_____ ФИЗИЧЕСКИЕ СВОЙСТВА _ КРИСТАЛЛОВ

УДК 543.424.2

ЦЕНТРАЛЬНЫЙ ПИК В СПЕКТРАХ КОМБИНАЦИОННОГО РАССЕЯНИЯ Света кристаллов кварца в широком диапазоне температур

© 2020 г. В. С. Горелик^{1,2}, Т. Г. Головина^{3,*}, А. Ф. Константинова³

¹ Физический институт им. П.Н. Лебедева РАН, Москва, Россия

² Московский государственный технический университет им. Н.Э. Баумана, Москва, Россия

³ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

**E-mail: tatgolovina@mail.ru* Поступила в редакцию 14.01.2020 г. После доработки 24.01.2020 г. Принята к публикации 10.02.2020 г.

Проведен расчет спектральной интенсивности комбинационного рассеяния света в кристаллах кварца в широком диапазоне температур, включающем в себя точку α-β-фазового перехода. Установлено присутствие центрального пика в спектре рассеянного излучения при различных температурах при учете взаимодействия фундаментальной мягкой моды с дополнительным низкочастотным осциллятором. Рассчитаны интенсивность и полуширина центрального пика в широком температурном интервале.

DOI: 10.31857/S0023476120040104

введение

Спектры комбинационного рассеяния (КР) кристаллов кварца изучались многими авторами (например, [1-3]). В [1] исследовано температурное поведение двух линий A_1 -симметрии в спектре КР, частоты которых при комнатной темпера-частоты возбуждающей линии и КР соответственно). Линия КР с частотой 466 см⁻¹ уширялась при повышении температуры, но не имела существенных изменений по частоте. Эта линия присутствовала также в спектре КР выше точки фазового перехода ($T_c = 846$ K). Линия 207 см⁻¹ тоже сильно уширялась при нагревании кристалла. но незначительно слвигалась по частоте. Согласно известной теории мягких мод [4-6] низкочастотное фундаментальное колебание A_1 -типа кристалла кварца (с частотой 207 см⁻¹ при комнатной температуре) должно играть роль мягкой моды, ответственной за фазовый переход в этом кристалле. Как выяснилось из экспериментов [7, 8], частота этой моды не стремится к нулю при приближении к точке фазового перехода. поэтому такое колебание не может рассматриваться в качестве классической мягкой моды. В данном случае роль мягкой моды принимает дополнительная (нефундаментальная) мода, проявляющаяся при комнатной температуре в виде малоинтенсивной полосы с частотой 147 см⁻¹. Эта мода сильно сдвигается по частоте к возбуждающей линии при повышении температуры [7, 8].

При исследованиях структурного α-β-фазового перехода в кварце в узком интервале температур в окрестности фазового перехода ранее был обнаружен [9-11] эффект резкого возрастания (на 3-4 порядка) интенсивности рассеянного света, классифицируемый как эффект "опалесценции", аналогичный эффекту опалесценции вблизи фазовых переходов типа "жидкость-пар". В [12] было высказано предположение о том, что наблюдавшаяся в [9-11] опалесценция связана со статическим эффектом образования большого числа доменов-"двойников", возникающих вблизи несоразмерного фазового перехода в узком интервале температур ($T - T_c \sim 1.8$ K) [13, 14]. Другое объяснение опалесценции в кристаллах кварца основано на динамическом механизме, связанном с ростом амплитуды мягкой моды, частота которой аномально падает в точке фазового перехода, и соответствующим возрастанием спектральной интенсивности КР. Резкий пик интенсивности КР вблизи точки фазового перехода при $\Omega \to 0$ соответствует так называемому "центральному пику".

Проблема центрального пика в спектрах КР различных кристаллов привлекает внимание многих авторов [15–18]. Ранее предполагалось, что центральный пик обнаруживается только в небольшом температурном интервале вблизи точки фазового перехода. Но в последнее время

высказано предположение о его присутствии вдали от температуры фазового перехода. Например, для кристаллов ниобата лития [16, 17] и танталата лития [18] было показано, что центральный пик в спектрах КР наблюдается при температурах, намного меньших температуры фазового перехода, в том числе при комнатной температуре.

Цель настоящей работы — теоретический анализ спектров КР кварца в широком диапазоне температур, включающем в себя точку α — β -фазового перехода, теоретическое исследование характеристик центрального пика и возможности его проявления при различных температурах, в том числе вдали от точки фазового перехода.

РАСЧЕТ ИНТЕНСИВНОСТИ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА С ПОМОЩЬЮ МОДЕЛИ ДВУХ СВЯЗАННЫХ ОСЦИЛЛЯТОРОВ

В [19, 20] проведено моделирование поведения мягкой моды в спектрах КР кварца в широком диапазоне температур, однако не исследовались характеристики центрального пика вдали от точки фазового перехода. Не было проведено и сравнительного анализа результатов, полученных с учетом одной эффективной мягкой моды и при рассмотрении сильного взаимодействия мягкой моды с дополнительным низкочастотным осциллятором.

Эксперименты по исследованию спектров КР вблизи фазовых переходов выявили необходимость учета взаимодействия между фундаментальной мягкой модой и некоторым нефундаментальным низкочастотным колебанием, природа которого до сих пор точно не установлена [19, 20]. Согласно [4–6] это нефундаментальное колебание характеризуется довольно большим затуханием, т.е. соответствует релаксационному процессу.

Для расчета интенсивности КР с учетом взаимодействия мягкой моды с низкочастотной нефундаментальной модой необходимо проанализировать спектр двух взаимодействующих осцилляторов. Запишем уравнения движения двух связанных осцилляторов, один из которых соответствует нефундаментальной моде $\zeta(t)$, а другой мягкой моде $\Delta \eta(t) = \xi(t)$, ответственной за нестабильность кристаллической решетки [19, 20]:

$$m_{1}\dot{\xi} = -\gamma_{1}\xi - \delta_{1}\dot{\xi} - \varkappa(\xi - \xi),$$

$$m_{2}\ddot{\xi} = -\gamma_{2}\xi - \delta_{2}\dot{\xi} - \varkappa(\xi - \xi).$$
(1)

Здесь m_1 , γ_1 , δ_1 , m_2 , γ_2 , δ_2 — масса, коэффициенты упругости и затухания для первого и второго осцилляторов соответственно; \varkappa — постоянная упругого взаимодействия между двумя осцилляторами. Решение системы уравнений (1) ищем в виде:

$$\zeta(t) = \zeta_0 \exp(i\Omega t),$$

$$\xi(t) = \xi_0 \exp(i\Omega t).$$

После подстановки этих решений в (1) и приведения подобных членов получим:

$$\begin{aligned} \zeta_0(m_1\Omega^2 - \gamma_1 - \kappa - i\Omega\delta_1) + \kappa\xi_0 &= 0, \\ \zeta_0\kappa + \xi_0(m_2\Omega^2 - \gamma_2 - \kappa - i\Omega\delta_2) &= 0. \end{aligned} \tag{2}$$

Матрица M_{ij} коэффициентов системы (2) имеет вид:

$$M_{ij} = \begin{pmatrix} m_1 \Omega^2 - \gamma_1 - \varkappa - i\Omega \delta_1 & \varkappa \\ \varkappa & m_2 \Omega^2 - \gamma_2 - \varkappa - i\Omega \delta_2 \end{pmatrix}, \quad (3)$$

соответствующий тензор Грина $G_{ii} = M_{ii}^{-1}$:

$$G_{ij} = \frac{1}{\det(M_{ij})} \times \begin{pmatrix} m_2 \Omega^2 - \gamma_2 - \varkappa - i\Omega \delta_2 & -\varkappa \\ -\varkappa & m_1 \Omega^2 - \gamma_1 - \varkappa - i\Omega \delta_1 \end{pmatrix},$$
(4)

где det $(M_{ij}) = (m_1 \Omega^2 - \gamma_1 - \varkappa - i\Omega \delta_1)(m_2 \Omega^2 - \gamma_2 - \varkappa - i\Omega \delta_2) - \varkappa^2$.

В соответствии с теоремой Найквиста [4–6] спектральная интенсивность КР может быть записана в виде

$$V(\Omega,T) = A \frac{kT}{\hbar\Omega} \eta_0^2 \operatorname{Im} \sum_{i,j=1,2} p_i p_j G_{ij}.$$
 (5)

Здесь A — нормировочный множитель, η_0 — равновесное значение параметра порядка. Согласно [4–6] имеем $\eta_0^2 = b(T_c - T)^{2\beta}$, в случае фазового перехода второго рода $\beta = 1/2$, b — константа. Коэффициенты p_i , p_j характеризуют относительный вклад осцилляторов. Подставляя компоненты G_{ij} в (5), получим

$$I(\Omega,T) = A \frac{kT}{\hbar} \eta_0^2 \frac{(\delta_1 f_2 + \delta_2 f_1)(f_2 p_1^2 + f_1 p_2^2 - 2p_1 p_2 \varkappa) - (\delta_2 p_1^2 + \delta_1 p_2^2)(f_1 f_2 - \varkappa^2 - \Omega^2 \delta_1 \delta_2)}{(f_1 f_2 - \varkappa^2 - \Omega^2 \delta_1 \delta_2)^2 + \Omega^2 (\delta_1 f_2 + \delta_2 f_1)^2},$$
(6)

где $f_{1,2} = m_{1,2}\Omega^2 - \gamma_{1,2} - \varkappa$.

Используем приближение, при котором $m_1 = m_2 = 1$. Из (6) следует, что с учетом нормировоч-

ного множителя одну из величин p_1 , p_2 можно считать равной единице, так как на результат влияет только отношение данных величин. Далее полагаем, что $p_2 = 1$.

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

Рис. 1. Экспериментальные (точки) [19, 20] и рассчитанные по формуле (6) (сплошные линии) зависимости интенсивности КР кварца $i(\Omega, T_c - T) = I(\Omega, T)/T$ от температуры при $\Omega = 40$ (1), 50 (2), 60 см⁻¹ (3). Использованные при расчете параметры: $\delta_1 = 50$, $\delta_2 = 75$, $A_0 = 143$, $p_1 = 0.001$, $p_2 = 1$, $\kappa = 50$.

Величина γ_1 характеризует спектральное положение максимума интенсивности низкочастотной моды при $\Omega \approx 0$, γ_2 – спектральное положение максимума интенсивности мягкой моды Ω_0 : $\gamma_2 \sim \sim \Omega_0^2 \sim (T_c - T)$. Полагаем, что $\gamma_1 = 1$, а температурную зависимость для γ_2 запишем в виде $\gamma_2 = = A_0(T_c - T)$.

Для определения остальных параметров в (6) проведено сравнение рассчитанных величин $I(\Omega, T)$ с полученными в [19, 20] при геометрии рассеяния x(zz)y экспериментальными изочастотными ($\Omega = \text{const}$) и изотемпературными (T = const) зависимостями $I(\Omega, T)$ для кварца. В частности, сравнивали экспериментальные и рассчитанные значения положения максимума и полуширины пика мягкой моды при различных температурах. Для полуширины мягкой моды получено значение $\Delta\Omega_0 \approx 80 \text{ см}^{-1}$, а зависимость от температуры для этой величины не учитывалась.

На рис. 1 показаны экспериментальные [19, 20] и расчетные изочастотные температурные зависимости спектральной интенсивности КР для кварца $i(\Omega, T_c - T) = I(\Omega, T)/T$ при фиксированных значениях Ω . Приемлемое соответствие (рис. 1) теории с экспериментом получено при следующих параметрах: $\delta_1 = 50$, $\delta_2 = 75$, $A_0 = 143$, $p_1 = 0.001$, $p_2 = 1$, $\kappa = 50$.

АНАЛИЗ ИНТЕНСИВНОСТИ И ПОЛУШИРИНЫ ЦЕНТРАЛЬНОГО ПИКА ПРИ РАЗЛИЧНЫХ ПАРАМЕТРАХ ОСЦИЛЛЯТОРОВ

Рассмотрим изменение интенсивности и полуширины центрального пика в спектре КР квар-

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

Рис. 2. Зависимость интенсивности КР кварца от температуры при $\Omega = 0$ и разных параметрах $p_1 = 0.0001$ (1), 0.001 (2), 0.005 (3), 0.01 (4).

ца в зависимости от температуры в областях вдали и вблизи от фазового перехода. Исследуем также зависимость обсуждаемых величин от параметров p_1 и p_2 в (6).

Выражение для максимальной интенсивности центрального пика ($\Omega = 0$ в соотношении (6)) в зависимости от температуры имеет вид

$$I = I_0 T(T_c - T) \times \\ \times \frac{[\varkappa(p_1 + p_2) + p_1 \gamma_2]^2 \delta_1 + [\varkappa(p_1 + p_2) + p_2 \gamma_1]^2 \delta_2}{[\gamma_1 \gamma_2 + \varkappa(\gamma_1 + \gamma_2)]^2}.$$
 (7)

Из (7) следует, что I = 0 при $T = T_c$. При температуре $T = T_{max}$, близкой к точке перехода ($T_{max} < T_c$), интенсивность центрального пика (7) имеет резкий максимум. Учитывая, что $p_1 \ll p_2$ (это получено из сравнения экспериментальных [19, 20] и рассчитанных спектров КР кварца), получим приближенное выражение для T_{max} :

$$T_{\max} = T_c - \frac{\varkappa \gamma_1 T_c}{A_0 T_c (\varkappa + \gamma_1) + 2\varkappa \gamma_1}.$$
 (8)

В табл. 1 и на рис. 2 приведены интенсивности I(0, T) центрального пика ($\Omega = 0$) в зависимости от температуры при различных значениях параметров p_1 ($p_2 = 1$). Как следует из (8), интенсивность I(0, T) при рассматриваемых параметрах имеет максимум при температуре $T_{\text{max}} = 845.993$ К.

Из табл. 1 следует, что при $p_1 = 0.0001$ при повышении температуры от T = 300 К до точки фазового перехода происходит рост интенсивности от 0.02 до 956.3, т.е. приблизительно в 50000 раз; при $p_1 = 0.001$ — приблизительно в 20000 раз; при $p_1 = 0.01$ — в 500 раз. Из табл. 1 и рис. 2 видно, что для $p_1 > 0.005$ при увеличении температуры выше определенного значения начинается уменьшение интенсивности центрального пика, которое затем

Т, К	300	500	700	800	840	843	845	845.5	845.9	845.95	845.993
p_1	Интенсивность центрального пика <i>I</i> (0, <i>T</i>), отн. ед.										
0.0001	0.02	0.05	0.15	0.54	4.3	8.7	25.8	51.0	229.6	405.6	956.3
0.001	0.05	0.10	0.21	0.60	4.4	8.7	25.9	51.2	230.1	406.4	958.0
0.005	0.53	0.65	0.65	0.91	4.7	9.1	26.4	51.8	232.1	409.8	965.6
0.01	1.85	2.1	1.65	1.47	5.1	9.5	26.9	52.6	234.7	414.0	975.2
p_1	Полуширина центрального пика $\Delta\Omega(T),{ m cm}^{-1}$										
0.0001	2.08	2.08	2.07	2.03	9.35	4.36	1.73	0.98	0.24	0.13	0.032
0.001	2.08	2.08	2.07	2.03	9.35	4.36	1.73	0.98	0.24	0.13	0.032
0.005	2.08	2.08	2.08	2.05	7.40	4.11	1.72	0.98	0.24	0.13	0.032
0.01	2.08	2.08	2.08	2.06	5.68	3.85	1.71	0.98	0.24	0.13	0.032

Таблица 1. Значения максимальной интенсивности I(0, T) и полуширины $\Delta\Omega(T)$ центрального пика при различных температурах и параметрах p_1

Примечание. $\delta_1 = 50, \, \delta_2 = 75, \, A_0 = 143, \, p_2 = 1, \, \kappa = 50.$

сменяется ростом. При $p_1 < 0.005$ происходит монотонное возрастание интенсивности центрального пика при увеличении температуры. Отметим, что результаты, полученные при значениях p_1 в диапазоне $p_1 = 0.0001 - 0.001$, хорошо согласуют-

Рис. 3. Вид спектров $I(\Omega, T)$ центрального пика КР кварца при различных температурах ($p_1 = 0.001$): a - T = 300 (1), 500 (2), 700 (3) и 800 K (4); 6 - T == 845 (1), 845.5 (2), 845.9 K (3).

ся с экспериментальными данными [9–11], согласно которым в точке фазового перехода наблюдается рост интенсивности центрального пика приблизительно в 10⁴ раз.

Рисунок 3 иллюстрирует спектр центрального пика при различных температурах вблизи и вдали от точки фазового перехода. Как видно из этого рисунка, центральный пик обнаруживается не только вблизи точки фазового перехода, но и в широком диапазоне температур вдали от T_c . Из рис. За видно, что вдали от точки фазового перехода форма спектра практически не изменяется с температурой. При приближении к T_c наблюдаются аномальное возрастание интенсивности центрального пика и резкое уменьшение его полуширины (рис. 36).

Для температурного диапазона вдали от точки фазового перехода получим приближенное выражение для интенсивности КР в области центрального пика ($\Omega = 0-10 \text{ см}^{-1}$):

$$I = I_0 \frac{T}{A_0^2 (T_c - T)} \left\{ \delta_2 + \delta_1 \frac{\left[\varkappa + p_1 A_0 (T_c - T)\right]^2}{\varkappa^2 + 2\varkappa \gamma_1 + \delta_1^2 \Omega^2} \right\}.$$
 (9)

Используя формулу (9), найдем выражение для полуширины центрального пика $\Delta \Omega(T)$ вдали от T_c :

$$\Delta \Omega = \frac{2\sqrt{\varkappa(\varkappa + 2\gamma_1)}}{\delta_1}.$$
 (10)

Из формулы (10) следует, что величина $\Delta\Omega$ вдали от точки фазового перехода не зависит от температуры. Для рассматриваемых параметров получим $\Delta\Omega = 2.04$ см⁻¹.

В табл. 1 приведены рассчитанные по точной формуле (6) значения полуширины центрального пика $\Delta\Omega(T)$ при разных температурах и различных параметрах p_1 . Полученные значения $\Delta\Omega(T) = 2.03-2.08 \text{ см}^{-1}$ в диапазоне температур T = 300-800 К хорошо согласуются со значением, рассчи-

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

танным по формуле (10) (2.04 см⁻¹). При T = 840 К наблюдается увеличение полуширины центрального пика по сравнению с ее значениями при температурах 300–800 К; при дальнейшем приближении к точке фазового перехода происходит резкое уменьшение $\Delta\Omega(T)$ (на 2 порядка). Из табл. 1 видно, что в большей части рассматриваемого температурного диапазона $\Delta\Omega(T)$ слабо зависит от параметра p_1 , и совсем не зависит от этого параметра при изменении p_1 в диапазоне $p_1 = 0.0001-0.001$.

В [16—18] показано, что для кристаллов ниобата лития и танталата лития полуширина центрального пика вблизи точки фазового перехода может быть представлена в виде

$$\Delta\Omega(T) = A \frac{T_c - T}{T_c}.$$
 (11)

На рис. 4а приведена соответствующая зависимость $\Delta \Omega(T)$ для кристаллов кварца вблизи точки фазового перехода. Точками на рис. 4а показаны рассчитанные значения $\Delta \Omega(T)$. Видно, что полученная зависимость $\Delta \Omega(T)$ в интервале температур $T_c - T \le 6$ К близка к линейной; таким образом, для кварца вблизи T_c также выполняется соотношение (11).

На рис. 4б, 4в приведены рассчитанные температурные зависимости интенсивности КР кварца $I(\Omega, T)$ вблизи T_c . Из этих рисунков следует, что при уменьшении Ω от 2 см⁻¹ до нуля происходит резкое возрастание интенсивности центрального пика. Вблизи T_c при $\Omega \approx 0$ наблюдается эффект комбинационной опалесценции, который можно объяснить аномальным возрастанием амплитуды мягкой моды при приближении к точке фазового перехода в кварце.

Из формулы (6) при $p_1 = 0$, к = 0 получим выражение для интенсивности КР, соответствующее отсутствию низкочастотного осциллятора:

$$I = I_0 \frac{T(T_c - T)\delta_2}{(\gamma_2 - m_2 \Omega^2)^2 + \delta_2^2 \Omega^2}.$$
 (12)

Это выражение при $m_2 = 1$ согласуется с формулой, полученной в [19, 20] для приведенной интенсивности в приближении одной мягкой моды. Из формулы (12) находим положение максимума интенсивности мягкой моды:

$$\Omega_0 = \sqrt{\gamma_2 - {\delta_2}^2/2}.$$
 (13)

Полуширину пика мягкой моды вдали от точки фазового перехода, исходя из (12), можно представить в виде

$$\Delta\Omega_0(T) = \delta_2 \left(1 + \frac{\delta_2^2}{4(\gamma_2 - \delta_2^2)} \right).$$
(14)

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

Рис. 4. Температурные зависимости полуширины и интенсивности центрального пика в спектре КР кварца ($p_1 = 0.001$): а – полуширина центрального пика вблизи T_c и ее экстраполяция формулой (11) при $A = 1280 \text{ см}^{-1}$; 6, в – зависимости $I(\Omega, T)$ при $\Omega = 0$ (I), 0.05 (2), 0.1 (3), 0.5 (4), 1 (5) и 2 см⁻¹ (6).

Рисунок 5 иллюстрирует рассчитанные по формулам (6) и (12) температурные зависимости $I(\Omega, T)$ интенсивности КР на мягкой моде кварца. Рисунок 5а демонстрирует рассчитанные на основе соотношения (6) зависимости интенсивности $I(\Omega, T)$ стоксовых ($\Omega > 0$) и антистоксовых ($\Omega < 0$) спектральных компонент для модели двух связанных осцилляторов в широком интервале температур, включая точку фазового перехода в

Рис. 5. Интенсивность комбинационного рассеяния $I(\Omega, T)$, рассчитанная для кристалла кварца при $p_1 = 0.001$ (а). Зависимости $I(\Omega, T)$ от частоты при разных температурах: 6 – T = 300 (I), 720 (2), 819 K (3), в – T = 830 (4), 840 K (5). Пунктиром показаны зависимости, рассчитанные по формуле (12) с учетом только мягкой моды. На вставках – области центрального пика в увеличенном масштабе.

кристалле кварца. Как видно из этого рисунка, наблюдается пик, соответствующий решеточной мягкой моде, и центральный пик как вдали от точки перехода, так и вблизи нее. При приближении к T_c интенсивность центрального пика аномально возрастает. На рис. 56 и 5в приведены зависимости $I(\Omega, T)$ при разных температурах.

Пунктиром показаны соответствующие зависимости, рассчитанные с учетом только одной мягкой моды по формуле (12). При низких частотах $(\Omega \approx 0)$ наблюдается существенное различие сплошной и пунктирной кривых (вставки к рис. 56, 5в). Для пунктирной кривой вдали от точки фазового перехода центральный пик полностью отсутствует. Вдали от области центрального пика полученные кривые практически совпадают. В этом случае для анализа спектра мягкой моды достаточно использовать приближение (12). Но, как видно из рис. 56, 5в, для анализа характеристик центрального пика приближения (12) недостаточно и необходим расчет по формуле (6) с учетом взаимодействия мягкой моды с низкочастотным осциллятором.

ЗАКЛЮЧЕНИЕ

Проведен расчет спектров комбинационного рассеяния на мягкой моде кристалла кварца в широком диапазоне температур с учетом взаимодействия мягкой моды с низкочастотным нефундаментальным осциллятором. Установлено резкое возрастание спектральной интенсивности низкочастотного комбинационного рассеяния при приближении к температуре фазового перехода T_c . Показано, что в спектре рассеянного излучения кристалла кварца присутствует центральный пик, проявляющийся не только в области фазового перехода, но и в широком диапазоне температур вдали от T_c .

Интенсивность центрального пика при комнатной температуре существенно меньше его интенсивности вблизи фазового перехода (в 10^4 раз). Показано, что полуширина центрального пика практически не изменяется вдали от точки фазового перехода и линейно уменьшается при приближении к T_c .

Присутствие центрального пика в широкой области температур в кристаллах кварца открывает возможность для реализации условий фазового синхронизма при нелинейно-оптических процессах в этом кристалле за счет вклада в закон сохранения квазиимпульса моды, соответствующей центральному пику, характеризующейся нулевой частотой и отличным от нуля квазиимпульсом.

Отметим, что проведенное моделирование имеет общий характер и применимо не только для кварца, но и для других кристаллов, претерпевающих структурный фазовый переход с мягкой модой.

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- Landsberg G.S., Mandelstam L.I. // Z. Phys. 1930.
 V. 60. № 5-6. P. 364.
- 2. Krishnan R.S. // Nature. 1945. V. 155. P. 452.
- 3. *Киселев Д.Ф. //* Кристаллография. 1966. Т. 11. Вып. 6. С. 886.
- 4. *Гинзбург В.Л.* // Успехи физ. наук. 1962. Т. 77. Вып. 4. С. 621.
- Ginzburg V.L., Levanyuk A.P., Sobyanin A.A. // Phys. Rep. 1980. V. 57. P. 151.
- 6. Гинзбург В.Л., Леванюк А.П., Собянин А.А. // Успехи физ. наук. 1980. Т. 130. Вып. 4. С. 615.
- 7. *Горелик В.С., Точилин С.Д.* // Кристаллография. 1987. Т. 32. Вып. 4. С. 957.
- Аникьев А.А., Горелик В.С., Умаров В.С. // ФТТ. 1984. Т. 26. С. 2772.
- 9. Яковлев И.А., Михеева Л.Ф., Величкина Т.С. // Кристаллография. 1956. Т. 1. Вып. 1. С. 123.
- Shapiro S.M., Cummins H.Z. // Phys. Rev. Lett. 1968. V. 21. P. 1578.

- Dolino G., Bachheimer J.P. // Ferroelectrics. 1976. V. 12. P. 173.
- Dolino G., Bachheimer J.P. // Phys. Status Solidi. A. 1977. V. 41. P. 673.
- 13. Doling G. // Jpn. J. Appl. Phys. 1985. V. 24. P. 153.
- Larraza A., Walker M.B. // Phys. Rev. B. 1989. V. 39. P. 2506.
- Флери П.А., Лайонс К.Б. Рассеяние света вблизи точек фазовых переходов / Под ред. Камминза Г.З., Леванюка А.П. М.: Наука, 1990. 412 с.
- Малиновский В.К., Пугачев А.М., Суровцев Н.В., Шебанин А.П. // Кристаллография. 2004. Т. 49. № 1. С. 126.
- 17. Суровцев Н.В., Пугачев А.М., Малиновский В.К. // ФТТ. 2006. Т. 48. Вып. 6. С. 1030.
- 18. Кузнецов А.Г., Малиновский В.К., Суровцев Н.В. // ФТТ. 2006. Т. 48. Вып. 12. С. 2190.
- Gorelik V.S., Pyatyshev A.Yu. // J. Raman Spectrosc. 2019. V. 50. № 10. P. 1584.
- Gorelik V.S., Pyatyshev A.Yu. // Phys. Wave Phenom. 2019. V. 27. № 3. P. 178.