY*. Расстояния между центрами тетраэдров Au₄ из соседних цепей в направлении осей *X* и *Y* соответствуют периодам трансляции a = b = 7.812 Å. Каркас структуры S_3^3 формируется при связывании (со сдвигом) слоев S_3^2 . Расстояние между слоями S_3^2 определяет половину периода трансляции c = = 7.812 Å.

Структурный тип $Ba_2(Na_4)$ -hP12 [15]. Число представителей в кристаллохимическом семействе 59. К Na-интерметаллидам относятся $Ba_2(Na_4)$, $K_2(Na_4)$, $Cs_2(Na_4)$ (табл. 6). Металлокластер-прекурсор представляет собой тетраэдр Na₄ с симметрией 3*m* (рис. 2). Длины связей Na–Na в тетраэдрах равны 3.712 и 3.786, 3.747 и 3.754, 3.930 и 3.976 Å для Ba-, K-, Cs-соединений соответственно. Для металлокластеров установлена базовая 2D-сетка 3⁶. Самосборка первичных цепей S_3^1 происходит параллельно оси X в плоскости XY (рис. 5). Расстояние между кластерами Na₄ соответствует длине вектора трансляции a = 7.393 Å. Слой S_3^2 образуется при связывании (со сдвигом) цепей S_3^1 параллельно оси Y. Расстояние между осями первичных цепей (проходящими через центры тяжести кластеров Na₄) равно модулю вектора трансляции b = 7.393 Å. Каркас структуры S_3^3 формируется при связывании слоев со сдвигом. Расстояние между слоями определяет половину периода трансляции c = 11.999 Å.

Структурный тип Na_4Au_2 -tI12 [14]. Число представителей в кристаллохимическом семействе 49. К щелочным соединениям относится только интерметаллид Na_4Au_2 . Металлокластерпрекурсор представляет собой октаэдр Na_4Au_2 (рис. 3) с симметрией 4/*m*. Расстояния Au–Au 2.761 Å соответствуют длинам связей в Au–cF4 (рис. 1). Для металлокластеров Na_4Au_2 установлена базовая 2D-сетка 3⁶. Самосборка первичных цепей S_3^1 происходит в результате связывания кластеров Na_4Au_2 с индексом $P_c = 5$ (рис. 4). Слой S_3^2 образуется при связывании параллельно рас-

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

1Na4Au2-1112

Рис. 4. Слои S_3^2 из кластеров-прекурсоров кристаллических структур Na-интерметаллидов. Здесь и далее разным цветом выделены эквивалентные структурные единицы.

положенных цепей со сдвигом. Расстояние между центрами кластеров Na₄Au₂ равно модулю вектора трансляции c = 5.522 Å. Каркас структуры S_3^3 формируется при упаковке (со сдвигом) слоев S_3^2 . Расстояние между первичными цепями вдоль осей X и Y соответствует периодам трансляций a = b = 7.415 Å.

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

Структурный тип $Na_2(Na_4)(Ba_6)$ -сF96. К семейству Na-интерметаллидов относятся Na₂(Na₄)(Ba₆) [16] и Au₂(In₄)(Na₆) [17] (табл. 7). Центры октаэдрических Ba₆ и Na₆ и тетраэдрических Na₄ и In₄ кластеров (рис. 3) находятся в позициях 8*a* и 8*b* с симметрией $m\overline{3}m$ соответственно. В кластерах Na₆ и Na₄ все длины связей Na– Na равны 3.87 Å. Первичная цепь S_3^1 кристалличе-

ской структуры Na₂(Na₄)(Ba₆) формируется в результате связывания кластеров Na₄ и Ba₆ с участием атомов-спейсеров Na (рис. 5). Первичная цепь S_3^1 Au₂(In₄)(Na₆) образуется при связывании кластеров In₄ и Na₆ и атомов-спейсеров Au, слой S_3^2 – при связывании (со сдвигом) первичных цепей. Каркас структуры S_3^3 формируется в процессе связывания слоев S_2^2 .

Структурный тип NaZn₁₃-сF116 [18]. Общее число представителей в кристаллохимическом семействе 46. Установлено, что интерметаллиды AZn_{13} образуются с атомами A = Li, Na, K, Rb, Ba [1, 2]. Параметры кубической ячейки NaZn₁₃: *a* = = 12.273 Å, V = 1848 Å³. Кластер-прекурсор представляет собой икосаэдр из 12 атомов Zn с атомом Zn в центре, который занимает позицию 8b с наивысшей возможной кристаллографической симметрией $m\overline{3}$. Для металлокластеров M_{13} установлена 2D-сетка 4⁴. Самосборка первичных цепей S_3^1 происходит в направлении оси X (рис. 5). Расстояние между центрами кластеров Zn₁₃ соответствует длине вектора трансляции a = 12.273 Å. При связывании икосаэдров $P_c = 8$. Микрослой S_3^2 образуется при связывании параллельно расположенных коротких цепей S_3^1 , микрокаркас S_3^3 – при упаковке микрослоев. Атом Na находится в центре полости и образует 24 связи Na-Zn (по три с каждым из восьми икосаэдров).

ЗАКЛЮЧЕНИЕ

Проведен геометрический и топологический анализ кристаллических структур интерметаллидов, образующихся в системах Na-*M* с атомами M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb. С использованием алгоритмов разложения структурных графов на кластерные структуры для интерметаллидов определены металлокластеры-прекурсоры в виде тетраэдров, октаэдров и икосаэдров. Реконструирован симметрийный и топологический код процессов самосборки кристаллических структур из металлокластеров-прекурсоров S_3^0 в виде: первичная цепь $S_3^1 \rightarrow$ микрослой $S_3^2 \rightarrow$ микрокаркас S_3^3 .

Ba1

Ba

Ba1

Ba1

Ba1

Ra

Va1

Va2

Ra

 $Ba_2(Na_4)-pH12$

 $Na_2(Au_4)$ -cF24

Na1

Na1

Nad

Au1)

Γ

Au1

Au1

Nal

Na1

Na1

Au

Ì

Au1

Au1

Рис. 5. Слои S_3^2 из кластеров-прекурсоров и спейсеров в каркасных структурах Na-интерметаллидов.

Автор выражает благодарность В.А. Блатову за предоставление для расчетов пакета программ ToposPro.

Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках государственного задания ФНИЦ "Кристаллография и фотоника" РАН и Российского фонда фундаментальных исследований (грант № 19-02-00636).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Villars P., Cenzual K.* Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- Inorganic Crystal Structure Database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- Ilyushin G.D. // Crystallography Reports. 2020. V. 65. № 2. P. 202.
- Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. P. 3576.

- Pankova A., Blatov V., Ilyushin G., Proserpio D. // Inorg. Chem. 2013. V. 52. P. 13094.
- Blatov V.A., Ilyushin G.D., Proserpio D. M. // Chem. Mater. 2013. V. 25. P. 412.
- *Ilyushin G.D.* // Crystallography Reports. 2017. V. 62. 5. P. 670.
- *Ilyushin G.D.* // Crystallography Reports. 2018. V. 63. 4. P. 543.
- 9. Ковальчук М.В., Алексеева О.А., Благов А.Е., Илюшин Г.Д. и др. // Кристаллография. 2019. Т. 64. № 1. С. 10.
- 10. Brauer G., Zintl E. // Z. Phys. Chem. B. 1937. V. 37. P. 323.
- Zintl E., Dullenkopf W. // Z. Phys. Chem. B. 1932. V. 16. P. 183.
- 12. Cromer D.T. // Acta Cryst. 1959. V. 12. P. 41.
- Burtzlaff S., Holynska M., Dehnen S. // Z. Anorg. Allg. Chem. 2010. B. 636. S. 1691.
- 14. Haucke W. // Naturwissenschaften. 1937. B. 25. S. 61.
- Snyder G.J., Simon A. // Z. Naturforschung B: Chem. Sci. 1994. B. 49. S. 189.
- Smetana V. // Dissertation Universitaet Freiburg/Breisgau. 2009.
- 17. Li B., Corbett J.D. // Inorgan. Chem. 2005. V. 44. P. 6515.
- Wendorff M., Roehr C. // J. Alloys Compd. 2006. V. 421. P. 24.

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020