УДК 548.736.6

_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ _____ Соединений

НОВЫЕ ДАННЫЕ ОБ ИЗОМОРФИЗМЕ В МИНЕРАЛАХ ГРУППЫ ЭВДИАЛИТА. VII. КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА МИНЕРАЛА РЯДА ЭВДИАЛИТ–СЕРГЕВАНИТ ИЗ ЛОВОЗЕРСКОГО ЩЕЛОЧНОГО МАССИВА

© 2020 г. Р. К. Расцветаева^{1,*}, Н. В. Чуканов^{2,3}, К. В. Ван⁴

¹Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия ²Институт проблем химической физики РАН, Черноголовка, Россия

³Московский государственный университет им. М.В. Ломоносова, Москва, Россия

⁴Институт экспериментальной минералогии им. Д.С. Коржинского РАН, Черноголовка, Россия

**E-mail: rast@crys.ras.ru* Поступила в редакцию 28.01.2020 г. После доработки 04.02.2020 г. Принята к публикации 04.02.2020 г.

Методами рентгеноструктурного анализа, электронно-зондового микроанализа и ИК-спектроскопии исследован промежуточный член ряда твердых растворов эвдиалит–сергеванит. Параметры элементарной тригональной ячейки минерала: a = 14.1944(4), c = 30.294(1) Å, V = 5286.0(3) Å³, пр. гр. *R*3. Кристаллическая структура уточнена до итогового фактора расходимости R = 4.48% в анизотропном приближении атомных смещений с использованием 2420 рефлексов с $F > 3\sigma(F)$. Идеализированная формула минерала (Z = 3): Na₁₄Sr(Ca₃Mn₃)(Na₂Fe)Zr₃Si₂₆O₇₂(OH)₃Cl · H₂O. Увеличение содержания Ca и Fe по сравнению с голотипным сергеванитом не приводит к повышению симметрии. Обсуждаются проблемы генезиса низкокальциевых минералов группы эвдиалита.

DOI: 10.31857/S0023476120040190

введение

Эвдиалит и родственные ему в структурном отношении минералы — характерные компоненты высокощелочных горных пород агпаитового ряда. Широкий интерес к группе эвдиалита связан с тем, что ее представители являются концентраторами циркония и ряда других редких и стратегических элементов, что позволяет рассматривать эти минералы как потенциальное комплексное сырье. Кроме того, минералы группы эвдиалита (МГЭ) обладают уникальными по своей сложности и вариативности особенностями строения.

Наиболее широко распространен собственно эвдиалит. В основе его структуры – гетерополиэдрический цеолитоподобный каркас $\{Ca_6Zr_3[Si_3O_9]_2[Si_{10}O_{28}]_2\}^{20-}$, состоящий из плоских дисков $Si_{10}O_{28}$, колец Si_3O_9 и Ca_6O_{24} и объединяющих их изолированных ZrO_6 -октаэдров. Пустоты каркаса заполнены переменным числом катионов разных размеров – относительно мелких (в *M*2-позиции) и крупных (в *N*-позициях), а также дополнительных анионов и молекул воды. На протяжении большого периода времени существовало мнение, что каркас эвдиалита остается неизменным по своему составу при любых флуктуациях состава минерала в целом, и эмпирические формулы рассчитывали на основе целочисленных значений коэффициентов для Zr и Ca. Однако в условиях дефицита кальция или при высокой активности ряда элементов (Ti, Nb, Zr, W) образуются МГЭ иного состава. В частности, при содержании кальция меньше шести атомов на формулу (при Z=3) возможно упорядочение Ca и заменяющих его элементов. Шестичленное кольцо из связанных ребрами октаэдров распадается на две тройки неэквивалентных по составу и размеру октаэдров с потерей плоскости симметрии и понижением симметрии от R3m до R3.

Впервые упорядочение Са и Мп было установлено в онейллите [1], Са и Fe – в раслаките [2], а Са и Na – в воронковите [3]. К настоящему времени упорядочение в шестичленных кольцах установлено еще в ряде минералов [4–8], теперь их относят к МГЭ со структурным типом онейллита [9]. Недавно Комиссией по новым минералам, номенклатуре и классификации Международной минералогической ассоциации был утвержден новый МГЭ, относящийся к структурному типу онейллита – сергеванит Na₁₅(Ca₃Mn₃)(Na₂Fe)Zr₃Si₂₆O₇₂(OH)₃ · H₂O (IMA № 2019-057).

Рис. 1. ИК-спектр сергеванита с повышенными содержаниями Са и Fe.

В настоящей работе исследован еще один низкокальциевый представитель группы с упорядочением в шестичленном кольце, принадлежащий к системе твердых растворов раслакит—сергеванит—эвдиалит. Этот минерал отличается от голотипного сергеванита повышенным содержанием железа и кальция, от раслакита — составом в позициях шестичленного кольца, а от онейллита составом *M*2-позиции между этими кольцами и рядом других структурных особенностей.

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры

Идеализированная формула (Z=3)	$\frac{Na_{14}Sr(Ca_{3}Mn_{3})(Na_{2}Fe)Zr_{3}}{Si_{26}O_{72}(OH)_{3}Cl \cdot H_{2}O}$
<i>a</i> , <i>c</i> , Å	14.1944(4), 30.294(1)
$V, Å^3$	5286.0(3)
Сингония, пр. гр., Z	Тригональная, <i>R</i> 3, 3
Размеры кристалла, мм	$0.1 \times 0.1 \times 0.2$
Дифрактометр	Xcalibur Eos CCD Oxford Diffraction
Излучение; λ, Å	Mo <i>K</i> _α ; 0.71073
Тип сканирования	ω
Пределы h, k, l	$\begin{array}{l} -27 < h < 14, -27 < k < 14, \\ -56 < l < 65 \end{array}$
$(\sin\theta/\lambda)_{max}$	0.8
Общее количество/число	21806/2416
независимых отражений с <i>F</i> > 3σ <i>F</i>	
Метод уточнения	МНК по <i>F</i>
<i>R</i> , %	4.48
Программа	AREN [10]

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Изученный в настоящей работе МГЭ найден одним из авторов (Н.В. Чукановым) в составе специфической горной породы — ультраагпаитовой разновидности фойяита, на горе Карнасурт в Ловозерском щелочном массиве (Кольский полуостров), где он образует изометричные зерна оранжевого цвета размером до 2 мм в ассоциации с микроклином, нефелином, эгирином, щелочным амфиболом и рядом акцессорных минералов индикаторов ультраагпаитовой обстановки (вуоннемитом, ломоносовитом и казаковитом). Минерал исследован с применением комплекса методов — микрозондового анализа, ИК-спектроскопии и рентгеноструктурного анализа.

Химический состав исследовали методом рентгеноспектрального микроанализа с применением растрового электронного микроскопа Tescan Vega-II XMU (режим EDS, ускоряющее напряжение 20 кВ, ток 400 пА) и использованием системы регистрации рентгеновского излучения и расчета состава образца INCA Energy 450. Состав, рассчитанный на Si = 25.2 (согласно данным рентгеноструктурного анализа), укладывается в следующую эмпирическую формулу (даны пределы содержаний с учетом неоднородности зерен, Z = 3): $(H_3O)_x Na_{12.7 \pm 0.7} K_{0.12 \pm 0.02} Ln_{0.5 \pm 0.1} Sr_{0.7 \pm 0.05} Ca_{4.0 \pm 0.3} Mn_{1.5 \pm 0.1} Fe_{0.7 \pm 0.2} Zr_{3.3 \pm 0.2} Ti_{0.2} Nb_{0.15 \pm 0.05} Hf_{0.02 \pm 0.01} Si_{25.2} O_{72} S_{0.12} Cl_{0.7 \pm 0.1} (OH,O)_y \cdot nH_2 O.$

ИК-спектр образца (рис. 1), предварительно растертого в агатовой ступке и запрессованного в таблетку с KBr, снят на фурье-спектрометре ALPHA FTIR (Bruker Optics, Германия) в диапазоне волновых чисел 360-3800 см⁻¹ при разрешающей способности 4 см⁻¹ и числе сканирований, равном 16. В качестве образца сравнения использовали аналогичную таблетку из чистого KBr. Для сбора дифракционных данных на монокристальном CCD-дифрактометре Xcalibur Oxford Diffraction (Мо K_{α} -излучение) был выбран фрагмент данного образца. Характеристика кристалла и данные эксперимента приведены в табл. 1.

Учитывая близость химического состава образца, изученного в настоящей работе, к составу образца 8210 [4], в качестве стартового набора были использованы координаты атомов каркаса последнего. Внекаркасные позиции найдены из серии разностных синтезов электронной плотности. Для минералов со структурным типом эвдиалита характерно расщепление всех внекаркасных позиций M2-4 (для мелких и средних по размеру катионов), N (для крупных катионов) и X (для дополнительных анионов Cl⁻, F⁻, молекул воды и анионных групп). Состав катионов в некоторых позициях и подпозициях уточняли с учетом смешанных кривых атомного рассеяния. Все расчеты выполнены по системе кристаллографи-

ческих программ AREN [10]. Уточненные структурные параметры и характеристики координационных полиэдров приведены в табл. 2, 3 и 4 соответственно.

ОПИСАНИЕ СТРУКТУРЫ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Основные особенности состава и строения изученного МГЭ отражены в его кристаллохимической формуле (Z = 3), которая находится в хорошем согласии с эмпирической: $[Na_{11.3}(H_3O)_{2.31}$ $Sr_{0.69}Ln_{0.3}][K_{0.12}][Ca_{2.7}Ln_{0.3}][Mn_{1.56}Ca_{1.44}](Zr_{2.85}Ti_{0.11}$ $Hf_{0.04})[Si_{24}O_{72}][Na_{1.75}^{VIF}Fe_{0.75}^{V}(Zr_{0.5})^{VI}][Si_{0.48}(S,Si)_{0.12}$ $(Al_{0.21}^{VI}Si_{0.19})][Si_{0.5}Ti_{0.2}Nb_{0.13-0.17}](OH,O)_{3.53}Cl_{0.76}$ $(H_2O)_{0.86}$, где квадратными скобками выделены составы ключевых позиций структуры, а римскими цифрами обозначены координационные числа катионов. Идеализированная формула (Z = 3): $Na_{14}Sr(Ca_3Mn_3)(Na_2Fe)Zr_3Si_{26}O_{72}(OH)_3Cl \cdot H_2O$.

Одной из особенностей химического состава изученного образца является высокое содержание марганца, который восполняет недостающее количество Са в одном из двух независимых октаэдров шестичленного кольца, в то время как второй октаэдр заполнен целиком Са с небольшой примесью редкоземельного элемента. Мп-доминантный и Са-доминантный октаэдры чередуются в шестичленных кольцах. Параллельные ребра этих октаэдров, принадлежащих соседним кольцам, образуют квадрат, в котором находится ключевая позиция *M*2.

Современные экспериментальные и расчетные методы позволяют локализовать и уточнять позиции и их расщепление в цеолитоподобных структурах, к которым относятся и МГЭ. В исследованном образце центр квадрата остается не занятым, а катионы железа, избыточного (по отношению к позиции Zr) циркония и натрия занимают подпозиции по обе стороны квадрата (рис. 2), которые находятся на коротких расстояниях друг от друга: M2a - M2b = 0.67(1), M2a - M2c = 1.23(1), M2b - M2c = 1.90(1) Å. Все эти подпозиции скоординированы полиэдрами на базе упомянутого выше квадрата и заполнены статистически. Атомы Fe находятся в подпозиции M2b, в пятивершиннике. В связи с тем, что количество циркония в образце превышает три атома на формулу, необходимые для октаэдра каркаса, избыточные атомы Zr находятся в пятивершиннике M2a с pacстояниями в пределах 2.07-2.347 Å, дополненном до октаэдра атомом кислорода, удаленным на 2.7 Å. Атомы Na располагаются в семивершиннике, координирующем позицию M2c. С учетом заселенности этих подпозиций преобладающим катионом в M2 является натрий, а наименее засе-

Таблица 2. Координаты и эквивалентные параметры смещений $(B_{_{3KB}})$ атомов каркаса

Позиция	x/a	y/b	z/c	$B_{_{\rm ЭKB}}, {\rm \AA}^2$
Zr	0.3327(1)	0.1693(1)	0.1669(1)	1.38(3)
<i>M</i> 1.1	0.2559(1)	0.0004(1)	0.0005(1)	1.22(2)
<i>M</i> 1.2	0.2666(1)	0.2664(1)	0.0005(1)	0.95(3)
Si1	-0.0090(2)	0.3866(2)	0.0966(1)	0.6(1)
Si2	0.2680(2)	0.3265(2)	0.2361(1)	1.1(1)
Si3	0.5268(2)	0.2669(2)	0.2522(1)	1.2(1)
Si4	-0.0085(2)	0.6014(2)	0.0968(1)	0.7(1)
Si5	0.2091(2)	0.4162(2)	0.0762(1)	1.0(1)
Si6	0.0836(2)	0.5426(2)	0.2578(1)	0.9(1)
Si7	0.0545(2)	0.3261(2)	0.2365(1)	1.1(1)
Si8	0.1412(2)	0.0736(2)	0.0814(1)	0.9(1)
01	0.4731(7)	0.2387(9)	0.2029(3)	2.9(4)
O2	0.2614(6)	0.0320(7)	0.2048(3)	1.7(4)
O3	0.4120(9)	0.3078(7)	0.1272(3)	2.6(4)
O4	0.6066(7)	0.3991(6)	0.2534(3)	2.0(4)
O5	0.4390(6)	0.2230(8)	0.2897(2)	2.2(4)
O6	0.4070(6)	0.0342(6)	0.0454(2)	1.0(4)
O 7	0.1014(6)	0.3775(7)	0.1078(2)	1.3(4)
O 8	0.0255(6)	0.5130(6)	0.1117(2)	1.4(4)
O9	0.2718(11)	0.5461(8)	0.0650(2)	3.7(4)
O10	0.1831(6)	0.3627(6)	0.0287(2)	1.1(4)
O11	0.0282(7)	0.5162(8)	0.3035(2)	1.9(4)
O12	0.1758(7)	0.3525(7)	0.2178(2)	1.8(4)
O13	0.0385(6)	0.2968(5)	0.2885(2)	1.3(4)
O14	0.3850(8)	0.4363(8)	0.2274(3)	2.8(4)
O15	0.3938(7)	0.6052(7)	0.2531(2)	2.0(4)
O16	0.0570(6)	0.1195(5)	0.0759(2)	1.4(4)
O17	0.1911(7)	0.0982(9)	0.1295(2)	2.5(4)
O18	0.2232(8)	0.1142(9)	0.0408(3)	3.0(4)
O19	0.4120(8)	0.1063(8)	0.1274(3)	2.3(4)
O20	0.6257(8)	0.0348(8)	0.0461(2)	2.0(4)
O21	0.2557(7)	0.2954(8)	0.2865(3)	2.4(4)
O22	0.2610(6)	0.2319(6)	0.2052(3)	1.6(4)
O23	0.2833(6)	0.3848(9)	0.1072(2)	2.2(4)
O24	0.0429(7)	0.4351(8)	0.2264(3)	2.2(4)

Примечание. Кратность всех позиций равна 9.

ленная подпозиция в этой микрообласти – циркониевая (табл. 5).

Каждая из других видообразующих позиций, M3 и M4, располагающихся на оси третьего порядка вблизи центра обоих девятичленных кремнекислородных колец Si₉O₂₇, расщеплена на три подпозиции, находящиеся на коротких расстояниях друг от друга: M3a-M3b = 0.97(1), M3b-M3c =

НОВЫЕ ДАННЫЕ ОБ ИЗОМОРФИЗМЕ

Позиция	x/a	y/b	<i>z</i> ./c	Q	q	$B_{ m _{3KB}}/_{ m _{M30}*}$, Å ²
M2a	0.0118(7)	0.5030(7)	0.0007(3)	9	0.14(3)	1.62(6)
M2b	0.5233(5)	0.4813(6)	-0.0033(2)	9	0.23(3)	1.3(1)
M2c	0.1120(8)	0.5554(9)	0.0039(3)	9	0.63(3)	2.9(1)
МЗа	0.3334	0.6667	0.2479(4)	3	0.50(1)	1.6(1)
M3b	0.3334	0.6667	0.2800(3)	3	0.20(2)	1.7(2)
МЗс	0.3334	0.6667	0.2947(5)	3	0.13(2)	1.9(1)
M4a	0.3334	0.6667	0.0424(3)	3	0.40(3)	1.6(3)
M4b	0.3334	0.6664	0.0622(3)	3	0.12(1)	1.5(7)*
M4c	0.3334	0.6667	0.0899(2)	3	0.48(3)	0.4(3)
N1a	0.0899(15)	0.1851(13)	0.1623(6)	9	0.77(3)	4.2(2)
N1b	0.1152(5)	0.2293(5)	0.1510(1)	9	0.23(1)	3.1(1)
N2a	0.5559(5)	0.4407(5)	0.1788(2)	9	0.76(3)	2.4(1)
N2b	0.5980(16)	0.4109(21)	0.1620(9)	9	0.24(4)	3.3(3)
N3a	0.2352(6)	0.1207(6)	0.2772(3)	9	0.57(1)	1.7(2)
N3b	0.1908(8)	0.0921(6)	0.2906(3)	9	0.43(3)	2.0(2)
N4a	0.4639(12)	0.2185(10)	0.0421(4)	9	0.60(5)	2.3(1)
N4b	0.4249(16)	0.2243(23)	0.0625(10)	9	0.30(2)	4.6(4)
N4c	0.4588(7)	0.2323(5)	0.0513(2)	9	0.10(1)	2.7(1)
N5a	0.2904(24)	0.5122(17)	0.1727(11)	9	0.32(3)	2.4(4)
N5b	0.2414(20)	0.4950(15)	0.1744(7)	9	0.32(2)	4.7(3)
N5c	0.1861(14)	0.6130(24)	0.1514(7)	9	0.33(2)	2.6(2)*
Κ	0	0	0	3	0.12(1)	5.5(1)*
Cl1	0	0	0.2919(6)	3	0.45(2)	1.6(5)
Cl2	0.6667	0.3334	0.0421(7)	3	0.31(3)	2.7(5)
(H ₂ O)1	0	0	0.2296(15)	3	0.55(7)	2.3(9)
(H ₂ O)2	0.6667	0.3334	0.1430(21)	3	0.31(11)	4.8(9)
(OH)1	0.3334	0.6667	0.1432(4)	3	0.48(5)	4.1(9)*
(OH)2	0.3334	0.6667	0.1913(23)	3	0.54(8)	6.5(9)
(OH)3	0.231(8)	0.600(5)	0.0008(16)	9	0.41(5)	3.5*
(OH)4	0.2468(36)	0.5116(62)	0.3271(10)	9	0.39(5)	5.5*
(OH)5	0.3334	0.6667	0.012(23)	3	0.12(1)	4(1)*

Таблица 3. Координаты, кратность (*Q*), заселенность позиций (*q*) и эквивалентные параметры смещений (*B*_{экв}) внекаркасных атомов

0.44(2), M4a-M4b = 0.60(1) и M4b-M4c = 0.83(1) Å. Они заняты атомами Si, (Si,Al), Ti и Nb статистически при общем доминировании атомов Si как в M3-, так и M4-позиции (табл. 5). Таким образом, с учетом 1.29 атомов Si, дополнительных к 24 атомам в кольцах кремнекислородных тетраэдров гетерополиэдрического каркаса, исследованный образец относится к высококремнистым минералам группы эвдиалита.

Крупные катионы заполняют пять цеолитоподобных полостей каркаса, в которых *N*-позиции расщепляются на две или три подпозиции (табл. 5), отстоящие друг от друга на расстояниях: N1a - N1b = 0.64(1), N2a - N2b = 1.02(3), N3a - N3b = 0.02(3)

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

= 0.68(1), N4a-N4b = 0.80(3), N4a-N4c = 0.38(1), N4b-N4c = 0.48(2), N5a-N5b = 0.60(4), N5a-N5c == 1.38(3), N5b-N5c = 1.92(3) Å. Анионная позиция X1 расщепляется на две подпозиции, разнесенные на расстояние 1.86(4) Å и занятые C1 и H₂O соответственно. Атомы Na в N-подпозициях формируют шести-, семи- и восьмивершинники, атомы Sr занимают подпозицию N1b в центре восьмивершинника. Атомы Ln располагаются в подпозиции N4c, центрируя девятивершинник. Атомы K находятся в крупном 12-вершиннике в позиции центра шестерного кольца с координатами (0 0 0).

Позиция	Состав (Z = 3)	VII	Расстояния катион—анион, Å			
		КЧ	Мин.	Макс.	Средн.	
Zr	2.85Zr + 0.11Ti + 0.04Hf	6	2.02(1)	2.12(1)	2.066	
M 1.1	1.56Mn + 1.44Ca	6	2.28(1)	2.38(1)	2.33	
<i>M</i> 1.2	2.7Ca + 0.3 <i>REE</i>	6	2.25(1)	2.434(9)	2.366	
M2a	0.5Zr	6	2.08(1)	2.70(1)	2.26	
M2b	0.7Fe	5	1.684(9)	2.270(8)	2.092	
M2c	1.8Na	7	2.33(1)	3.01(1)	2.68	
МЗа	0.5Si	4	1.50(1)	1.69(6)	1.55	
M3b	0.1Ti + 0.1Nb	6	1.70(1)	2.383(5)	2.04	
МЗс	0.13Nb	6	1.95(1)	2.147(7)	2.05	
M4a	0.21A1 + 0.19Si	6	1.63(1)	1.787(7)	1.71	
		4	1.63(1)	1.63(5)	1.63	
M4b	0.12(S,Si)	4	1.48(1)	1.53(1)	1.49	
M4c	0.48Si	4	1.61(1)	1.65(1)	1.64	
N1a	2.31H ₃ O	8	2.48(2)	3.13(2)	2.696	
N1b	0.69Sr	8	2.52(1)	2.73(1)	2.63	
N2a	2.28Na	8	2.51(1)	2.81(1)	2.63	
N2b	0.72Na	6	2.42(2)	3.02(3)	2.61	
N3a	1.71Na	7	2.36(1)	2.93(8)	2.60	
N3b	1.29Na	6	2.22(1)	2.63(1)	2.46	
N4a	1.8Na	8	2.32(1)	2.96(1)	2.66	
N4b	0.9Na	5	2.30(3)	2.63(1)	2.47	
N4c	0.3 <i>REE</i>	9	2.45(1)	2.96(6)	2.72	
N5a	0.9Na	7	2.43(3)	3.10(3)	2.55	
N5b	0.8Na	9	2.19(2)	3.05(2)	2.69	
N5c	0.9Na	7	2.33(4)	3.10(2)	2.59	
К	0.12K	12	2.728(8)	3.095(9)	2.92	

Таблица 4. Характеристики координационных полиэдров

Примечание. Расстояния в SiO₄-тетраэдрах каркаса не приведены ввиду их стандартных значений. *REE* – редкоземельный элемент.

Кристаллохимические особенности изученного МГЭ находятся в хорошем согласии с его ИКспектром (рис. 1). В частности, полосы при 3503 и 3368 см⁻¹ относятся к валентным колебаниям молекул воды и ОН-групп. Поглощение в диапазоне 3000-3300 см⁻¹ скорее всего связано с присутствием ионов H_3O^+ . Пик при 1647 см⁻¹ относится к деформационным колебаниям молекул воды. Полосы в интервале 980-1080 и при 930 см⁻¹ связаны с Si-O-валентными колебаниями кремнекислородных колец и дополнительных тетраэдров SiO₄ (в позициях *M*3 и *M*4) соответственно. Высокая интенсивность полосы при 930 см⁻¹ свидетельствует о высоком содержании кремния в позициях МЗ и М4. Характерная полоса группы FeO₄ (с железом в координации плоского квадрата), проявляющаяся в МГЭ в интервале 540544 см⁻¹, в спектре изученного образца отсутствует. Вместо нее наблюдается полоса при 532 см⁻¹, относящаяся к пятивершиннику FeO₅. Остальные полосы с волновыми числами ниже 800 см⁻¹

Рис. 2. Упорядочение Mn и Ca в октаэдрах шестичленного кольца и распределение *M*2-катионов между октаэдрами соседних шестичленных колец.

НОВЫЕ ДАННЫЕ ОБ ИЗОМОРФИЗМЕ

Минерал	<i>M</i> 1 <i>a</i>	<i>M</i> 1 <i>b</i>	М2	М3	<i>M</i> 4	Литература
Онейллит	Mn	Ca	$\mathbf{Fe}_{1.43}^{V}Mn_{0.96}^{V}Zr_{0.25}^{V}$	Nb	Si	[1]
Раслакит	Fe	Ca	$Na_{1.5}^V(Zr_{0.8}Hf_{0.1})^{IV}Mn_{0.6}^V$	Si	Si	[2]
Воронковит	Mn	Na	$\mathbf{Fe}_{1.5}^{IV}Zr_{0.65}^{V}Na_{0.55}^{VI}(Ti,Nb)_{0.3}^{V}$	Si	Si	[3]
Мп-аналог раслакита (№ 8210)	Mn	Ca	$\mathbf{Na}_{1.8}^{\mathrm{IV}}\mathrm{Na}_{0.6}^{\mathrm{VI}}\mathrm{Fe}_{0.6}^{\mathrm{VI}}$	Si	Si	[4]
Гиперциркониевый сульфатный МГЭ	Mn	Ca	$\mathbf{Zr}_{0.81}^{IV} \mathbf{Zr}_{0.66}^{V} \mathbf{Na}_{0.96}^{VI}$	S	Si	[5]
"R3-эвдиалит"	Mn	Ca	$Na_{1.8}^{V}(Mn_{0.6}Fe_{0.15})^{V}(Zr_{0.4}Hf_{0.05})^{V}$	Si	Si	[6]
Эвдиалит 2656	Ca	Mn	$\mathbf{Fe}_{0.93}^{IV}(Fe_{0.5}Mn_{0.1})^{V}Zr_{0.45}^{V}$	Si	Si	[7]
Эвдиалит 2676	Ca	Mn	$(Fe_{1.2}Mn_{0.24})^{V}Mn_{0.72}^{V}$	Si	Nb	[7]
Высокоциркониевый МГЭ	Fe	Ca	$\mathbf{Na_{0.9}^{V}Zr_{0.66}^{IV}Zr_{0.54}^{V}Na_{0.45}^{V}}$	Si	Al, Si	[8]
Сергеванит	Mn	Ca	$Na_{1.83}^{VII}Fe_{0.75}^{V}(Zr_{0.36}Hf_{0.06})^{VI}$	Si	Si	[наст. работа]

Таблица 5. Состав видообразующих ключевых позиций минералов со структурным типом онейллита (пр. гр. R3)

Примечание. Римскими цифрами обозначены координационные числа полиэдров.

относятся к деформационным колебаниям гетерополиэдрического каркаса. Отнесение полос проведено на основе данных об ИК-спектрах представительной выборки МГЭ с изученными кристаллическими структурами [11].

В табл. 5 приведены кристаллохимические ключевые позиции в структурах низкокальшиевых МГЭ с низкой симметрией и упорядочением в CaO₆-октаэдрах шестичленного кольца. Изученный в настоящей работе МГЭ является сергеванитом с повышенным содержанием Са и Fe. или разновидностью сергеванита, с переходным составом относительно эвдиалита. Этот минерал близок к двум другим МГЭ – образцу 8210 из Ловозерского щелочного массива (гора Аллуайв) [4] и "R3-эвдиалиту" из Ловозерского щелочного массива (гора Аллуайв) [6]. Все три минерала найдены в различных месторождениях и поэтому имеют особенности состава и строения при сохранении общего сходства основных ключевых позиций. В целом члены группы эвдиалита, относящиеся к онейллитовому структурному типу и принадлежащие системе твердых растворов раслакит-сергеванит-эвдиалит, являются эндемиками специфических магматических горных пород – высокоагпаитовых разновидностей нефелиновых сиенитов (в основном, фойяитов) и связанных с ними пегматитов.

Следует отметить, что в позиции M1.2 изученного в настоящей работе минерала марганец лишь незначительно доминирует над кальцием. Учитывая тот факт, что частичное замещение Mn^{2+} ионами Fe²⁺ не может быть выявлено средствами монокристального рентгеноструктурного анализа, нельзя исключать присутствия примеси Fe²⁺ в позиции M1.2. В таком случае эта позиция может быть Са-доминантной (с Ca > Mn и Ca > Fe) и, согласно принятым правилам выделения минеральных видов, данный образец можно было бы рассматривать как потенциально новый минерал группы эвдиалита.

выводы

Химически и структурно изученный минерал является членом группы эвдиалита, относящимся к онейллитовому структурному типу и принадлежащим системе твердых растворов раслакит сергеванит—эвдиалит. Минералы этой системы являются типоморфными компонентами специфических горных пород — высокоагпаитовых разновидностей нефелиновых сиенитов и связанных с ними пегматитов. В случае доминирования кальция в позиции *M*1.2 изученный в настоящей работе МГЭ можно рассматривать как потенциально новый минеральный вид.

Работа выполнена при поддержке Министерства науки и высшего образования в рамках Государственного задания ФНИЦ "Кристаллография и фотоника" РАН в части рентгеноструктурного анализа и Российского фонда фундаментальных исследований (проект № 18-29-12005) в части кристаллохимического анализа микропористых минералов группы эвдиалита. ИК-спектроскопическое исследование выполнено в соответствии с темой Государственного задания, номер государственного учета ААА-А19-119092390076-7. Работы по сбору минерала, анализа его химического состава и диагностики ассоциирующих минералов выполнены при поддержке Российского фонда фундаментальных исследований (проект № 18-29-12007_мк). Работа выполнена с использованием оборудования ЦКП ФНИЦ "Кристаллография и фотоника" при поддержке Минобрнауки (проект RFMEFI62119X0035).

СПИСОК ЛИТЕРАТУРЫ

- Johnsen O., Grice J.D., Gault R.A. // Can. Mineral. 1999. V. 37. P. 1111.
- 2. Екименкова И.А., Расцветаева Р.К., Чуканов Н.В. // Докл. РАН. 2000. Т. 374. № 3. С. 352.
- 3. *Расцветаева Р.К., Хомяков А.П.* // Кристаллография. 2000. Т. 45. № 4. С. 649.
- 4. Расцветаева Р.К., Аксенов С.М., Чуканов Н.В. // Докл. РАН. 2010. Т. 431. № 2. С. 201.
- 5. *Расцветаева Р.К., Чуканов Н.В., Верин И.А.* // Докл. РАН. 2006. Т. 409. № 6. С. 807.
- Расцветаева Р.К., Хомяков А.П., Некрасов Ю.В. // Кристаллография. 1999. Т. 44. № 5. С. 824.

- 7. Расцветаева Р.К., Розенберг К.А., Пеков И.В. и др. // Кристаллография. 2006. Т. 51. № 2. С. 235.
- 8. *Расцветаева Р.К., Хомяков А.П. //* Кристаллография. 2000. Т. 45. № 2. С. 251.
- 9. *Расцветаева Р.К., Чуканов Н.В.* // Зап. Рос. минерал. о-ва. 2011. Ч. 140. № 3. С. 25.
- 10. *Андрианов В.И.* // Кристаллография. 1987. Т. 32. Вып. 1. С. 228.
- Расцветаева Р.К., Чуканов Н.В., Аксенов С.М. Минералы группы эвдиалита: кристаллохимия, свойства, генезис. Нижний Новгород: Изд-во НГУ, 2012. 229 с.