_____ ТЕОРИЯ КРИСТАЛЛИЧЕСКИХ ____ СТРУКТУР

УДК 548.736

О ДВУХ ВЫСОКОСИММЕТРИЧНЫХ ТРАФАРЕТАХ ДЛЯ КРИСТАЛЛИЧЕСКИХ СТРУКТУР НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

© 2020 г. С. В. Борисов^{1,*}, Н. В. Первухина^{1,2}, С. А. Магарилл¹

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия ²Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия

> **E-mail: borisov@niic.nsc.ru* Поступила в редакцию 21.01.2020 г. После доработки 21.01.2020 г. Принята к публикации 26.02.2020 г.

Кристаллографический анализ минералов гексагонального пудреттита $KNa_2B_3Si_{12}O_{30}$ с симметрией P6/mcc и кубического поллуцита $CsAlSi_2O_6$ (Ia3d) показал характерные особенности двух вариантов энергетически стабильных атомных конфигураций, популярных среди природных и синтезированных неорганических соединений. Это структуры с минимальным числом параметров (не фиксированных симметрией координат базисных атомов) и минимальными объемами независимых частей элементарных ячеек (V^*). В структурах силикатов с большим количеством тетраэдрических катионов востребована симметрия плоскостей скользящего отражения и винтовых осей, обеспечивающая и стабильность, и плотную упаковку топологически связанных фрагментов (темплатов) этих структур.

DOI: 10.31857/S0023476120040062

ВВЕДЕНИЕ

Трактовка симметрии как фундаментального свойства материализованного пространства+ энергии – свойства, создающего стабильные атомные конфигурации [1], выделяет две группы популярных структурных типов, имеющих предельную симметрию – или кубическую *Fm*3*m*, или гексагональную *P6/mmm*.

Среди кубических структурных типов был выполнен кристаллографический анализ высокосимметричных алмаза-сфалерита, шпинели, граната и ряда близких структур, а также корунда и турмалина с псевдокубическими подрешетками. Среди гексагональных — апатита и, например, сложного по составу минерала крашенинниковита KNa₂CaMg(SO₄)F с высокой симметрией *P*6₃/*mcm* [2].

Кристаллографический анализ имеет в своей основе следующее представление механизма образования кристаллических структур: трансляционная симметрия, как самая определяющая, возникает в результате преобразований всех колебаний материальных частиц (атомов, их химически прочных группировок) в плоские стоячие упругие волны разных направлений и частот. Каждая такая волна по своей сути есть трансляционное упорядочение частиц в направлении, перпендикулярном фронту волны. Узловые плоскости этих волн — кристаллографические плоскости (*hkl*) с высокой атомной плотностью, а следовательно, с максимальными величинами структурных амплитуд F_{hkl} , рассчитанными для данных атомов.

Кристаллизация означает, что степени свободы всех материальных частиц кристаллизующегося вещества сокращаются до их количества у частиц в объеме трансляционной ячейки структуры (V_0). Выделившаяся при этом энергия — теплота кристаллизации, в которую входит и эффект от сокращения степеней свободы частиц поворотными осями и зеркальными плоскостями уже в объеме элементарной ячейки. В большей части случаев эта дополнительная симметрия инициируется локальной (точечной) симметрией стабильных атомных фрагментов, имеющихся в кристаллизующемся веществе [2, 3]. Менее известны функции элементов симметрии, включающих в себя переносы: плоскостей скользящего отражения и винтовых осей. Создавая упорядоченные конфигурации из связанных (или изолированных) атомных фрагментов, они в той же мере сокращают степени свободы структуры, как и их точечные аналоги. Например, плоскость скользящего отражения вдоль цепочки чередующихся тетраэдров SiO₄ и AlO₄, связанных общими вершинами, образует жесткую взаимную ориентацию для каждого сорта тетраэдров.

Особенности организации близких по кристаллохимии структур кубических поллуцита

hkl	d_{hkl}	F_{Σ}	F_{κ}	F _{Si}	Fa	F _{K+O}	F _{Na+O}	F _{K+Na+O}
110	5.13	175		127	112	78	73	
004	3.38	237	162	248	75			
030	2.96	178	189	131				
114	2.82	172	159	101				77
024	2.69	145	88		57	85		68
006	2.25		168	95	192	166	160	133
034	2.23			112	50	76	82	108
133	2.16			72	113	113	113	113
125	2.10		79	79	103	103	103	103
135	1.82	110	115	115				
050	1.78	176	97	101	80		94	71
008	1.69	268	227	165		63	69	91
261	1.67	111	92	92				
054	1.57	110	96	92				
038	1.47	142	124	82				63
250	1.42	123	142	101				
00 10	1.35	122		120	55			

Таблица 1. Наиболее плотноупакованные атомами семейства кристаллографических плоскостей (максимальные F_{hkl}) в пудреттите KNa₂B₃Si₁₂O₃₀: для всех атомов (F_{Σ}), для катионов (F_{κ}), для Si (F_{Si}), для анионов O (F_{a}), для K+O (F_{K+O}), для Na + O (F_{Na+O}), для K + Na + O (F_{K+Na+O})

CsAlSi₂O₆ ($Ia\overline{3}d$), анальцима Na_{1.71}(Al_{1.8},Si_{4.2})O₁₂ · · 2H₂O ($Ia\overline{3}d$) и гексагонального пудреттита KNa₂B₃Si₁₂O₃₀ (*P*6/*mcc*) будут предметом настоящей работы.

КРИСТАЛЛОГРАФИЧЕСКИЙ АНАЛИЗ

По координатам базисных атомов структуры пудреттита $KNa_2B_3Si_{12}O_{30}$ [4] были рассчитаны F_{hkl} для следующих наборов атомов: для всех катионов (F_{κ}) ; только для анионов О (F_{a}) ; только для катионов кремния (F_{Si}); для калия с анионами (F_{K+O}) ; для натрия с анионами (F_{Na+O}) ; для K + Na + + О (F_{K+Na+O}); для всех атомов (F_{Σ}). Их наибольшие величины представлены в табл. 1, анализ которой покажет детали индивидуальных и взаимных упорядочений атомов разных сортов в этой структуре. При минимальных контактах катионкатион 3.0-3.5 Å их "скелетной" подрешеткой будет подрешетка на координатных плоскостях (030), (330) и (004) с числом узлов в объеме элементарной ячейки 36, равным числу катионов в ней (табл. 2). Гексагональная подъячейка с a_{κ} = $= a/3 = 3.42, c_{\kappa} = c/4 = 3.38$ Å показана на рис. 1а. Еще одно упорядочение катионов в этом диапазоне d_{hkl} можно отметить, выбрав подрешетку на плоскостях (114), $(\overline{2}14)$, $(1\overline{2}4)$, связанных тройной осью. Рассчитанные по [5] размеры ее элементарного ромбоэдра $a'_r = 3.60$ Å, $\alpha_r = 110.7^\circ$ (табл. 2)

свидетельствуют об упорядочении катионов решеткой, близкой к объемно-центрированной кубической с параметрами $a_I = 4.09$ Å, $\alpha_I = 92.6^\circ$.

Из табл. 1 и рис. 16 следует, что катионы и анионы упорядочены своими плоскостями (006), находящимися в "противофазе", т.е. сдвинутыми на $1/2d_{006}$. Тройка связанных симметрией плоскостей (133), ($\overline{4}$ 13), ($\overline{34}$ 3) образует искаженную кубическую подрешетку с $a_a = 2.22$ Å, $\alpha_a = 79.48^\circ$, с 117 узлами на 60 позиций кислорода в ячейке и упорядочивает анионы. В другой комбинации плоскостей (133), ($\overline{4}$ 13), (00 $\overline{6}$) получаем подъячейку с 78 узлами (табл. 2). Упорядочение всех атомов в *ху*-проекции структуры осуществляют в какой-то степени плоскости {050}, но вдоль оси *с* в диапазоне до $d_{hkl} \sim 1.5$ Å оно не выражено (рис. 16).

Кристаллографический анализ кубических структур анальцима и поллуцита был сделан в [6]. При одинаковой симметрии и близком составе эти структуры однотипны, так что будем иметь дело с более упорядоченным поллуцитом. В табл. 3 даны значения наибольших F_{hkl} поллуцита для разных наборов атомов. Можно видеть, что гекса-гональной катионной подрешетке пудреттита с параметрами a = 3.42, c = 3.38 Å в поллуците соответствует кубическая на координатных плоскостях (400), (040), (004) с $a_{\rm k} = 3.42$ Å (табл. 2). На 64 узла в элементарной ячейке приходится 64 катиона в позициях, близких к узлам (рис. 2). При

Координатные плоскости подрешетки (<i>hkl</i>) и их <i>d_{hkl}</i> : (<i>hkl</i>)/ <i>d_{hkl}</i>	Трансляции и углы подрешетки: <i>a</i> /α, <i>b</i> /β, <i>c</i> /γ	Матрица перехода к подрешетке и число узлов подрешетки в элементарной ячейке							
KNa ₂ B ₃ Si ₁₂ O ₃₀ (<i>P</i> 6/ <i>mcc</i> , $Z = 2$, $a = 10.253$, $c = 13.503$ Å, $V_0 = 1229.31$ Å ³ [4])									
Катионные подрешетки									
(030) $(\overline{3}30)$ (004)	3.42 3.42 3.38	$\{1/3 \ 1/3 \ 0 \ -1/3 \ 0 \ 0 \ 0 \ 0 \ 1/4\}$							
2.96 2.96 3.38	90 90 120	(36)							
(114) (214) (124)	3.60 3.60 3.60	$\{1/3 \ 1/3 \ 1/12 \ -1/3 \ 0 \ 1/12 \ 0 \ -1/3 \ 1/12 \}$							
2.82 2.82 2.82	110.7 110.7 110.7	(36)							
Анионные подрешетки									
(133) $(\overline{4}13)$ $(3\overline{4}3)$	2.22 2.22 2.22	$\{5/39 \ 7/39 \ 1/9 \ -7/39 \ -2/39 \ 1/9 \ 2/39 \ -5/39 \ 1/9 \}$							
2.16 2.16 2.16	79.48 79.48 79.48	(117)							
(133) $(00\overline{6})$ $(\overline{4}13)$	2.84 3.34 2.84	$\{2/26 \ 8/26 \ 0 \ -2/26 \ 5/26 \ 1/6 \ 6/26 \ 2/26 \ 0\}$							
2.16 2.25 2.16	50.26 60 50.26	(78)							
Подрешетка для всех атомов									
(050) $(\overline{5}00)$ (008)	2.05 2.05 1.69	$\{0 \ 1/5 \ 0 \ -1/5 \ 0 \ 0 \ 0 \ 0 \ 1/8\}$							
1.78 1.78 1.78	90 90 120	(200)							
CsAlSi ₂ O ₆ ($Ia\overline{3}d$, $Z = 16$, $a = 13.6645$ Å, $V_0 = 2551.42$ Å ³ [6])									
Катионная полрешетка									
(400) (040) (004)	3.42 3.42 3.42	$\{1/4 \ 0 \ 0 \ 0 \ 1/4 \ 0 \ 0 \ 0 \ 1/4 \}$							
3.42 3.42 3.42	90 90 90	(64)							
Анионная подрешетка с Сѕ									
$(\overline{2}35)$ $(5\overline{2}3)$ $(35\overline{2})$	2.22 2.22 2.22	{-11/234 19/234 31/234 31/234 -11/234 19/234 19/234 31/234 -11/234}							
2.22 2.22 2.22	88.45 88.45 88.45	(234)							
Анионная подрешетка									
$(61\overline{1})$ $(\overline{1}61)$ $(1\overline{1}6)$	2.22 2.22 2.22	{37/234 7/234 -5/234 -5/234 37/234 7/234 7/234 -5/234 37/234}							
2.22 2.22 2.22	88.45 88.45 88.45	(234)							

Таблица 2. Параметры подъячеек для пудреттита KNa₂B₃Si₁₂O₃₀ и поллуцита CsAlSi₂O₆

почти равных трансляциях объем гексагональной подъячейки пудреттита ~34.5 Å³, а кубической поллуцита почти 40 Å³. И эта разница не только из-за более крупных размеров катионов у поллуцита, но и по причине более высокой его симметрии, обеспечившей стабильность этой относительно "рыхлой" структуры [7].

В упорядочении анионов этих структур также есть аналогия. Подрешетке с ромбоэдром $a_a =$ = 2.22 Å, $\alpha_a = 79.48^\circ$, у пудреттита (табл. 2) соответствует анионная подрешетка поллуцита на координатных плоскостях ($\overline{2}35$), ($5\overline{2}3$), ($35\overline{2}$) с размерами ромбоэдра подъячейки: $a_r = 2.22$ Å; $\alpha_r =$ = 88.45° с удвоенным числом узлов в элементарной ячейке поллуцита (234 узла против 117, (табл. 2)). Это при удвоенном объеме элементарной ячейки поллуцита 2551 Å³ по сравнению с пудреттитом 1229 Å³. Принципиальное отличие в том, что у поллуцита анионное упорядочение включает в себя позиции крупного и тяжелого катиона Cs (табл. 2, 3), а у пудреттита ни калий, ни натрий в анионную подрешетку не входят. Возможно, в

Таблица 3. Наиболее плотноупакованные атомами семейства кристаллографических плоскостей (максимальные F_{hkl}) в поллуците CsAlSi₂O₆: для всех атомов (F_{Σ}), для катионов (F_{κ}), для Cs + O ($F_{Cs + O}$) и для анионов O (F_a) [6]

hkl	d_{hkl}	F_{Σ}	F_{κ}	F _{Cs+O}	Fa
004	3.42	1360	1137	984	175
233	2.91	559	514	410	
044	2.42	835	924	605	90
116	2.22	177	352	163	175
235	2.22	347	188	496	159
444	1.97	524	791	381	267
237	1.74	516	452	372	64
008	1.71	836	659	789	177
048	1.53	610	593	601	
448	1.39	410	556	480	81
277	1.35	512	442	347	71
04 10	1.27	155		122	122
088	1.21	498	462	560	

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

Рис. 1. Пудреттит KNa₂B₃Si₁₂O₃₀: а – *ху*-проекция структуры, ее сечения координатными плоскостями гексагональной катионной подрешетки с параметрами подъячейки a_k , b_k ; в начале координат показаны шесть ориентаций плоскостей скользящего отражения *c*, плоскости *m* при z = 0, 1/2; б – *уz*-проекция структуры и ее сечения плоскостями катионных (с индекс а) подрешеток.

этом одна из причин различия в реализовавшейся симметрии двух структур.

Обратим внимание на необычную особенность кубических структур (гранат, анальцим, поллуцит [6]). Кристаллографические плоскости (611) и (235) имеют одинаковые d_{hkl} и дают одинаковые по размерам, но разные по ориентации подрешетки при условии, что тройки координат-

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

Рис. 2. Поллуцит CsAlSi₂O₆: *у*z-проекция структуры, ее сечения координатными плоскостями катионной подрешетки (040), (004). Символом Si обозначены позиции, занятые статистически (Si/Al). Элементы симметрии показаны в части проекции [6].

ных плоскостей выбираются так, чтобы суммы индексов h + k + l были равны, например 6: (61 $\overline{1}$), ($\overline{1}$ 61), ($\overline{1}$ 6) и ($\overline{2}$ 35), ($5\overline{2}$ 3), ($35\overline{2}$). В обратном пространстве эти тройки "векторов" оказываются связанными псевдоосью шестого порядка, отсутствующей в случае кубической симметрии. Проверка показала, что подобная ситуация имеет место и в других случаях совпадений d_{hkl} для разных кристаллографических плоскостей в кубических структурах, причем значения структурных амплитуд для них разные. Например, у подъячеек на плоскостях ($33\overline{3}$), ($\overline{3}33$), ($3\overline{3}3$) и ($5\overline{1}\overline{1}$), ($\overline{1}5\overline{1}$), ($\overline{1}\overline{1}5$) будут одинаковые размеры, но разная ориентация осей [6].

ЗАКЛЮЧЕНИЕ

Будем рассматривать кристаллическую структуру из данного набора атомов как тот максимальный по симметрии пространственный трафарет (шаблон), в котором удалось разместить все атомы с допустимыми для них окружениями, с допустимыми по длине контактами и даже с дефектами в виде заполнений позиций атомами разных сортов или с другой статистикой. Задача трафарета – сократить степени свободы материальных частиц (атомов), а значит, и объем независимой части ячейки. И здесь, в кубических (примитивных) группах симметрии, объем пространства, характеризующий структуру (информационная ячейка, *V** [1]), в пределе будет 1/48 часть объема элементарной ячейки, а в гексагональных 1/24 часть ее. Максимальная кратность элемента симметрии кубических групп 6 ($\overline{3}$), гексагональных также 6, но в сочетании с другими выигрывают кубические. Остаться в гексагональной симметрии зародыш кристалла может, если организует в своей локальной симметрии как минимум тройную ось с перпендикулярной к ней зеркальной плоскостью.

У боро- и алюмосиликатов в кристаллизующейся среде уже имеются прочные связи тетраэдров, и суть кристаллизации сводится к организации их симметричной взаимной ориентации (конформации). Статистически разнообразные по ориентациям, они превращаются в упорядоченные плоскостями скользящего отражения, как нельзя лучше подходящими для этого (рис. 3). Стабильность такой конфигурации была показана на простых структурах датолита—окаямалита, где после дегидратации первой и существенного изменения состава:

$$Ca_2B_2Si_2O_8(OH)$$
 (датолит)–SiO₂–H₂O =
= $Ca_2B_2SiO_7$ (окаямалит)

сохранились цепочки из чередующихся тетраэдров SiO₄ и BO₄ вдоль плоскости скользящего отражения [8]. Факт присутствия цепочек из чередующихся SiO₄- и BO₄-тетраэдров, стабилизированных плоскостью скользящего отражения, зафиксирован в фазах высокого давления минерала данбурита CaSi₂B₂O₈ [9].

В группе структур, родственных с поллуцитом, симметрия плоскостей скользящего отражения также обязательно присутствует: кирчхоффит CsBSi₂O₆ – $I4_1/acd$, лейцит – $I4_1/a$, анальцим Na_{1.71}(Al_{1.8},Si_{4.2})O₁₂ · 2H₂O – $Ia\overline{3}d$ [6]. Упорядоченные этими плоскостями цепочки тетраэдров, связанных общими вершинами, идут вдоль координатных осей всех трех направлений.

Происхождение гексагональных структур силикатов с дополнительными тетраэдрическими катионами (Be, B, Al...), к которым относятся оссумилит, миларит и их многочисленные разновидности и аналоги [10], по-видимому, связано с образованием исходного фрагмента с локальной симметрией 6/m, исключившей возможность кубической симметрии. В пудреттите таким фрагментом будет сдвоенное зеркальной плоскостью гексагональное кольцо из 12 SiO₄-тетраэдров. Тетраэдры BO₄ участвуют в связи этих колец друг с другом и за счет плоскостей со скользящим отражением вдоль оси 6 (рис. 1а) организуют цепочки с чередованием звеньев из двух связанных зеркальной плоскостью SiO₄-тетраэдров, соединенных тетраэдрами ВО₄. Многочисленные структуры силикатов и их аналогов демонстрируют востребованность элементов симметрии, включающих в себя

Рис. 3. Плоскость скользящего отражения вдоль трансляции *а* упорядочивает ориентацию тетраэдров двух типов в двухзвенной их цепочке (структуры данбурита, датолита, окаямолита [8, 9]).

повороты и отражения с параллельными переносами. Они позволяют сохранять прочные связи между стабильными фрагментами и при этом сокращать их степени свободы, повышая энергетическую стабильность конфигураций. Их присутствие также исключает частные позиции с высокой точечной симметрией, которые трудно реализовать при сложном атомном составе кристаллизующейся фазы. В соответствии с обобщенными критериями стабильности V* и S = $= n_S/n_P$ (где n_S – число не зафиксированных симметрией координат базисных атомов структуры, а *n*_{*P*} – число атомов в примитивной ячейке) относительная стабильность гексагональной структуры пудреттита с $V^* = V_0/24 = 51.3 \text{ Å}^3$ и S = 11/96 == 0.115 в 2 раза ниже стабильности кубической структуры поллуцита с $V^* = V_0/96 = 26.6 \text{ Å}^3$, S == 4/80 = 0.05 [1, 11].

Тенденцию к реализации высокой симметрии можно видеть в распределении минералов с известной кристаллической структурой по группам пространственной симметрии. По данным на 2008 г. [12] из ~350 кубических минералов к группам с высшей симметрией ($Fm\overline{3}m, Fd\overline{3}m, Ia\overline{3}d$) отнесены более половины. Среди ~340 гексагональных минералов почти половина с высшей симметрией ($P6/mmm, P6/mmc, P6_3/mmc, P6/mcc$). Аналогичная картина наблюдается и в других сингониях. И хотя почти половина известных структур — ромбические и моноклинные, имеет место явная тенденция к возможно более высокой симметрии [12].

Все эти факты утверждают определяющую роль симметрии в организации пространства взаимодействующих материальных частиц и достижении энергетически стабильных конфигураций, имеющих минимальное число параметров — степеней свободы частиц этой системы [1].

СПИСОК ЛИТЕРАТУРЫ

- Borisov S.V., Magarill S.A., Pervukhina N.V. // Crystallogr. Rep. 2020. V. 65. № 1. P. 5.
- 2. *Borisov S.V., Magarill S.A., Pervukhina N.V.* // J. Struct. Chem. 2019. V. 60. № 8. P. 1191.
- 3. *Borisov S.V., Pervukhina N.V., Magarill S.A.* // J. Struct. Chem. 2016. V. 27. P. 1673.
- 4. Grice J.D., Ersit T.S., Van Velthuisen J., Dunn P.J. // Can. Mineral. 1987. V. 25. P. 763.
- Gromilov S.A., Bykova E.A., Borisov S.V. // Crystallogr. Rep. 2011. V. 56. № 6. P. 947.
- 6. Borisov S.V., Pervukhina N.V., Magarill S.A. // J. Struct. Chem. 2020. V. 61.

- 7. Borisov S.V. // J. Struct. Chem. 1995. V. 36. № 6. P. 1061.
- 8. *Borisov S.V., Pervukhina N.V., Magarill S.A.* // J. Struct. Chem. 2019. V. 60. № 2. P. 268.
- 9. Borisov S.V., Magarill S.A., Pervukhina N.V. // J. Struct. Chem. 2020. V. 61.
- 10. *Wells A.F.* Structural Inorganic Chemistry. Oxford: Clarendon Press, 1986.
- 11. Borisov S.V., Pervukhina N.V., Magarill S.A. // Crystallogr. Rep. 2020. V. 65. № 2. P. 197.
- Николаев С.М. Статистика современной минералогической информации. Новосибирск: Академическое издательство ГЕО, 2009.