———— НАНОМАТЕРИАЛЫ ———

УДК 546.824-31+771.534.21

ПРИМЕНЕНИЕ РЕНТГЕНОВСКИХ МЕТОДОВ ДЛЯ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ НАНОЧАСТИЦ В СИСТЕМЕ НАНОРАЗМЕРНЫЙ АНАТАЗ-ПОЛИ-N-ВИНИЛКАПРОЛАКТАМ

© 2020 г. С. П. Мулаков¹, П. В. Конарев^{2,3}, О. И. Тимаева^{1,*}, Г. М. Кузьмичева¹

¹МИРЭА — Российский технологический университет, Москва, Россия

²Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия ³Национальный исследовательский центр "Курчатовский институт", Москва, Россия

> **E-mail: gertrudejames@mail.ru* Поступила в редакцию 23.10.2019 г. После доработки 28.12.2019 г. Принята к публикации 09.01.2020 г.

Методом рентгеновского рассеяния в области дальних углов и впервые методом малоуглового рентгеновского рассеяния изучены нанокомпозиты, полученные механическим смешением с перетиранием и механоактивацией смеси Hombifine N с наноразмерным анатазом (HA) с полимером поли-N-винилкапролактамом (ПВК: ПВК25 и ПВК40 – сушка водного раствора ПВК при 25 и 40°С соответственно) в разном массовом соотношении. Установлены аморфизация анатаза (уменьшение средних размеров областей когерентного рассеяния) и выделение рентгеноаморфного гидратированного диоксида титана из аморфной оболочки наночастиц анатаза, деструкция ПВК и разупорядочение его гетероциклов в составе нанокомпозитов HA/ПВК (HA : Π BK = 1 : 1) при механоактивации. Найдено взаимодействие с обменом молекул воды между наночастицами анатаза, анатаза и ПВК при образовании $HA/\Pi BK25$ (HA : $\Pi BK = 1 : 2$) при механическим смешении с перетиранием, приводящее к "распаду" наночастиц анатаза на две группы: частицы с уменьшенной и увеличенной (образование текстуры) степенью кристалличности (средними размерами областей когерентного рассеяния) по сравнению с исходным анатазом. Методом малоуглового рентгеновского рассеяния выявлены структурные неоднородности разных размеров в ПВК25 и ПВК40, которые по-разному меняются при механоактивации с сохранением тенденции меньших размеров в ПВК25 (клубок) по сравнению с ПВК40 (глобула). Показано различное действие механоактивации и механического смешения с перетиранием на компоненты системы НА-ПВК, а также определяющая роль наночастиц анатаза в НА/ПВК, способствующая усреднению размеров неоднородностей при механоактивации. Результаты исследования фотокаталитической активности в реакции разложения метилового оранжевого (УФ-излучение) в присутствии образцов системы НА-ПВК свидетельствуют о ее связи со средними размерами областей когерентного рассеяния и об отсутствии связи с размерами неоднородностей.

DOI: 10.31857/S0023476120040165

введение

Размерный эффект — комплекс явлений, связанных с существенным изменением физико-химических свойств вещества вследствие непосредственного уменьшения размера частиц и их соизмеримости с физическими параметрами, имеющими размерность длины (размер магнитных доменов, длина свободного пробега электрона, длина волны де Бройля, размер экситона в полупроводниках и так далее). Уменьшение размеров частиц приводит к тому, что на объемные свойства материала начинают влиять его поверхностные характеристики, а при определенных размерах (менее 100 нм) поверхностные свойства доминируют над объемными (для конкретного свойства существует свой интервал размеров) и преимущественно определяют свойства системы в целом. Появляется реальная возможность путем варьирования структурными (состав, строение) и размерными параметрами менять в широких пределах энергетические характеристики создаваемой системы, а значит получать требуемое свойство или комбинацию свойств (механических, электрофизических, оптических, фотокаталитических и многих других), недостижимых для объемных материалов (например, [1–5]). Для этого необходимо знать дисперсность системы: размеры частицы сех уровней (кластеры – менее ~ 1 нм, наночастицы — $\sim 1-100$ нм, субмикронные частицы — более ~ 100 нм) и их распределение по размерам. Это можно осуществить прямыми ме-

Образец	Обозначение образца	Массовое соотношение НА : ПВК	Способ/условия получения (обработки) образцов	
1	HA(MA)		Механоактивация НА и ПВК (20 мин, Ar)	
2	ПВК25(МА)		More $M_{\rm M}$ and $M_{\rm M}$ in ΠPV (60 Min positive)	
3	ПВК40(MA)		Механоактивация ПА и ПВК (00 мин, воздух)	
4	НА/ПВК25(МА; 1 : 1)	1:1	More M_{1} More M_{2} More M_{2}	
5	НА/ПВК40(МА; 1:1)	1:1	Механоактивация пА и ПВК (20 мин, Аг)	
6	НА/ПВК25(МА; 1 : 2)	1:2	Механоактивация НА и ПВК (20 мин, Ar)	
7	НА/ПВК40(МП; 1:1)	1:1	Механическое перетирание НА и ПВК	
8	НА/ПВК25(МП; 1:2)	1:2	Механическое перетирание НА и ПВК	

Таблица 1. Условия обработки исходных компонентов и получения нанокомпозитов в системе НА-ПВК

Примечание. МА – механоактивация, МП – механическое перетирание.

тодами (оптическая, электронная и атомно-силовая микроскопия; методы динамического светорассеяния, анализ кривых седиментации) и косвенными (рассеяние в области малых и дальних углов, низкотемпературная сорбция азота: метод Брунауэра–Эммета–Теллера (БЭТ) и сравнительный) с последующей обработкой данных.

Однако необходимо отметить, что характеристики дисперсных систем являются результатом интерпретации экспериментальных результатов и зависят от применяемого метода и принятой модели, так как кривые распределения, построенные по данным различных методов определения размера частиц, их объема, удельной поверхности и других параметров, могут отличаться друг от друга. Поэтому возникает задача сопоставления результатов определения размеров (нано)частиц, полученных (обработанных) разными методами, их оценки с границами применимости. Это и стало целью настоящей работы. Проведены исследования системы поли-N-винилкапролактам-наноразмерный анатаз, полученной разными способами.

МЕТОДИКА ЭКСПЕРИМЕНТА

Объекты исследования. Образцы поли-N-винилкапролактама (**ПВК**) получены поливом 10%ного водного раствора **ПВК** с молекулярной массой 1 × 10⁶ Да (опытно-промышленная партия из Государственного института кровезаменителей и медицинских препаратов [6]) на фторсодержащую полимерную подложку с последующей сушкой до постоянной массы при 25°С (**ПВК25**, ниже температуры фазового перехода **ПВК**: $T_{\Phi\Pi} \sim 32 -$ 34°С) и 40°С (**ПВК40**, выше $T_{\Phi\Pi}$) и перетиранием полученных пленок в порошок [7].

Нанокомпозиты в системе наноразмерный анатаз(**HA**)—ПВК получены механическим смешением с перетиранием в фарфоровой ступке смеси порошков Hombifine N (Sachtleben Chemie

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

GmbH) и ПВК (ПВК25 и ПВК40) в разном массовом соотношении [8] и механоактивацией — механическим смешением с последующим измельчением тех же исходных порошков в высокоэнергетической планетарно-шаровой мельнице (RETSCH PM200, диаметры шаров 20 мм, соотношение массы шаров к массе компонентов 50 : 1; энергоемкость помола 1.5 Вт/г при 400 об./мин; атмосфера — Аг или воздух) [8] (табл. 1).

Рентгеновское рассеяние в области дальних углов. Рентгеновская съемка образцов с вращением проведена на дифрактометре HZG-4 (графитовый монохроматор, Си K_{α} -излучение, пошаговый режим, шаг 0.02°, время набора импульсов 10 с, интервал углов 2 $\theta = 2^{\circ} - 50^{\circ}(80^{\circ})$). Для обработки дифрактограмм и расчета характеристик субструктуры использована Программа для обработки дифрактограмм наноразмерных и аморфных веществ и расчет характеристик субструктуры [9]. Оценка среднего размера областей когерентного рассеяния (**OKP**), или кристаллитов, выполнена методом Шеррера:

$$D = K\lambda/\beta_D \cos\theta. \tag{1}$$

Величина микронапряжений определена методом Стокса-Вильсона:

$$\beta_{\varepsilon} = 4\varepsilon \operatorname{tg} \theta, \qquad (2)$$

при условии уширения дифракционного отражения, вызванного одной из причин, а в случае одновременного влияния средних размеров ОКР и микронапряжения найдена методом Уильямса— Холла:

$$\beta = K\lambda/D\cos\theta + 4\varepsilon \operatorname{tg}\theta,\tag{3}$$

где β — интегральная ширина суммы вкладов размера (*D*) и деформации (ε); *K* — эмпирическая поправка на форму частиц (в данном случае *K* = 0.9 в предположении сферических частиц). Величины β_D , β_{ϵ} и β рассчитываются из измеренной β_m с поправкой на инструментальное уширение по соответствующим формулам, вид которых зависит от функции, описывающей дифракционное отражение, в данном случае функции Лоренца, судя по обработке дифрактограмм [9]. Возможны поправки на температуру, нерасщепление дублета $K_{\alpha 1}$ и $K_{\alpha 2}$, дефекты кристаллической структуры, которые здесь не учитывались. Стандартное отклонение оценки средних размеров ОКР по формуле (1) ±5%.

Малоугловое рентгеновское рассеяние (МУРР). Измерения интенсивности МУРР выполнены на синхротронной станции БиоМУР (НИЦ "Курчатовский институт", Москва) [10] при фиксированной длине волны $\lambda = 0.145$ нм. Рентгеновские спектры регистрировали с помошью двумерного детектора DECTRIS Pilatus3 1М: расстояние образец-детектор 500 мм, время экспозиции 180 с. Пучок, сформированный по трехщелевой схеме коллимации, был сфокусирован при помощи изгибного монохроматора Si(111) и плоского зеркала с родиевым напылением до сечения 0.4×0.6 мм на образце. Образцы закрепляли на каптоне таким образом, чтобы плоскость образца была перпендикулярна пучку синхротронного излучения. Калибровку угловой шкалы измерений проводили путем обработки дифракционной картины поликристаллического порошка бегената серебра [11].

Для интегрирования двумерных картин рассеяния и первичной обработки использовали программу Fit2D [12]. Следующий этап обработки (вычитание сигнала рассеяния от пустой каптоновой ячейки из кривой рассеяния образцами) выполняли с помощью программы PRIMUS [13] из пакета ATSAS [14, 15]. В результате получены экспериментальные зависимости интенсивности МУРР I(s) от модуля вектора рассеяния $s = \frac{4\pi \sin \theta}{\lambda}$, где 2θ – угол рассеяния, λ – длина волны; угловой диапазон 0.2 < s < 4.0 нм⁻¹. Средний радиус инерции частиц R_g оценен с помощью

приближения Гинье
$$I(s) = I(0) \exp\left(-\frac{s^2 R_g^2}{3}\right)$$
 в обла

сти малых углов ($sR_g < 1.3$). Максимальный радиус частиц (R_{max}) и функция объемного распределения частиц по размерам $D_V(R)$ определены с использованием программы GNOM методом косвенного преобразования Фурье в приближении сферических полидисперсных частиц [16, 17]. Стандартное отклонение для оцениваемых параметров составляет 2–3%.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рентгеновское рассеяние в области больших углов. Дифрактограммы порошкообразных образцов ПВК25 (рис. 1а) и ПВК40 (рис. 1б) отличаются друг от друга соотношением максимальных интенсивностей (I_{max}) первого (20 ~ 9°, межплоскостное расстояние $d \sim 9$ Å) и второго ($2\theta \sim 17^{\circ}$, $d \sim 5$ Å) диффузных пиков (ПВК25: $I_{max(1)} > I_{max(2)}$; ПВК40: $I_{max(1)} \sim I_{max(2)}$), соответствующих межмолекулярным и смешанным (меж- и внутримолекулярным) взаимодействиям при большом вкладе взаимодействий внутри цепочек [18]. Согласно данным [7], такой характер изменения максимальной интенсивности обусловлен бо́льшим содержанием молекул воды в ПВК40, присоединенных к гидрофильной функциональной группе -N-C=O заместителя водородными связями: -N-C=O...H-O-H.

На дифрактограммах образцов 2 (рис. 1а) и 3 (рис. 1б) (соответственно образцов ПВК25 и ПВК40 после механоактивации) видно расщепление первого пика, свидетельствующее о деструкции ПВК в результате механоактивации [8]. Разрыв связей С–С в основной цепи ПВК и образование полимерных цепочек с разной периодичностью подтверждены ИК-спектроскопией и вискозиметрией: уменьшение молекулярной массы от 1.1 × 10⁶ до 0.13 × 10⁶ Да. Методом ЯМР установлено, что структура ПВК сохраняется [8].

Отличие дифракционных картин исходного анатаза и после механоактивации (рис. 1в) обусловлено выделением рентгеноаморфной фазы гидратированного диоксида титана переменного состава $\text{TiO}_{2-x}(\text{OH})_{2x} \cdot n\text{H}_2\text{O}$ [19] (диффузный пик при $2\theta \sim 10^\circ - 11^\circ$) из аморфной оболочки наночастиц анатаза. В состав фазы входят остатки прекурсора, вода и аморфный диоксид титана. Средний размер ОКР анатаза, оцененный по отражению 101 ($2\theta = 25.42^\circ$, формула (1) без поправки на инструментальное уширение), уменьшается от D = 8.4 нм (Hombifine N) до 6.8 нм (анатаз после механоактивации), что вызвано аморфизацией наночастиц анатаза при механоактивации.

Сравнение фотокаталитической активности анатаза исходного и после механоактивации в реакции разложения метилового оранжевого (**MeO**) под действием УФ-излучения (лампа 26 Bt LH26-FS(3U) E27 Blacklight компактная люминесцентная УФ; Camelion Китай) (методика представлена в [20]) свидетельствует об уменьшении константы скорости фотореакции *k* от 0.0098 до 0.0060 мин⁻¹ с уменьшением *D* (рис. 2).

На дифрактограммах образцов 4 и 5 (рис. 1г), полученных в одинаковых условиях синтеза (табл. 1), первое диффузное отражение ПВК асимметричное (тенденция к расщеплению), а максимальная интенсивность второго диффузного отражения явно меньше. Второй диффузный пик ПВК отвечает за ближний порядок, основной вклад в который вносит боковой заместитель ПВК (аналогично для поли-N-винилпирролидона – структурного аналога ПВК [21]). Наблюдаемый эффект вызван разупорядочением гетероциклов ПВК в композите НА/ПВК (1:1) вслед-

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

Рис. 1. Дифрактограммы образцов: а – ПВК25 (*1*), 2 (*2*); 6 – ПВК40 (*3*), 3 (*4*) (6); в – НА (*5*), 1 (*6*); г – 4 (*7*), 5 (*8*), 6 (*9*), 7 (*10*), 8 (*11*).

ствие механоактивашии [8]. При этом уменьшилась величина D для анатаза в составе композитов (D = 5.35 нм (образец 4)) при еще большем уменьшении константы скорости фотореакции до k = 0.0032 мин⁻¹ (ПВК не проявляет фотоактивность) по сравнению с анатазом после механоактивации (рис. 2) и D = 4.90 нм для образца 5. Присутствие ПВК с разными надмолекулярными структурами (ПВК25 и ПВК40) оказывает разное влияние на анатаз в составе НА/ПВК из-за разного количества в них молекул воды. Прежде всего из-за гидратации ПВК и дегидратации анатаза в составе нанокомпозитов уменьшается количество фотокаталитических активных центров Ті-ОН на поверхности наночастиц [22].

Увеличение содержания ПВК25 в составе исходной смеси с НА (образец 6) приводит к расщеплению первого отражения ПВК (деструкции полимера ПВК25) и восстановлению интенсивности второго диффузного отражения ПВК (рис. 1г). Увеличение мощности рентгеновского излучения (дифрактометры HZG-4: 40 кВт/20 мА; PANalyti-

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

cal Empyrean: 45 кВт/35 мА; синхротрон ESRF) также приводит к физической деструкции полимера ПВК (дифрактометр PANalytical Empyrean, синхротрон) в составе нанокомпозитов Hombifine N/ПВК40 (1 : 2) [23].

Способ получения нанокомпозитов оказывает влияние как на ПВК, так и на анатаз в составе нанокомпозитов НА/ПВК. Механическое перетирание порошкообразных ПВК25 и наноразмерного анатаза (табл. 1, образец 8) приводит к частичной кристаллизации анатаза в составе композитов (рис. 1г) [8]. Это сопровождается расщеплением пиков анатаза на два с разными профилями и соответствующих разным параметрам ячейки: a = 3.768(9), c = 9.47(4) Å, D = 40(2) Å для наноразмерного анатаза и $a^* = 3.775(9), c^* =$ = 9.07(4) Å, D = 350(18) Å для текстурированного наноразмерного анатаза ($\{h1l\}$ $\langle 101 \rangle$: ось текстуры (101) и плоскости (112), (211), (110) с малыми отношениями свободные связи/замкнутые связи на соответствующих им поверхностях нанокристаллитов). У исходного Hombifine N a = 3.79134(8), c = 9.4989(4) Å, D = 47(2) Å (в данном случае рас-

четы среднего размера ОКР выполнены по формуле (1) для дифракционного пика при $2\theta \sim 38^{\circ}$). Для ПВК25 в составе НА/ПВК25 выявлено повышенное содержание воды, о чем свидетельствует соотношение максимальных интенсивностей второго и первого пиков ПВК ($I_{max(2)} > I_{max(1)}$). Таким образом, в системе НА-ПВК25 при механическом перетирании происходит обмен молекулами воды между наночастицами анатаза, с одной стороны, а с другой стороны, молекулы воды переходят с оболочки одних наночастиц и присоединяются к амидной группе полимера – N–C=O водородными связями. Фотокаталитическая активность образца 8 наименьшая среди изученных: k = 0.0013 мин⁻¹ (рис. 2). Это объясняется, прежде всего, неоптимальными для фотокаталитического процесса размерами кристаллитов. Совместная механоактивация тех же образцов ПВК25 и анатаза (табл. 1, образец 6) приводит к деструкции ПВК25 и аморфизации анатаза в составе нанокомпозита (рис. 1г). Из сравнения дифрактограмм образцов 5 и 7 (рис. 1г) видно, что в результате перетирания не происходит разупорядочения боковых заместителей ПВК40, так как $I_{\max(1)} \sim I_{\max(2)}$.

Необходимо отметить, что для систем с наночастицами, подвергнутых обработке, характерно сильное уширение дифракционных отражений (особенно при больших углах 20), вызванное аморфизацией, что затрудняет корректную оценку характеристик субструктуры по всем отражениям. Поэтому в подавляющем большинстве случаев (как и в настоящей работе) оценка средних размеров ОКР (кристаллитов) сферической формы проводится по одному отражению, в частности для НА по отражению 101 ($d \sim 3.50$ Å), соответствующему кристаллической плоскости (101) с наибольшим соотношением свободные/замкнутые связи, а отсюда и реакционно активной поверхности нанокристаллитов [5]. Еще более условно выглядит оценка среднего размера ближнего порядка для аморфных объектов с одним или двумя диффузными отражениями (в данном случае для ПВК25 и ПВК40) по формулам (1) и (2). Тем не менее для качественного сравнения "размерного поведения" компонентов одних и тех же систем такой оценочный расчет оказывается весьма полезным. Так, величины D, оцененные по отражениям при $2\theta \sim 9^\circ$ и $\sim 18^\circ$ по формуле (1), для ПВК40 (2.3 и 2.0 нм) и ПВК25 (2.5 и 1.9 нм) различаются. Несколько большая и меньшая величина D. связанная соответственно со вторым и первым диффузными пиками ПВК40, вероятно, обусловлена большим количеством молекул воды, присоединенных к гетероциклам в ПВК40 по сравнению с ПВК25, и, следовательно, меньшим упорядочением. Механоактивация образцов способствует изменению этих величин: по второму отражению *D* = 1.9 и 1.6 нм для ПВК40 и ПВК25

Рис. 2. Связь константы скорости фотокаталитической активности (k) и среднего размера кристаллитов (D), определенного по формуле (1), для образцов НА (1), 1 (2), 4 (3), 8 (4).

соответственно. Заметим еще раз, что приведенные величины *D* для ПВК весьма условны.

МУРР – это когерентное диффузное рассеяние монохроматических рентгеновских лучей вблизи первичного луча на апериодических флуктуациях электронной плотности в материалах. Оно определяется только размерами и формой рассеивающих частиц и не зависит от их внутренней структуры. Поэтому МУРР не свойственны трудности, связанные с уширением диффузных линий из-за дисперсности, наличия микронапряжений или дефектов кристаллической структуры.

На рис. 3-5 представлены экспериментальные кривые МУРР изученных образцов, а на вставках – рассчитанные распределения частиц по размерам. Образец анатаза (коммерческий Hombifine N) характеризуется широким распределением частиц по размерам вплоть до $R_{\text{max}} = 30$ нм с макси-мумом при $R_1 = 5.9$ нм (табл. 2, рис. 3а, вставка). Структурные неоднородности с размерами менее 2 нм присутствуют во всех исследуемых образцах, однако не могут быть количественно оценены, так как находятся за пределами возможностей МУРР в условиях проведенного эксперимента. Максимальный размер ($R_1 = 5.9$ нм) (табл. 2) согласуется с величинами D = 10.5 и 12.5 нм, определенными по отражению 101 ($2\theta = 25.42^{\circ}$) с поправкой на инструментальное уширение (дифрактометр; сертифицированный стандарт α -Al₂O₃ (NIST)) методом Шеррера (1) [24] и по всем отражениям методом Уильямсона-Холла (3) [25] с учетом инструментального уширения (программа Jana2006 [26]; съемка образца на синхротронной станции "Белок" НИЦ "Курчатовский институт"; сертифицированный стандарт Na₂Ca₃Al₂F₁₄ (NAC)) для сферических нанообъектов соответственно. Он также близок к размеру наночастиц

Рис. 3. Кривые МУРР для образцов НА (а) и 1 (б): точки – экспериментальная кривая малоуглового рассеяния, сплошная линия – теоретическая кривая, приближение к экспериментальной. На вставках – функции распределения частиц по размерам $D_V(R)$.

 $N_{\rm CM} = 9$ нм, рассчитанному по значению удельной поверхности в приближении сферических частиц (низкотемпературная сорбция азота, сравнительный метод) [27] и определенному по изображениям, полученным методом растровой электронной микроскопии (**РЭМ**) с помощью микроскопа высокого разрешения JSM 7500F фирмы JEOL, Япония: $N_{\rm PЭM} = 11.0-15.4$ нм (рис. 6).

Микроструктура образца анатаза представляет собой фрактальные образования наноассоциатов ($A = \sim 20 - 80$ нм), состоящих из наночастиц (рис. 6). Надо заметить, что $R_{\text{max}} = 30$ нм (табл. 2) входит в интервал величин A. Максимальная степень разложения красителя MeO ($c_0 = 1.04$ ммоль/л) в присутствии наноразмерных оксидов титана (IV) под действием УФ-света найдена для $N \sim 13$ нм

Таблица 2. Размеры (радиусы) структурных неоднородностей по данным МУРР

Образец		<i>R</i> ₁ , нм	<i>R_g</i> , нм
ПВК25	35.0	5.4	20.4
ПВК40	30.0	4.8	16.3
HA	30.0	5.9	16.5
НА(МА) (образец 1)	12.0	4.6	10.5
ПВК25(МА) (образец 2)	20.0	3.5	11.0
ПВК40(МА) (образец 3)	30.0	7.7	15.9
НА/ПВК25(МА; 1 : 1) (образец 4)	20.0	4.7	10.8
НА/ПВК40(МА; 1:1) (образец 5)	20.0	4.6	11.0
НА/ПВК25(МА; 1:2) (образец 6)	20.0	5.8	11.2
НА/ПВК40(МП; 1:1) (образец 7)	12.0	4.5	8.2
НА/ПВК25(МП; 1:2) (образец 8)	20.0	5.0	10.5

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

[5], что согласуется с величиной D = 12.5 нм (формула (3)) для Hombifine N с максимальной фотокаталитической активностью.

Механоактивация НА (образец 1) приводит к уменьшению R_{max} от 30 до 12 нм и характерным малым размерам частиц с максимумом при $R_1 =$ = 4.6 нм (рис. 36, вставка), относящихся, вероятно, к гидратированному диоксиду титана и анатазу соответственно, которые входят в состав образца НА после механоактивации (рис. 1в). Как и в случае рассеяния в области больших углов, по данным МУРР размер наночастиц анатаза после механоактивации уменьшается (табл. 2). Некоторое отличие теоретических приближений от экспериментальных данных для НА в области s == 1.5–2.0 нм⁻¹ (рис. 3) можно объяснить неоднородной плотностью частиц анатаза и возможным их отличием от идеальной сферической симметрии.

Для порошкообразного ПВК25 (рис. 4а, вставка) восстановлено распределение частиц с максимальным размером $R_{\text{max}} = 35$ нм, имеющее макси-мум при $R_1 = 5.4$ нм. Эти значения отличаются от ПВК40 (рис. 4б, вставка), где максимум находится при $R_1 = 4.8$ нм соответственно, тогда как максимальный размер частиц ПВК40 уменьшается до $R_{\text{max}} = 30$ нм (табл. 2). Полученные результаты МУРР подтверждают разные виды структурных неоднородностей (надмолекулярных структур) разных размеров, присутствующих в ПВК25 (клубок) и ПВК40 (глобула). Наблюдается уменьшение максимальных размеров надмолекулярных структур при переходе клубок-глобула и примерном сохранении размеров более мелких структурных образований. В случае ПВК средние размеры ближнего порядка (величины D) отличаются от размеров неоднородностей (табл. 2), что свиде-

Рис. 4. Кривые МУРР для образцов ПВК25 (а), ПВК40 (б), 2 (в), 3 (г): точки — экспериментальная кривая малоуглового рассеяния, сплошная линия — теоретическая кривая, приближение к экспериментальной. На вставках — функции распределения частиц по размерам $D_V(R)$.

тельствует об их разной природе (отметим, что методы рентгеновского рассеяния в области больших и малых углов работают в разных *s*-диа-пазонах).

По данным РЭМ размеры ассоциатов (следующий уровень структурной организации надмолекулярных структур полимеров) у ПВК25 (85% с $N_{\rm PЭM} = 10-20$ нм, 15% с $N_{\rm PЭM} = 30-60$ нм) существенно меньше, чем у ПВК40 (55% с $N_{\rm PЭM} = 20-$ 30 нм, 45% с $N_{\rm PЭM} = 40-50$ и 60–120 нм) с соответствующими удельными поверхностями $S_{\rm БЭT} = 0.720$ и 0.534 м²/г, определенными по низкотемпературной сорбции криптона [6]. Тенденция меньших размеров у ПВК25 по сравнению с ПВК40 сохраняется.

Механоактивация ПВК уменьшает R_{max} до 20 нм для ПВК25 (образец 2, рис. 4в, вставка) и не

меняет это значение для ПВК40 (образец 3, рис. 4г, вставка). Величины R_1 для ПВК25 (рис. 4в, вставка) становятся меньше (3.5 нм), а для ПВК40 (рис. 4г, вставка) существенно больше (7.7 нм). Таким образом, структурные неоднородности при R_1 в ПВК25 и ПВК40 при механоактивации ведут себя по-разному, но в целом сохраняется тенденция меньших размеров надмолекулярных структур в ПВК25 по сравнению с ПВК40. Такая ситуация характерна для рыхлых глобул с большим количеством молекул воды, которые образуются из гибких цепей макромолекул.

При введении анатаза в ПВК в соотношении 1:1 с последующей механоактивацией наблюдается принципиально разное "размерное поведение" наночастиц в образцах 4 (рис. 5а, вставка) и 5 (рис. 5б, вставка) с увеличением и уменьше-

Рис. 5. Кривые МУРР для образцов 4 (а), 5 (б), 6 (в), 7 (г), 8 (д): точки – экспериментальная кривая малоуглового рассеяния, сплошная линия – теоретическая кривая, приближение к экспериментальной. На вставках – функции распределения частиц по размерам $D_V(R)$.

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

Рис. 6. РЭМ-изображение коммерческого образца Hombifine N.

нием R_1 по сравнению с ПВК25 и ПВК40, но с одинаковыми значениями $R_1 = 4.7$ нм в нанокомпозитах, а также $R_{\text{max}} = 20$ нм для нанокомпозитов НА/ПВК (табл. 2). Эти величины сопоставимы с аналогичными величинами в НА после механоактивации ($R_1 = 4.5$ нм) (табл. 2), т.е. наночастицы анатаза вносят существенный вклад в когерентное диффузное рассеяние. Заметим, что в полидисперсных образцах методом МУРР невозможно разделить образования, относящиеся к анатазу и ПВК в композитах НА/ПВК, т.е. выявляются некие усредненные рассеивающие наночастицы всего композита. Это может быть причиной невозможности по результатам данного эксперимента установления корреляций фотокаталитической активности образцов с размерами частиц анатаза в составе нанокомпозитов НА/ПВК. Соотношение НА: ПВК25 в нанокомпозитах, подвергнутых механоактивации, не оказывает существенного влияния на величины R_{max} (табл. 2).

Если сравнивать воздействие разных видов на систему НА–ПВК, то для образца 6 при механоактивации по сравнению с образцом 8 с механическим перетиранием наблюдается небольшое увеличение R_1 , тогда как для образцов 5 и 7 эти величины практически не меняются (табл. 2). В случае механоактивации максимальные значения R_{max} и R_1 , найденные для ПВК40, не достигаются, как и наименьшие величины для ПВК25 (табл. 2).

ЗАКЛЮЧЕНИЕ

Метод МУРР, примененный впервые для компонентов и композитов системы наноразмерый анатаз—полимер ПВК, полученных механическим смешением с перетиранием и механоактивацией, позволил: восстановить функции распределения по размерам в полидисперсных системах для наноразмерного анатаза и ПВК в диапазоне $R \sim 2-35$ нм (следует учесть, что размеры субмикронных частиц находятся за пределами возможностей МУРР в условиях проведенного эксперимента); установить различия распределения частиц по размерам между ПВК25 и ПВК40, вызванные различием их надмолекулярных структур (клубки, глобулы); выявить особенности распределения частиц анатаза и ПВК в составе нанокомпозитов НА/ПВК в зависимости от соотношения НА:ПВК, модификации ПВК (ПВК25 или ПВК40) и вида воздействия (механическое смешение с перетиранием или механоактивация).

Метод рентгеновского рассеяния в области больших углов дал возможность: выявить деструкцию ПВК и разупорядочение боковых заместителей в ПВК в нанокомпозитах НА/ПВК (1:1) под действием механоактивации; установить "распад" наночастиц анатаза на две группы с существенно бо́льшими и несколько ме́ньшими по сравнению с исходным наноразмерным анатазом (Hombifine N) средними размерами кристаллитов (ОКР) в НА/ПВК25 (1:2) при механическом перетирании исходных компонентов, распад вызван дегидратацией и гидратацией оболочек отдельных наночастиц анатаза и гидратацией ПВК25 – присоединением молекул воды к ПВК25 водородными связями; оценить средние размеры ОКР, соизмеримые с неоднородностями по данным МУРР в случае наночастиц анатаза с малой степенью аморфности (малым вкладом диффузного рассеяния); найти корреляционную связь между константой скорости фоторазложения МеО под действием УФ-излучения образцов с анатазом и средними размерами кристаллитов наноразмерного анатаза. Подобная связь с размерами структурных неоднородностей не просматривается.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (соглашение № 4.1069.2017/ПЧ; 2017–2019) и в рамках Государственного задания ФНИЦ "Кристаллография и фотоника" РАН в части исследований размерных распределений наночастиц методом малоуглового рассеяния.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Newnham R., Fernandez J.F.* Third Euro-Ceramics. Faenza Editrice Iberica. 1993. V. 2. P. 1.
- 2. Gleiter H., Weissmüller J., Wollersheim O., Würschum R. // Acta Mater. 2001. V. 49. № 4. P. 737.
- 3. Joannopoulos J.D. // Nature. 2001. V. 414. P. 257.
- 4. *Miguez H., Blanco A., Lopez C. et al.* // J. Lightwave Technol. 1999. V. 17. № 11. P. 1975.

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

- 5. *Кузьмичева Г.М.* // Тонкие химические технологии. 2015. Т. 10. № 6. С. 5.
- Кирш Ю.Э., Карапутадзе Т.М., Шумский В.И. и др. Патент № 1613446 Российская Федерация, МПК С08F 126/06, 2/46. Способ получения поли-N-винилкапролактама/ заявитель и патентообладетель Предприятие ПЯ А-7924. Приоритет от 01 июля 1988 г. Опубл. 15.12.90 в Бюл. № 46.
- Чихачева И.П., Тимаева О.И., Кузьмичева Г.М. и др. // Кристаллография. 2016. Т. 61. № 3. С. 413.
- 8. *Timaeva O., Chihacheva I., Kuzmicheva G. et al.* // J. Mater. Res. 2018. V. 33. № 10. P. 1475.
- 9. Кузьмичева Г.М., Подбельский В.В., Степанов А.Н., Гайнанова А.А. Программа для обработки дифрактограмм наноразмерных и аморфных веществ и расчет характеристик субструктуры. Свидетельство о государственной регистрации программы для ЭВМ №2017610699.
- Peters G.S., Zakharchenko O.A., Konarev P.V. et al. // Nucl. Instrum. Methods Phys. Res. A. 2019. V. 945. P. 162616.
- 11. *Huang T.C., Toraya H., Blanton T.N. et al.* // J. Appl. Cryst. 1993. V. 26. № 2. P. 180.
- Hammersley A.P. FIT2D: An Introduction and Overview. In 1997.
- Konarev P.V., Volkov V.V., Sokolova A.V. et al. // J. Appl. Cryst. 2003. V. 36. P. 1277.

- 14. Konarev P.V., Petoukhov M.V., Volkov V.V. et al. // J. Appl. Cryst. 2006. V. 39. P. 277.
- 15. Petoukhov M.V., Franke D., Shkumatov A.V. et al. // J. Appl. Cryst. 2012. V. 45. P. 342.
- 16. Svergun D.I. // J. Appl. Cryst. 1992. V. 25. P. 495.
- 17. Свергун Д.И., Штыкова Э.В., Волков В.В. и др. // Кристаллография. 2011. Т. 56. № 5. С. 777.
- Fischer E.W., Wendorff J.H., Dettermaier M et al. // J. Macromol. Sci. Phys. B. 1976. V. 12. P. 41.
- 19. Гайнанова А.А., Кузьмичева Г.М., Васильева И.Г. // Изв. Акад. наук. Сер. хим. 2018. № 8. С. 1350.
- 20. *Dadachov M.* Novel Titanium Dioxide, Process of Making and Method of Using Same. U.S. Patent Application Publication 2006/0171877 A1, 2006.
- 21. Teng J., Bates S., Engers D.A. et al. // J. Pharm. Sci. 2010. V. 99. P. 3815.
- 22. *Guettai N., Amar H.A.* // Desalination. 2005. V. 185. P. 427.
- 23. Timaeva O., Chernyshev V., Kuz'micheva G. et al. // J. Nanosci. Nanotechnol. 2019. V. 19. P. 762.
- 24. Scherrer P. // Göttinger Nachrichten Gesell. 1918. V. 2. P. 98.
- 25. *Hall W.H.* // Proc. Phys. Soc. (London). 1949. V. 62. P. 741.
- Dusek M., Petricek V., Palatinus L. // Z. Kristallogr. 2014. B. 229. S. 345.
- 27. Жилкина А.В., Гордиенко А.А., Прокудина Н.А. и др. // Физическая химия. 2013. Т. 87. № 4. С. 685.