_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ ____ СОЕДИНЕНИЙ

УДК 548.736

СИЛИКАТ-ГЕРМАНАТ Cs₂In₂[(Si_{2.1}Ge_{0.9})₂O₁₅](OH)₂ · H₂O С НОВЫМ ГОФРИРОВАННЫМ ТЕТРАЭДРИЧЕСКИМ СЛОЕМ: ТОПОЛОГО-СИММЕТРИЙНОЕ ПРЕДСКАЗАНИЕ АНИОННЫХ РАДИКАЛОВ

© 2020 г. Е. Л. Белоконева^{1,*}, О. В. Реутова¹, О. В. Димитрова¹, А. С. Волков¹

¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия

**E-mail: elbel@geol.msu.ru* Поступила в редакцию 26.08.2019 г. После доработки 12.12.2019 г. Принята к публикации 12.12.2019 г.

Методом гидротермального синтеза получены кристаллы нового силиката-германата $Cs_2In_2[(Ge_{0.4}Si_{0.6})_2(Ge_{0.3}Si_{0.7})_2(Ge_{0.2}Si_{0.8})_2O_{15}](OH)_2 \cdot H_2O$, пр. гр. *Рпта, a* = 13.3159(3), *b* = 9.2615(2), *c* = 14.9222(4) А. В структуре обнаружен новый слоевой тетраэдрический радикал. Имеются "сердечники" из InO₆-октаэдров, обрамленные с обеих сторон (Si,Ge)O₄-тетраэдрами, что характерно для многих слоистых минералов, например для палыгорскита и сепиолита. Выявлена гофрировка слоев из-за вхождения в структуру крупных катионов Cs. Рассмотрены принципы формирования анионных радикалов, разнообразие которых определяется симметрийно-топологическими разновидностями цепочек, а также симметрийными вариантами их сочленения в слои и каркасы. На основе выделенной цепочки дирита в изученном слое предсказаны два новых гипотетических слоя с четверными, шестерными и восьмерными кольцами.

DOI: 10.31857/S0023476120040037

введение

Силикаты представляют собой основные минералы земной коры и весьма подробно исследованы по сравнению с другими классами неорганических соединений. Их структурная кристаллохимия хорошо изучена в отношении принципов систематики и изложена в монографиях [1, 2], где проанализированы разнообразные комбинации кремнекислородных тетраэдров от простейших изолированных группировок до сложнейших каркасов. Соединения данного класса многочисленны и известны не только в природе: синтетическим путем получены самые разнообразные составы. Высокая термическая устойчивость и механическая прочность кристаллов, а также другие важные для приложений свойства обусловливают большой интерес к данному классу. Элемент германий имеет больший ионный радиус по сравнению с кремнием и, как хорошо известно, демонстрирует двоякую координацию: тетраэдрическую и октаэдрическую, которая для кремния достижима лишь при высоких давлениях. Возможны изоморфные замещения обоих элементов в общей тетраэдрической позиции, и такие соединения относятся к силикатам-германатам. Их число невелико по сравнению с собственно силикатами. К ним относятся аналоги минералов санборнита,

миларита, альбита, перриерита, фармакосидерита, рихтерита, апатита, граната, сфена, а также разнообразных цеолитов [3]. Согласно той же базе данных, известны силикаты и германаты тяжелых металлов, в частности свинца, которые вызвали особый интерес в связи с обнаруженными свойствами ряда ацентричных представителей. Недавно были синтезированы и структурно изучены новые представители Pb-силикатов-германатов, в частности $Cs_2Pb_2[(Si_{0.6}Ge_{0.4})_2O_7]$ [4], $Pb_8K_{1.68}Na_{0.32}[(Ge_{0.65}Si_{0.35})_2O_7]_3 - силикато-германат$ ный аналог минерала назонита [5], полярный герма $нат-силикат <math>K_{1.46}Pb_{1.54}Ca[(Ge_{0.23}Si_{0.77})_3O_9](OH)_{0.54}$. • 0.46H₂O с волластонитовой цепочкой и широким изоморфизмом [6].

Для элемента In подобные соединения неизвестны, однако получены и исследованы новые йодаты и бораты с этим редким тяжелым металлом, обладающие оригинальными структурами. Представляло интерес опробовать возможность получения германатов-силикатов с In. В настоящей работе приведены результаты гидротермального синтеза и исследования кристаллической структуры нового германата-силиката Cs_2In_2 [($Si_{2.1}Ge_{0.9}$)₂ O_{15}](OH)₂ · H₂O (I), пополняющего семейство слоевых тетраэдрических радикалов новым представителем. Рассмотрены принципы тополого-симметрийного конструирования структур, и на основе нового соединения предсказаны гипотетические слои.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез и свойства кристаллов. Кристаллы $Cs_2In_2[(Si_{2.1}Ge_{0.9})_2O_{15}](OH)_2 \cdot H_2O$ (I) получены в гидротермальных условиях из исходных компонентов $In(NO_3)_3 : SiO_2 : GeO_2$, взятых в массовых соотношениях 2:1:1. Шихту заливали водой, массовое отношение жидкой и твердой фаз составляло 1:5. В качестве минерализаторов в рас-

творе присутствовали ионы Cs^+ , Cl^- , CO_3^{2-} за счет добавления щелочных солей галогенидов и карбонатов в концентрации 15 мас. %. Синтез проводили в стандартных автоклавах объемом 5–6 см³, футерованных фторопластом, при $T = 280^{\circ}C$ и $P \sim 100$ атм. Коэффициент заполнения автоклава выбирали таким образом, чтобы давление оставалось постоянным. Время взаимодействия составляло 18–20 сут, что необходимо для полного завершения реакции, после чего кристаллы промывали водой. В опыте присутствовало большое количество белой шихты, и были обнаружены бесцветные, мутноватые и прозрачные игольчатые кристаллы. Выход кристаллов невелик и составлял ~20%.

Состав кристаллов определен с помощью рентгеноспектрального анализа, выполненного в лаборатории локальных методов исследования вещества МГУ на микрозондовом комплексе на базе растрового электронного микроскопа Jeol JSM-6480LV. Он показал присутствие атомов In, Cs, Ge и Si. Был проведен тест на генерацию второй гармоники; сигнал отсутствовал, что говорило о центросимметричности кристаллов.

Параметры ячеек определены на монокристальном дифрактометре XCalibur S с CCD-детектором. Был выбран очень мелкий (0.025 × × 0.025 × 0.075 мм) игольчатый и прозрачный монокристалл. Получены параметры ромбической ячейки. Аналогичных параметров в базе данных ICSD [3] не найдено, данное соединение было новым, и была определена его структура.

Рентгеноструктурное исследование. Трехмерный экспериментальный набор интенсивностей для определения структуры I получен от монокристалла игольчатой формы в полной сфере обратного пространства на том же дифрактометре. Обработка данных выполнена по программе CrysAlis [7], в качестве возможной выбрана пр. гр. *Pnma*, что отвечало центросимметричности кристаллов.

По программе SHELXS [8] прямыми методами найдены позиции тяжелых атомов In, Cs и Ge, координационное окружение катионов атомами О отвечало их сортам. Всего из разностных синтезов было выявлено 12 позиций для атомов О, однако полученная формула CsInGe₃O₉ обладала избыточным отрицательным зарядом, равным -2. Оценка баланса валентных усилий показала, что большинство атомов кислорода (мостиковых и не мостиковых) входит в тетраэдрическую координацию, в то время как два атома, О1 и О8, в позициях на зеркальных плоскостях входят в октаэдрическую координацию лишь двух атомов In, т.е. принадлежат гидроксильным группам. Атом O12 входит в координацию лишь двух атомов Cs, т.е. принадлежит молекуле воды. Уточнение модели показало, что параметры атомных смещений Ge в тетраэдрических позициях завышены, а межатомные расстояния занижены, поэтому в данные позиции изоморфно были помещены атомы Si и уточнен состав кристаллов. Изоморфные соотношения в тетраэдрах определены путем пошагового варьирования и уточнения моделей в изотропном приближении атомных смещений. Минимальному фактору расходимости отвечала кристаллохимическая формула $Cs_2In_2[(Ge_{0.4}Si_{0.6})_2$ (Ge_{0.25}Si_{0.75})₂(Ge_{0.25}Si_{0.75})₂O₁₅](OH)₂ · H₂O, в которой указано распределение элементов по трем тетраэдрическим позициям; итоговая формула $Cs_2In_2[(Si_{2.1}Ge_{0.9})_2O_{15}](OH)_2 \cdot H_2O, Z = 4.$ Поглощение в кристалле с учетом его малых размеров было пренебрежимо мало ($\mu r_{\text{макс}} = 0.36$). Заключительное уточнение позиционных и тепловых смещений атомов в анизотропном приближении выполнено методом наименьших квадратов с использованием комплекса программ SHELXL с учетом аномального рассеяния Мо-излучения и путем варьирования весовой схемы. Все тепловые эллипсоиды имели положительные полуоси, а межатомные расстояния соответствовали найденным сортам атомов с учетом изоморфизма. Параметры эксперимента и результаты уточнения приведены в табл. 1, координаты атомов – в табл. 2, основные межатомные расстояния – в табл. 3. Информация о структуре депонирована в Кембриджском банке структурных данных (CCDC(CSD) № 1945485).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Структура. Анионный радикал в новом сили-кате-германате

 $Cs_2In_2[(Ge_{0.4}Si_{0.6})_2(Ge_{0.3}Si_{0.7})_2(Ge_{0.2}Si_{0.8})_2O_{15}](OH)_2$ · H_2O (I) сформирован тремя независимыми тетраэдрами, которые слегка различаются заполнением позиций атомами Ge и Si, межатомные расстояния характерны для данных сортов (табл. 2, 3). Тетраэдры образуют гофрированные слои, которые соединены вершинами InO₆-октаэдров в каркас (рис. 1) (расстояния In–O 2.075–2.227 Å). Октаэдры формируют изогнутые цепочки, вытяну-

577

тые вдоль оси *b*, а OH-группы образуют общее ребро двух InO_6 -октаэдров (табл. 3). В крупных полостях структуры располагаются катионы Cs1, Cs2, координированные атомами O на расстояниях до 3.36 Å соответственно с координационными числами KЧ = 8 и KЧ = 6, причем в координацию обоих атомов входят независимые молекулы воды, также находящиеся в полостях структуры (рис. 1).

Систематика и предсказание радикалов. Тетраэдрические слои, характерные для структур силикатов, традиционно рассматривают [1, 2] как результат соединения разнообразных цепочек. Соединение тетраэдров в цепочку, слой и каркас в сочетании с симметрией частично рассмотрены в [1] при анализе цепочек силикатов бария, указаны элементы симметрии, ведущих к их образованию. В [9] рассмотрены разнообразные слоевые и каркасные структуры минералов и синтетических соединений. Там можно найти отдельные примеры симметрийного анализа, но используются лишь зеркальные плоскости *т* или поворотные оси 2, обозначенные на рисунках штриховыми линиями, что не отвечает принятым условным обозначениям. Симметрийный подход базируется на принципах OD-теории [10] и впервые в полном виде (тетраэдр-цепочка-слой-каркас) был развит для класса боратов [11]. Как отмечалось при исследовании строения цепочечного дибората $GdH[B_2O_5]$ [12], в тополого-симметрийном анализе не имеет значения заселение тетраэдров, и результат одинаков и для боратов, и для силикатов, а также других тетраэдрических радикалов. Так, боратная вимситовая цепочка в $Ca[B_2O_2(OH)_4]$ идентична пироксеновой в $CaMg[Si_2O_6]$ (рис. 2a), и одинаково ориентированные тетраэдры в ней размножены скользящей плоскостью *a_v*. В [12] были рассмотрены некоторые примеры образования лент, слоев и каркасов хорошо известных силикатов. Предсказания анионных радикалов были сделаны для нового дибората, содержащего кроме тетраэдров ВО3-треугольники. Из четырех симметрийных вариантов один действительно реализовался в слое синтезированного позднее нового бората свинца Pb₂[B₄O₅(OH)₄](OH)₂ · H₂O [13].

Владение симметрией — основным аппаратом кристаллографии — чрезвычайно важно для описания и конструирования радикалов на всех уровнях сборки. Так, при конструировании цепочек имеется возможность переворачивания блока (тетраэдра) вершиной вниз, и это будет отличать полученные мотивы от семи классических односторонних одномерных мотивов, не имеющих переворачивающих элементов симметрии. То же справедливо и для 17 классических односторонних слоев. Буквенные обозначения U (upward) и D (downward) для описания цепочек тетраэдров, слоев и каркасов, принятые в литературе, факти-

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры I

Химическая формула	$Cs_2In_2[(Ge_{0.9}Si_{2.1})_2O_{15}(OH)_2] \cdot H_2O$
М	1032.1
Сингония, пр. гр., Z	Ромбическая, Рпта, 4
<i>a</i> , <i>b</i> , <i>c</i> , Å	13.3159(3), 9.2615(2),
	14.9222(4)
$V, Å^3$	1840.28(9)
D_x , г/см ³	3.725
Излучение; λ, Å	$MoK_{\alpha}; 0.71073$
μ, мм ⁻¹	9.649
<i>Т</i> , К	293
Размер образца, мм	$0.025 \times 0.025 \times 0.075$
Дифрактометр	XCalibur S
Тип сканирования	ω
θ _{max} , град	32.62
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-20 \le h \le 20, -14 \le k \le 13,$
	$-22 \le l \le 21$
Количество рефлексов	37877/3430/0.0871
измеренных/независи-	
мых с $I \ge 1.96\sigma/R_{\rm ycp}$	-2
Метод уточнения	MHK no $F^2(hkl)$
Весовая схема	$1/[\sigma^2(F_o)^2 + (0.0091P)^2 +$
	+ 16.3899P],
11	$P = [\max(F_o)^2 + 2(F_c)^2]/3$
Число параметров	139
R _{all}	0.0708
R_{gt}, R_{wgt}	0.0534, 0.0718
S	1.207
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^3$	-2.331/1.626
Программы	SHELX

чески отражают отсутствие или наличие переворачивающих элементов симметрии. Элементами симметрии, обеспечивающими чередование тетраэдров в цепочках, бесконечных по оси x, могут быть как сохраняющие их ориентацию (зеркальная плоскость m_x , поворотная ось 2_7 , трансляция t_x , скользящая плоскость a_y), так и переворачивающие $(-1, 2_v, 2_{1x}, a_z)$. Двухзвенная цепочка иной топологии и симметрии, нежели пироксеновая, известна для высокотемпературного бората Ва₂[Si₂O₆] [2] (рис. 2б). В ней тетраэдры поочередно ориентированы вершинами вверх и вниз, и размножающим элементом симметрии является винтовая ось 21х. В трехзвенной цепочке типа волластонита CaSiO₃ (рис. 2в) реализуется последовательность операций $a_v a_v m_x$... вместо $a_v a_v$... в пи-

-				
Атом	x/a	y/b	z/c	$U_{_{ m ЭKB}}$, Å ²
In	0.96009(3)	0.07274(4)	0.40125(2)	0.00776(8)
Cs1	0.88152(4)	0.250000	0.14162(4)	0.02040(12)
Cs2	0.93984(5)	-0.250000	0.21648(4)	0.02529(14)
Ge1*	0.80753(6)	0.08086(10)	0.58477(6)	0.00712(16)
Ge2**	0.73688(7)	-0.08361(11)	0.41669(7)	0.00733(19)
Ge3**	0.13223(7)	0.08082(11)	0.24258(7)	0.00705(19)
O1(OH)	1.0605(4)	0.250000	0.4308(4)	0.0127(11)
O2	1.0154(3)	0.0643(4)	0.2692(2)	0.0139(8)
O3	0.9246(3)	0.0707(4)	0.5471(3)	0.0109(7)
O4	0.6972(4)	-0.250000	0.4366(4)	0.0164(12)
O5	0.8496(3)	-0.0802(4)	0.3766(3)	0.0147(8)
O6	0.7701(4)	0.250000	0.6051(4)	0.0181(13)
O7	0.1723(4)	0.250000	0.2264(4)	0.0175(12)
O8(OH)	0.8574(4)	0.250000	0.3866(4)	0.0168(12)
O9	0.2100(3)	0.0086(5)	0.3190(3)	0.0166(9)
O10	0.7245(3)	0.0066(5)	0.5135(3)	0.0154(8)
O11	0.1508(3)	-0.0080(5)	0.1477(3)	0.0203(9)
O12(H ₂ O)	0.5665(6)	0.250000	0.4907(6)	0.050(2)

Таблица 2. Координаты базисных атомов и эквивалентные изотропные параметры в структуре I

Заселенности позиций: *Ge = 0.4, Si = 0.6, **Ge = 0.25, Si = 0.75, ***Ge = 0.25, Si = 0.75.

Таблица 3. Основные межатомные расстояния d меж
ду катионами и анионами в структуре I

		15 51	
Связь	Связь Рассто- яние, Å		Рассто- яние, Å
Cs1–O2	3.125(4)	Cs2–O5	3.102(4)
Cs1–O2	3.125(4)	Cs2–O5	3.102(4)
Cs1-O12	3.156(8)	Cs2–O2	3.179(4)
Cs1–O4	3.235(6)	Cs2–O2	3.179(4)
Cs1-09	3.250(4)	Cs2–O6	3.252(6)
Cs1-09	3.250(4)	Cs2-O12	3.371(10)
Cs1-O10	3.360(4)	Среднее	3.198
Cs1-O10	3.360(4)		
Среднее	3.235		
In-O5	2.075(4)	Ge2–O5	1.617(4)
In–O2	2.105(4)	Ge2-011	1.652(4)
In-O8(OH)	2.148(4)	Ge2–O4	1.656(2)
In-O1(OH)	2.162(4)	Ge2-O10	1.678(4)
In–O3	2.172(4)	Среднее	1.651
In–O3	2.227(4)		
Среднее	2.148		
Ge1-O3	1.660(4)	Ge3–O2	1.613(4)
Ge1-O6	1.672(2)	Ge3-011	1.656(4)
Ge1-O9	1.674(4)	Ge3-07	1.673(2)
Ge1-O10	1.681(4)	Ge3-09	1.679(4)
Среднее	1.672	Среднее	1.655

роксенах или достаточно разнообразная последовательность операций -1, -1, -1, m, 2, m... в сложной цепочке аламозита PbSiO₃ (рис. 2г). Из цепочек можно вывести ленты различной рядности и слои. Так, в результате соединения двух пироксеновых цепочек, в которых вершины тетраэдров ориентированы в одну сторону, образуется хорошо известная амфиболовая лента [Si₄O₁₁]_∞, для силиката $Ba_4Si_6O_{18}$ известны трехрядные ленты с формулой аниона $[Si_6O_{16}]_{\infty}$ [1]. Во всех этих случаях цепочки в лентах связаны зеркальной плоскостью *m_v*, параллельной оси цепочек. Тот же способ соединения амфиболовых лент приводит к формированию слюдяного слоя [Si₄O₁₀]_{∞∞}. В нем помимо пироксеновых цепочек в перпендикулярном направлении можно выделить цепочки тетраэдрических диортогрупп (рис. 3а).

Вариации цепочек в отношении симметрийных особенностей чередования тетраэдров, а также чередования цепочек приводят к образованию различных сложных слоев. В палыгорските $Mg_5[Si_4O_{10}]_2(OH)_2 \cdot 8H_2O$ имеются двухрядные, а в сепиолите $Mg_4[Si_6O_{15}](OH)_2 \cdot 6H_2O$ — трехрядные ленты, в которых обычные пироксеновые цепочки размножены элементами симметрии m_y , -1, m_y , -1... (палыгорскит) или m_y , m_y , 2_x , m_y , m_y , ... (сепиолит) [12] (рис. 36, 3в). Связывание полярных слюдяных слоев зеркальной плоскостью m_z и обобществление апикальных вершин тетраэдров

Рис. 1. Кристаллическая структура I: а – проекция на плоскость *ac*, на вставке – цепочка октаэдров вдоль оси *b*; б – проекция тетраэдрического слоя на плоскость *bc*. Показаны элементы симметрии, (Si,Ge)O₄-тетраэдры, InO_6 -октаэдры, шариками обозначены атомы Cs и молекулы воды.

приводят к образованию неполярного двухэтажного слоя, известного в структуре α -цельзиана Ba[Al₂Si₂O₈] [12]. В слое антигорита Mg₂₄Si₁₇ (OH)₃₁O_{42.5} пироксеновые цепочки сложные и содержат 7 + 7 тетраэдров двух ориентаций на периоде повторяемости, а цепочки с одинаковой ориентацией тетраэдров составлены из диортогрупп и перпенди-кулярны первым цепочкам.

Размножение цепочек с ориентацией тетраэдров через один, как в $Ba_2[Si_2O_6]$, в слои и далее в каркас приводит к структурному типу тридимита SiO_2 (рис. 3г), он ошибочно описан как гипотети-

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

Рис. 2. Разнообразные цепочки: а – пироксеновая, $\delta - Ba_2Si_2O_6$, в – волластонитовая, г – аламозитовая. Показаны тетраэдры и размножающие элементы симметрии.

ческий (рис. 57 в [9]). Калсилит KAlSiO₄, в котором один из SiO₄-тетраэдров заменен на AlO₄-тетраэдр и входят атомы K для компенсации заряда, подобен тридимиту. В слое RbAlSiO₄ (рис. 3д) цепочки отличаются от тридимитовых, поскольку размножение двояко ориентированных тетраэдров отвечает оси 2_1 , что также приводит к образованию каркаса, но иного, чем в тридимите. Каркасы тридимита и кристобалита, принадлежащих единому семейству, были проанализированы в [10]. Отметим, что основные структурные типы слоевых и каркасных радикалов построены на основе простейших цепочек.

Найденный в структуре Cs, In-силиката-германата слой оригинален, хотя имеет определенное сходство с минеральными представителями слоистых силикатов. Сравнение "сердечников" из ок-

Рис. 3. Тетраэдрические слои: а – слюдяной, б – палыгорскитовый, в – сепиолитовый, г – тридимитовый (KAlSiO₄), д – RbAlSiO₄, палыгорскитовые слои и "сердечники", е – вид сбоку. Показаны тетраэдры и размножающие элементы симметрии.

таэдрических лент с обрамляющими их тетраэдрами в новой структуре с лентами в сепиолите и палыгорските (рис. 3е) показывает, что в отличие от минералов они наклонены под углом $\sim 35^{\circ}$ по отношению друг к другу. Наиболее вероятно это обусловлено вхождением крупного Cs в каркас. При выделении в слое простейших цепочек типа пироксеновых, параллельных оси *с* (рис. 16), видно, что в них чередуются три тетраэдра одной и три тетраэдра другой ориентации по сравнению с антигоритом (7 + 7). Сочленение таких цепочек происходит в результате действия зеркальной

плоскости m_x , как и в слое антигорита. В то же время можно выделить цепочки чередующихся пар тетраэдров, параллельные оси *b* (рис. 16), как это обсуждалось выше. Такие цепочки известны в минерале дирите [14] (рис. 4а), а также найдены в трубчатых кремнекислородных радикалах в минерале нарсарсуките [15] (рис. 46) и синетическом K₂Cu[Si₄O₁₀] [16]. Слой в исследованной структуре является результатом соединения таких цепочек не зеркальной плоскостью, как это характерно для рассмотренных ранее примеров, а осью 2₁, т.е. результатом изменения ориентации

Рис. 4. Цепочка дирита (а), нарсарсукита (б) и гипотетические слои на основе диритовых цепочек: сочленение зеркальной плоскостью m (в) и осью 2 (г).

тетраэдров относительно плоскости слоя со сдвигом (рис. 16). Операция, отвечающая зеркальной плоскости *m*, как в слюдах, или оси 2, как в сепиолите и палыгорските, позволяет сконструировать на базе диритовых цепочек гипотетические сложные слои с восьмерными, шестерными и четверными кольцами (рис. 4в, 4г). Структуры с подобными анионными радикалами могут быть как упорядоченными, так и демонстрировать опреде-

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

ленный беспорядок (набор чередующихся размножающих симметрических операций).

выводы

Синтезирован и структурно исследован новый силикат-германат $Cs_2In_2[(Ge_{0.4}Si_{0.6})_2(Ge_{0.3}Si_{0.7})_2]$ (Ge_{0.2}Si_{0.8})₂O₁₅](OH)₂ · H₂O. Слоевой радикал имеет сходство со слоями в минералах антигорите, палыгорските и сепиолите. В новом слоевом радикале слои гофрированы из-за вхождения в структуру крупных катионов Cs, "сердечники" составлены из октаэдров, обрамленных с обеих сторон тетраэдрами, что характерно для слоистых минералов. В качестве строительной единицы нового слоя можно выделить цепочку минерала лирита либо усложненную пироксеновую цепочку с тетраэдрами различной ориентации. Сочленение диритовых цепочек в слой осуществляется винтовой осью 2₁. Исходя из структуры сложных пироксеновых цепочек можно заключить, что слои образуются в результате действия зеркальной плоскости *m*. Топология слоя характеризуется шестерными кольцами-окнами, характерными для большинства простейших слоев. Используя диритовую цепочку и симметрийные способы ее сочленения в слой, можно сконструировать новые слои с восьмерными, шестерными и четверными кольцами. Соединения с предсказанными гипотетическими радикалами могут быть синтезированы или найдены в природе. Предложенный метод достаточно прост, нагляден и обладает большими возможностями в отношении предсказания структур.

Авторы выражают благодарность Н.В. Зубковой за помощь в получении экспериментальных данных и введение необходимых поправок, С.Ю. Стефановичу за измерение сигнала генерации второй гармоники, а также сотрудникам лаборатории локальных методов исследования вещества МГУ за определение состава кристаллов.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 17-03-000886а, 18-33-01129 мол_а).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Liebau F.* Structural Chemistry of Silicates. Structure, Bonding, and Classification. 1985. 410 p.
- 2. *Пущаровский Д.Ю*. Структурная минералогия силикатов и их синтетичексих аналогов. М.: Недра, 1986. 160 с.
- Inorganic Crystal Structure Data Base ICSD. Fachinformationzentrum (FIZ) Karlsruhe. 2011. I version.
- Belokoneva E.L., Morozov I.A., Volkov A.S. et al. // Solid. State Sci. 2018. V. 78. P. 69.

- 5. Белоконева Е.Л., Морозов И.А., Димитрова О.В., Волков А.С. // Кристаллография. 2018. Т. 63. № 6. С. 884.
- 6. Белоконева Е.Л., Морозов И.А., Димитрова О.В., Волков А.С. // Кристаллография. 2019. Т. 64. № 2. С. 228.
- Agilent Technologies (2014) CrysAlisPro Software system, version 1.171.37.35, Agilent Technologies UK Ltd, Oxford, UK.
- 8. Sheldrick G.M. // Acta Cryst. A. 2008.V. 64. P. 112.
- Hawthorn F.C., Uvarova Yu.A., Sokolova E. // Mineral. Mag. 2019. V. 83. P. 3.

- Dornberger-Schiff K. // Abh. Deutsch. Akad. Wiss. Berlin. 1964. B. 3. S. 1.
- 11. Belokoneva E.L. // Crystallogr. Rev. 2005. V. 11. P. 151.
- 12. Иванова А.Г., Белоконева Е.Л., Димитрова О.В. // Журн. неорган. химии. 2002. Т. 49. С. 897.
- 13. Аль-Ама А.Г., Белоконева Е.Л., Стефанович С.Ю. и др. // Журн. неорган. химии. 2005. Т. 50. С. 569.
- 14. Fleet M.E. // Am. Mineral. 1977. V. 62. P. 990.
- Peacor D.R., Buerger M.J. // Am. Mineral. 1962. V. 47. P. 539.
- 16. *Kawamura K., Iiyama J.T.* // Bull. Mineral. 1981. V. 104. P. 387.