—— КРИСТАЛЛОХИМИЯ ——

УДК 548.32; 548.326; 546.650; 541.123.2

К 120-летию со дня рождения академика А.В. Новоселовой

# ПОЛИМОРФИЗМ, ИЗОМОРФИЗМ И МОРФОТРОПИЯ В ТРИФТОРИДАХ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ (*R*) И СИСТЕМАХ *R*F<sub>3</sub>-*R*'F<sub>3</sub>

© 2020 г. Б. П. Соболев\*

<sup>1</sup>Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

\**E-mail: sobolevb@yandex.ru* Поступила в редакцию 30.07.2019 г. После доработки 20.01.2020 г. Принята к публикации 20.01.2020 г.

Взаимосвязь полиморфизма, изоморфизма и морфотропии прослежена для гомологического ряда 16 трифторидов редкоземельных элементов (P3Э) (без ScF<sub>3</sub>) и фаз  $R_{1-x}R'_xF_3$  (R – P3Э) по T–x-диаграммам систем  $RF_3-R'F_3$ . Полиморфизм определяется атомными номерами P3Э Z и T, меняющими соотношение радиусов  $r_+/r_-$  (катион/анион). По полиморфизму и типам структур LaF<sub>3</sub>,  $\beta$ -YF<sub>3</sub> и  $\alpha$ -YF<sub>3</sub> ( $\alpha$ -UO<sub>3</sub>) выделяют структурные подгруппы  $RF_3$ : A (R = La–Nd), B (R = Pm–Gd), C (R = Tb– Ho) и D (R = Er–Lu, Y). Сочетания  $RF_3$  образуют 10 типов систем  $RF_3-R'F_3$ . Изоморфизм (совершенный и ограниченный) выражается в областях гомогенности фаз  $R_{1-x}R'_xF_3$ . Он влияет на структуру  $R_{1-x}R'_xF_3$  через соотношение  $r_+/r_-$ , готовя вместе с T их морфотропные превращения (MП). Морфотропия  $R_{1-x}R'_xF_3$  регулируется T и x через  $r_+/r_-$  и реализуется путем фазовых реакций расплава с  $R_{1-x}R'_xF_3$  и  $R_{1-y}R'_xF_3$  разной структуры при перитектической MП-I и (или) эвтектической MП-II температурах. Морфотропные превращения структур  $R_{1-x}R'_xF_3$  происходят на границе GdF<sub>3</sub>-TbF<sub>3</sub> (Z= 64.43–64.51; MП-I; 1186 ± 10°C) и HoF<sub>3</sub>-ErF<sub>3</sub> (Z= 67.67–67.36; MП-II; 1120 ± 10°C). Дано определение истинной морфотропии для систем в координатах T–x.

DOI: 10.31857/S0023476120040220

#### **ВВЕДЕНИЕ**

В анализе исторических корней теоретической кристаллохимии [1] изложено формирование в течение около двух сотен лет представлений о ее основных (категорийных) понятиях: полиморфизме (М. Клапрот, 1798), изоморфизме (Е. Митчерлих, 1819) и морфотропии (П.Г. Грот, 1870), которые долгое время развивались независимо. Все они – способы изменения структуры под действием интенсивных параметров состояния систем.

Полиморфизм все эти годы изучался экспериментально, как и изоморфизм. Морфотропия, понятие о которой возникло позже, надолго "застыла" на "мысленном" способе фиксации смены структуры в рядах минералов и солей при изменении качественного (элементного) состава.

Переход от "мысленного" метода выявления морфотропии к экспериментальному необходим в силу объективных причин. Для различения подходов для последнего примем термин "истинной морфотропии". Между ними нет конфликта — это разные приближения к реальности. Оба существуют, определяясь доступностью физико-хи-мического эксперимента.

Морфотропные ряды минералов и простых (ионных) соединений формируются заменой катионов  $M^{m^+}$  (при одном анионе) по группам Периодической системы. Экспериментальное изучение истинной морфотропии для минералов оказалось невыполнимо. Самый длинный в то время гомологический ряд представлен 10 карбонатами  $MCO_3$ . Изучение T-x-фазовых диаграмм "сухих" систем  $MCO_3-M'CO_3$  невозможно из-за термического разложения. Недостаток ряда  $MCO_3$  и в том, что при большой разнице атомных номеров  $\Delta Z$  он имеет всего две морфотропные формы.

Информацию об истинной морфотропии дают бинарные (как простейшие) системы, образованные соединениями гомологического ряда  $MX_m$  с

разными (морфотропными) структурами. Переход к таким системам для изучения истинной морфотропии предложил В.М. Гольдшмидт (1925).

Второй компонент системы  $MX_m - M'X_m$  "строит мост" между разными качественными составами членов гомологического ряда  $MX_m$  и  $M'X_m$ , вводя количественный состав x, пропорциональный содержанию второго катиона M в фазе  $M_{1-x}M_xX_m$ . Это тоже фактор состава, но в дробных долях Z. Постепенный рост x сглаживает различия морфотропных структур  $MX_m$  и  $M'X_m$ , подготавливая морфотропный переход (**МП**).

Появление в системе  $MX_m - M'X_m$  второго катиона M' делает в принципе возможным изоморфизм. Для объединения полиморфизма простых соединений ряда  $MX_m$  (компонентов систем) с изоморфизмом и морфотропией двухкомпонентных фаз  $M_{1-x}M_xX_m$  в системах  $MX_m - M'X_m$  будем считать  $MX_m$  вырожденными системами с x = 0.

Трифториды редкоземельных элементов (**P3**Э) образуют более длинный гомологический ряд. Согласно IUPAC (International Union of Pure and Applied Chemistry) P39 - 17 элементов от Sc до Lu из 4–6 периодов побочной подгруппы III группы Периодической системы. Исключим ScF<sub>3</sub> из-за его отличной от остальных  $RF_3$  структуры. Сово-купность Y, La и *Ln* будем обозначать символом *R*, применяемым ко всему семейству P39 [2, 3].

Исследования трифторидов РЗЭ в бинарных (и более сложных) системах были начаты в нашей стране в начале 70-х годов прошлого столетия на химическом факультете МГУ под руководством академика Александры Васильевны Новоселовой ее сотрудниками и учениками.

Поиск фторидных материалов для квантовой электроники инициировал в 70-х годов постановку автором статьи (дипломником А.В. Новоселовой) в Институте кристаллографии РАН совместно с химическим факультетом МГУ и Институтом химии АН Таджикистана программы изучения Т-х-фазовых диаграмм конденсированного состояния (P = const) систем  $MF_m - RF_n$  $(m \le n \le 4)$  из 27 фторидов. Она завершилась монографией [2] по более чем 200 системам с ~480 фазами, ~370 из которых можно получить в виде монокристаллов [3]. Настоящая монография посвящена А.В. Новоселовой – создателю фторидной школы неоргаников, прививавшей своим ученикам доведение научных исследований до получения материалов с практическим значением.

Полиморфизм, изоморфизм и морфотропия у  $RF_3$  и фаз  $R_{1-x}R'_xF_3$  в системах  $RF_3-R'F_3$  необычайно развиты [2] и подготовлены для анализа соотношения этой триады в ионных кристаллах.

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

Приведем определения каждого явления, опираясь на [1].

Полиморфизм — структурный переход при изменении интенсивных параметров состояния. В однокомпонентной системе при постоянном давлении это температура.

Изоморфизм — взаимное замещение атомов разных химических элементов (их групп) в эквивалентных позициях кристаллической структуры.

Морфотропия — резкое изменение кристаллической структуры в закономерном ряду химических соединений при сохранении количественного соотношения структурных единиц. В ряде других определений говорится о дискретности изменения состава и изотермичности.

Последние десятилетия не внесли корректив в определения полиморфизма и изоморфизма, многие вопросы которых для фторидов РЗЭ решены в частных исследованиях. Изучен полиморфизм  $RF_3$  [4–9], установлены их три структурных типа: LaF<sub>3</sub> [10], β-YF<sub>3</sub> [11] и α-YF<sub>3</sub> (α-UO<sub>3</sub>) [12], плавное изменение координационного числа (КЧ) катиона [13–15]. Выявлены четыре структурные подгруппы  $RF_3$  [6, 16]. Изоморфизм  $R^{3+}$  и  $R'^{3+}$  изучен в фазах  $R_{1-x}R'_{x}F_{3}$  34 систем  $RF_{3}-R'F_{3}$ [2, 17-21]. Пределы изоморфных замещений в  $Gd_{1-x}R'_{x}F_{3}$  подчиняются геометрическому фактору [18]. Определены условия МП для 11 фаз [17-19]. По температурам плавления ряд  $RF_3$  разделен на две морфотропные группы: LaF<sub>3</sub>-GdF<sub>3</sub> и TbF<sub>3</sub>-LuF<sub>3</sub> [22]. Морфотропный переход между GdF<sub>3</sub> и TbF<sub>3</sub> по оценке [22] совпал с изучением [18] системы GdF<sub>3</sub>-TbF<sub>3</sub>. В [23] рассмотрены полиморфизм  $RF_3$ , изоморфизм  $R^{3+}$  и  $R'^{3+}$  в  $R_{1-x}R'_xF_3$ , фазовые реакции МП и сформулирован подход к изучению триады в системах  $RF_3 - R'F_3$ .

Изоморфизму посвящено много работ, из которых по неорганическим фторидам отметим [24]. Изоморфизм ионов РЗЭ в  $RF_3$  частично обсуждался в [2]. Современных работ по морфотропии в ионных кристаллах не известно.

Ведущая роль РЗЭ во фторидном материаловедении и фотонике в середине 80-х привлекла внимание к изучению  $RF_3$  и систем  $RF_3-R'F_3$ . Большинство систем  $RF_3-R'F_3$  опубликовано в труднодоступных изданиях. В сборнике "Рост кристаллов" (перевод "Growth of Crystals" [17]) 16 систем, отдельные системы в тезисах докладов. Около трети систем в периодической печати не публиковалось. Недостаток информации показала работа [25] по системе GdF<sub>3</sub>-LuF<sub>3</sub>, авторы которой посчитали себя пионерами в этой области химии (критический анализ работы [25] сделан в [26]).

Работа продолжает начатое [6, 7, 18] изучение соотношения полиморфизма, изоморфизма и

морфотропии в  $RF_3$  и системах  $RF_3-R'F_3$ . Ранее задача стабилизации фаз  $R_{1-x}R'_xF_3$  со структурой типа  $\beta$ -YF<sub>3</sub> изоморфными замещениями решалась [18] изучением систем GdF<sub>3</sub>- $RF_3$  с близкими по ряду  $RF_3$ . В данной работе число фаз в МП увеличено вдвое за счет систем из отдаленных по ряду  $RF_3$ . Полиморфизм, изоморфизм и морфотропия впервые рассматриваются в периодической печати совместно на основе 20 изученных бинарных систем.

Цели сообщения: рассмотреть изменения полиморфизма и плавкости 16 трифторидов У. La и 14 лантаноидов (Ln) гомологического ряда RF<sub>3</sub>; обсудить изоморфизм ионов РЗЭ в системах RF<sub>3</sub>- $R'F_3$  в связи со структурными подгруппами  $RF_3$  и 10 типами систем; рассмотреть трансформацию фазовых диаграмм RF<sub>3</sub>-R'F<sub>3</sub> с ростом разницы химического различия компонентов  $\Delta Z_{\max}$  по атомным номерам  $R^{3+}$  и  $R'^{3+}$ ; обсудить соотношение основных морфотропных типов структур фаз  $R_{1-x}R'_{x}F_{3}$  (LaF<sub>3</sub> и β-YF<sub>3</sub>); выделить типы МП в системах GdF<sub>3</sub>-TbF<sub>3</sub> и HoF<sub>3</sub>-ErF<sub>3</sub>; рассчитать границы МП фаз  $R_{1-x}R'_xF_3$ ; обсудить соотношение полиморфизма, изоморфизма и морфотропии в некоторых системах  $RF_3 - R'F_3$ ; внести коррективы в определение истинной морфотропии.

## ГОМОЛОГИЧЕСКИЙ РЯД ҮF<sub>3</sub>, LaF<sub>3</sub> И 14 *Ln*F<sub>3</sub>

Понятие гомологии, имеющее в химии несколько значений, здесь применено к соединениям  $RF_3$  с одинаковой формулой. Трифториды P3Э – гомологический ряд простейшего состава ( $RF_3$ ) с ионным характером химической связи и минимальной разницей атомных номеров катионов соседних соединений:  $\Delta Z = 1$ . Длина ряда  $RF_3$  одна из максимальных: 16 соединений. Максимально и число структурных типов  $RF_3$  – три (без ScF<sub>3</sub>).

Ряд  $RF_3$  состоит из трех *d*-элементов: Sc, Y, La, и 14 *4f*-элементов – лантаноидов (*Ln*) от Ce до Lu. Химическое родство РЗЭ базируется на электронном строении и выражается в помещении 15 элементов <sup>57</sup>La<sup>-71</sup>Lu в одну клетку Периодической таблицы и их валентности 3+.

Трифториды Y, La и *Ln* среди неорганических фторидов составляют ~60% от 27 компонентов систем  $MF_m - RF_n$  (*m*,  $n \le 4$ ), используемых для получения многокомпонентных кристаллических фторидных материалов [3]. Полиморфизм, изоморфизм и морфотропия обсуждаются на примере многочисленного семейства фторидов, имеющего фундаментальный и практический интерес.



Рис. 1. Полная схема фазовых превращений в RF<sub>3</sub> [2, 27].

#### ПОЛИМОРФИЗМ И ПЛАВКОСТЬ В ГОМОЛОГИЧЕСКОМ РЯДУ *R*F<sub>3</sub>

Полиморфизм и плавкость  $RF_3$  хорошо изучены [4-8]. Полиморфизм вызывается изменением интенсивного параметра состояния – температуры (T) – через геометрический фактор. С ростом T размер аниона растет быстрее, чем катиона [1]. Соотношение " $r_+/r_-$ " падает, уменьшая КЧ и вызывая полиморфизм. При малом размере и низкой поляризуемости иона  $F^{1-}$  он может иначе реагировать на рост T, чем крупные анионы. Хотя зависимость  $r_+/r_-$  от T играет определяющую роль в триаде, она мало изучена.

Схема фазовых превращений (полиморфизм и плавление)  $RF_3$  (без ScF<sub>3</sub>) приведена на рис. 1 по [2, 6, 7, 27] в порядке роста *Z* (кроме YF<sub>3</sub>). Изменение структур  $RF_3$  отражается в разных наклонах их кривых плавления *1*, *3*, *5*, *6*. Исключение – кривые *1* и *3*, описывающие  $RF_3$  одного типа LaF<sub>3</sub>.

На нижней оси рис. 1 — условной изотерме комнатных температур — ряд  $RF_3$  по рентгенографическим данным делится на две части: со структурой типа LaF<sub>3</sub> (тисонита) с R = La-Nd; со структурой типа  $\beta$ -YF<sub>3</sub> для остальных  $RF_3$  с R = (Pm), Sm-Lu и Y. Положение Pm не было определено.

Повышение *T* смещает границу перехода в  $RF_3$ на четыре элемента вправо, рис. 1, кривая *4*. Действия *T* и лантаноидного сжатия независимы, но суммируются в уменьшении относительного (к  $F^{1-}$ ) размера  $R^{3+}$ . Оба фактора приводят к морфотропному переходу: тип La $F_3 \leftrightarrow$  тип  $\beta$ -YF<sub>3</sub> (МП-I), который смещается с ростом *T*. Продолжение кривой *4* до пересечения с *5* на рис. 1 оценивает положение МП-I между GdF<sub>3</sub> и TbF<sub>3</sub>. Второй раз диморфизм  $\alpha \leftrightarrow \beta$ -*R*F<sub>3</sub> появляется у ErF<sub>3</sub>. Это МП-II: тип  $\beta$ -YF<sub>3</sub>  $\leftrightarrow$  тип  $\alpha$ -YF<sub>3</sub> ( $\alpha$ -UO<sub>3</sub>), кривая 7 на рис. 1, *R* = Er–Lu, Y. Причины диморфизма  $\alpha \leftrightarrow \beta$ -*R*F<sub>3</sub> противоречивы. Изменение структуры только под действием *T* – полиморфизм. Изменение качественного состава (*Z*), вызывающее ту же структурную перестройку, – признак морфотропии. В.М. Гольдшмидт называл полиморфизм автоморфотропией.

Полиморфная перестройка структуры  $RF_3$  провоцируется T, но ею же и ограничивается: достижение определенной величины  $r_+/r_-$  приводит к потере устойчивости кристаллической фазы и ее плавлению.

## ИЗОМОРФИЗМ КАТИОНОВ РЗЭ В СИСТЕМАХ *R*F<sub>3</sub>-*R*'F<sub>3</sub>

Изоморфизм катионов РЗЭ возможен в бинарных  $RF_3 - R'F_3$  и более сложных системах, требуя как минимум двух разных РЗЭ. Низкие упругости паров  $RF_3$  при температурах плавления (кроме ScF<sub>3</sub>) относят системы  $RF_3 - R'F_3$  к конденсированным с P = const. Переход к системе T - x увеличивает на единицу степень свободы. Изоморфное замещение — изменение концентрации x интенсивного параметра состояния.

Состав *x* фаз  $R_{1-x}R'_xF_3$  в области их гомогенности меняется в пределах одной структуры до некоторого *x*. Меняя средний радиус катиона и  $r_+/r_-$ , состав готовит МП при *x*, разном для разных *T*. Изовалентный изоморфизм в ионных кристаллах гомологической серии  $RF_3$  подчиняется геометрическому фактору в широких пределах *Z* [2, 17, 18, 20], падая с ростом  $\Delta Z$ . Совершенный изоморфизм не охватывает все  $RF_3$ , иначе не было бы МП.

Структурные подгруппы  $RF_3$ . Изоморфизм ионов РЗЭ в системах  $RF_3 - R'F_3$  зависит от структуры компонентов (двойных соединений не обнаружено). Сочетания типов структур и модификаций делят ряд  $RF_3$  на четыре структурные подгруппы (СП): A (R = La-Nd), B (R = Pm-Gd), C (R = Tb-Ho) и D (R = Er-Lu, Y) [6, 7], рис. 1. В СП  $A RF_3$  имеют тип тисонита t (La $F_3$ ) во всем интервале температур. В СП B – диморфные  $RF_3$ с высокотемпературной формой типа t и низкотемпературной типа  $\beta$ -YF<sub>3</sub>. Подгруппа C с одной формой типа  $\beta$ -YF<sub>3</sub>. Наконец,  $RF_3$  СП D диморфны – к типу  $\beta$ -YF<sub>3</sub> добавляется высокотемпературная форма типа  $\alpha$ -YF<sub>3</sub> ( $\alpha$ -UO<sub>3</sub>).

Структурные подгруппы подчиняются внутрипериодной периодичности (**BII**) заполнения *4f*-подоболочек *Ln* [27]. Элементные составы подгрупп и их численность однозначно задаются **B**П  $R^{3+}$ . Этим СП *R*F<sub>3</sub> выгодно отличаются от классификаций "кристаллохимической нестабильности" и "тетрад-эффекта". Структурные подгруппы, разделенные тремя штрихпунктирами, не морфотропные группы: при трех типах структур границ должно быть две. Вопрос о числе морфотропных групп у  $RF_3$  дискуссионный.

Полиморфизм, изоморфизм и морфотропия связаны со структурными особенностями окружения катионов в структурных типах  $RF_3$ .

Десять типов систем  $RF_3$ — $R'F_3$ . Анализ взаимного изоморфизма ионов РЗЭ в трех типах структур  $RF_3$  основан на фазовых диаграммах систем  $RF_3$ — $R'F_3$ . Из 15  $RF_3$  (без  $PmF_3$  и ScF\_3) формируются 105 систем, из которых изучены 34. Рассмотрение закономерностей изоморфизма в каждой из них — задача, выходящая за рамки этого сообщения. Наиболее полно это сделано в [2, 17]. Серия работ по количественным характеристикам изоморфизма и проявлениям морфотропии в системах  $RF_3$ — $R'F_3$  начата в [28].

Для настоящего рассмотрения достаточно типовых систем, представляющих парные сочетания  $RF_3$  из четырех СП, по одной на каждый из 10 типов систем, представленных на рис. 2. На нем не видны различия некоторых систем в области более низких *T*, связанные с полиморфными превращениями. Номера типов систем указаны в правых верхних углах. Нумерация проводится достаточно произвольно, основываясь на алфавитной последовательности буквенных обозначений СП. Фазовые поля *ss* показаны надписями типов структур. При малых площадях полей тип LaF<sub>3</sub> обозначен как *t-ss* (*tysonite*), тип β-YF<sub>3</sub> как β-*ss*, а тип α-YF<sub>3</sub> (α-UO<sub>3</sub>) как α-*ss*.

Различия топологии фазовых диаграмм связаны с фазовым составом — областями гомогенности фаз  $R_{1-x}R'_xF_3$  и их структурой. Несмотря на пресловутую химическую близость соединений РЗЭ, химические взаимодействия  $RF_3$  *a priori* не могут быть тривиальными: изменения размера  $R^{3+}$  дважды приводят к морфотропии, а ~15%-ная разница радиусов  $R^{3+}$  ограничивает изоморфизм  $RF_3$ , далеко отстоящих друг от друга по ряду  $R^{3+}$ .

Топология фазовых диаграмм  $RF_3 - R'F_3$  подробно рассмотрена в [2]. Здесь обсудим общую оценку изоморфизма, представленную на рис. 2.

Трансформации фазовых диаграмм с ростом  $\Delta Z_{max}$  $R^{3+}$  и  $R^{'3+}$ . Величина  $\Delta Z$  определяет степень химического родства трифторидов РЗЭ, их структурные различия, выражающиеся в полиморфизме, а отсюда — степень совершенства изовалентного изоморфизма ионов РЗЭ.

Из 10 типов систем четыре составлены из  $RF_3$ одинаковых СП: A-A', B-B', C-C', D-D'. Остальные шесть типов из  $RF_3$  разных СП: A-B, A-C, A-D, B-C, B-D, C-D. Иттрий (Z = 39) относится к СП D.



**Рис. 2.** Фазовые диаграммы 10 типов систем *R*F<sub>3</sub>-*R*'F<sub>3</sub> [17, 18, 20-22].

 $\Delta Z_{\text{max}}$  — разница Z между первым компонентом СП и последним последующей СП, из которой берется второй компонент.  $\Delta Z_{\text{max}}$  отражают предельную степень химических различий  $RF_3$  в типе систем. Рост  $\Delta Z_{\text{max}}$  вызывает снижение степени совершенства изоморфизма.  $\Delta Z_{\min}$  задается разницей Z между последним компонентом СП и первым компонентом последующей СП. Она характеризует максимальное химическое родство  $RF_3$  для данного сочетания.

Для парных сочетаний RF3 из СП (систем) с соседствующими по ряду компонентами  $\Delta Z_{\min} = 1$ . Таких большинство: A-A', B-B', C-C', D-D', A-B, B-C, C-D. Для трех (A-C, B-D, A-D)  $\Delta Z_{\min}$  растет от 4 до 8. Эти же сочетания имеют максимальные  $\Delta Z_{\max}$  (от 9 до 14). В таких системах можно ожидать ограниченный изоморфизм и образование двойных соединений. Низкая изученность систем из далеко отстоящих по ряду  $RF_3$  не позволяет оценить ограничения геометрического фактора изоморфизма.

Рисунок 2 показывает, что системы  $RF_3 - R'F_3$  при химическом родстве компонентов проявляют разнообразие типов фазовых диаграмм. Типы различаются по областям гомогенности, структуре твердых растворов (*ss*), наличию (отсутствию) морфотропных превращений и их типу.

Количественный анализ изоморфизма в системах B-C и B-D. Начало количественным исследованиям изоморфизма и морфотропии в системах B-C и B-D из относительно близких  $RF_3$  положила работа [18]. В каждой системе находятся две особые точки: предельный состав *t-ss* (тип LaF<sub>3</sub>) и состав с максимальной для данной системы температурой плавления фаз  $R_{1-x}R'_xF_3$   $\beta$ -ss типа  $\beta$ -YF<sub>3</sub>, рис. 2 (типы 6 и 7). Объединение координат особых точек систем GdF<sub>3</sub>- $RF_3$  (R = Tb, Ho, Er, Yb) в группы приводило к выводам: тип структуры имеет свои значения  $Z_{cp}$  и радиуса катиона, при которых достигается максимальный изоморфизм; термическая устойчивость (плавление) насыщенных ss с одинаковой структурой близка для фаз с разными  $Z_{cp}$ ; во всех типах структур  $Z_{cp}$  фаз с максимальной термической устойчивостью и взаимной растворимостью не целочисленны. Близость этих характеристик для разных систем при широком диапазоне изменения концентрации второго компонента в  $\alpha$ -(Gd<sub>1-x</sub> $R_x$ )F<sub>3</sub> (от 43 мол. % для TbF<sub>3</sub> до 4 мол. % для YbF<sub>3</sub>) говорит об определяющем влиянии геометрического фактора в системах из относительно близко расположенных  $RF_3$  на изоморфизм и термическую устойчивость фаз типа LaF<sub>3</sub>.

Распространять этот подход к оценке изоморфизма в системах B-C, B-D на все 10 типов систем нельзя. В системах A-C и особенно A-D образуются фазы *t-ss*, не отвечающие критерию "оптимальных" средних радиусов и  $Z_{cp}$ , рассчитанных для GdF<sub>3</sub>- $RF_3$  [18].

Большой материал [2, 17–22] по количественной характеризации изовалентного изоморфизма в системах  $RF_3$ – $R'F_3$  – предмет отдельной серии публикаций, начатой в [28].

## МОРФОТРОПИЯ В ФАЗАХ $R_{1-x}R'_xF_3$ СИСТЕМ $RF_3-R'F_3$

Морфотропное превращение — основной предмет настоящего рассмотрения. Имеется несколько его определений, но все они расплывчаты. "Дискретно меняющийся состав" ограничен качественным (атомным номером Z). Условие изотермичности МП (T = const) не говорит о форме его реализации. Структура "меняется резко", но степень реконструктивности в определении не оговорена. Для  $RF_3$  известно плавное изменение КЧ катиона в пределах одного типа структуры, не отменяющее МП. Всеохватывающего определения морфотропного превращения структурного типа в гомологическом ряду ионных соединений не найдено.

Можно полагать, что это вызвано исторической сменой объектов. Первоначально были гомологические ряды соединений (минералов). Температура (из-за ее незнания) как фактор отсутствовала, и "мысленное" определение МП проводили по величине *Z* катионов.

Первыми сведениями о МП в ряду  $RF_3$  были рентгенографические данные 60-х годов, полученные при комнатной температуре. Они делили ряд на две части:  $RF_3$  типа La $F_3$  с R = La–Nd (Pm) и типа YF<sub>3</sub> с R = Sm–Lu, Y. Данных о полиморфизме  $RF_3$  еще не было. Это деление видно на рис. 1, где горизонтальная ось – приближение к комнатной температуре – для ряда  $RF_3$  приводит к единственному МП, что не соответствует действительности.

Это – следствие исключения температуры как фактора. Введем *T* и "мысленно" рассмотрим на

рис. 1 два изотермических сечения:  $T = 600^{\circ}$ С (нижняя) и  $T \sim 1100^{\circ}$ С (верхняя штрихпунктирная горизонталь). На нижнем структура меняется между SmF<sub>3</sub> (тип LaF<sub>3</sub>) и EuF<sub>3</sub> (тип β-YF<sub>3</sub>). На верхнем появляется МП между HoF<sub>3</sub> и ErF<sub>3</sub>: тип β-YF<sub>3</sub>  $\rightarrow$  тип α-YF<sub>3</sub> (α-UO<sub>3</sub>), но исчезает первый МП. Задав *T* наугад в "мысленном" поиске МП, видим, что попадание на него – дело случая.

В 30-х годах прошлого столетия В.М. Гольдшмидт заметил, что истинный МП реализуется только в бинарной Т-х-системе, образованной компонентами разных морфотропных групп гомологического ряда соединений. Между ними образуются ограниченные ss. Химическая система добавляет к "мысленной" морфотропии «качественного состава» величину Т как новый фактор. В системе к качественному (элементному) катионному составу Z прибавляется состав количественный, обычно задаваемый в мольных долях х второго компонента. Состав х не является новым фактором, продолжая шкалу качественного состава Z внутрь системы в долях Z. Для этого выразим x в средних атомных номерах  $Z_{cp} = (1 - x)Z_1 +$  $+ xZ_2$  (индексы 1 и 2 — первый и второй катион). На *T*-х-диаграмме находятся в равновесии ss с разными морфотропными структурами. Химическая система задает количественный состав x как фактор  $Z_{cp}$  изменения радиуса катиона и  $r_+/r_-$ .

Морфотропия, согласно определению, протекает при T = const. В изученных T-x (P = const) системах  $RF_3-R'F_3$  фазовые реакции с условием T = const - перитектическая и эвтектическая. Другие варианты (синтектика, монотектика) в них не найдены. В отличие от "мысленных" границ морфотропии "состава" (по Z) в гомологическом ряду соединений в образованной ими системе в координатах T-x оба условия истинного МП – T и x – определяются однозначно.

Истинная морфотропия в системах RF<sub>3</sub>-R'F<sub>3</sub>. Следуя В.М. Гольдшмидту, выберем системы для наблюдения истинной морфотропии. Их компоненты должны быть членами гомологического ряда. Желательно минимальное различие Z катионов соседних соединений. Ряды должны быть ллинными и с максимальным количеством типов структуры. Всем пожеланиям соответствуют соединения только двух семейств *f*-элементов – лантаноидов (4f) и актиноидов (5f). Соединения актиноидов по причинам недоступности всего ряда непригодны. Системы RF<sub>3</sub>-R'F<sub>3</sub> остаются единственной в Периодической системе возможностью прецизионного изучения соотношения полиморфизма  $RF_3$ , изоморфизма в трех (без ScF<sub>3</sub>) типах структур и морфотропии фаз  $R_{1-x}R'_{x}F_{3}$ .

Трифториды РЗЭ играют особую роль в изучении морфотропии, для которой до 80-х годов прошлого века не было объектов для перехода от СОБОЛЕВ



**Рис. 3.** Схема фазовых превращений в  $RF_3$  (а) и морфотропные переходы типа LaF<sub>3</sub>  $\leftrightarrow \beta$ -YF<sub>3</sub> (MП-I) в системе GdF<sub>3</sub>-TbF<sub>3</sub> (б) и типа  $\beta$ -YF<sub>3</sub>  $\leftrightarrow \alpha$ -YF<sub>3</sub> ( $\alpha$ -UO<sub>3</sub>) (MП-II) в системе HoF<sub>3</sub>-ErF<sub>3</sub> (в).

"мысленного" проведения границы МП к экспериментально определяемому. Причина — искажение фазовых переходов в *R*F<sub>3</sub> примесью кислорода.

Около трети систем  $RF_3 - R'F_3$  изучено, что позволяет "мысленную" взаимосвязь членов триады уточнить экспериментально. Принцип непрерывности Н.С. Курнакова и смена катиона по периоду делают системы  $RF_3 - R'F_3$  уникальными для точного определения границ МП ( $\Delta Z \ll 1$ ).

Эта точность достигается в системах  ${}^{Z}\text{RF}_{3}-({}^{Z+1})R\text{F}_{3}$ из фторидов соседних РЗЭ. Ряд  $R\text{F}_{3}$  по Z (рис. 1 и 3) может рассматриваться как "квазисистема" LaF<sub>3</sub>-LuF<sub>3</sub>. Она состоит из суммы расположенных подряд вдоль оси "состава" Z от 57 (La) до 71 (Lu) систем с  $\Delta Z = 1$ . Эта "квазисистема" имеет "фазы" трех типов структуры и два МП между ними.

Соотношения морфотропных структурных типов LaF<sub>3</sub> u β-YF<sub>3</sub>. Рост T и Z приводит у  $RF_3$  (без ScF<sub>3</sub>) к трем морфотропным типам структур. Два типа — LaF<sub>3</sub> и β-YF<sub>3</sub> — являются основными для  $RF_3$  и  $R_{1-x}R'_xF_3$ . Третий тип α-YF<sub>3</sub> (α-UO<sub>3</sub>) у  $RF_3$  с R = Er-Lu, Y образуется при высоких температурах, не закаливается, и структура его не изучена. Четвертый — ScF<sub>3</sub> (тип ReO<sub>3</sub>) — исключен из рассмотрения из-за отличий от других  $RF_3$ .

Кристаллохимическое родство типов LaF<sub>3</sub> и  $\beta$ -YF<sub>3</sub> обсуждалось неоднократно [15, 29–31]. Оно проявляется в исчезающе малых теплотах полиморфных превращений  $\alpha \leftrightarrow \beta$ -форм SmF<sub>3</sub>, EuF<sub>3</sub>, GdF<sub>3</sub> [4, 5]. Прототипом структур типа LaF<sub>3</sub> и  $\beta$ -YF<sub>3</sub> является высокотемпературная форма *h*-LaF<sub>3</sub> с соотношением параметров "малой" гексагональной ячейки:  $a/c = \sqrt{3} = 1.732$ . Исчезновение тройных осей снижает сингонию до ромбической у типа  $\beta$ -YF<sub>3</sub>. Степень отклонения  $\beta$ -RF<sub>3</sub> от гексагональности дает отличие a/c от идеального. У SmF<sub>3</sub> a/c = 1.515, у HoF<sub>3</sub> – 1.465, а у LuF<sub>3</sub> всего 1.374.

Переход от типа LaF<sub>3</sub> к типу β-YF<sub>3</sub> осуществляется за счет подвижек катионов и анионов. Последние локализованы в плоскости ромбической установки (010). Смещения ионов фтора минимальны вдоль ромбической оси *b*. Изменения *b* по ряду  $\beta$ -*R*F<sub>3</sub> минимальны и близки к линейным [13, 15].

Скачок КЧ катиона при скачкообразном изменении его Z и радиуса обычен для гомологических рядов с большими  $\Delta Z$ . Принадлежность ионов РЗЭ ( $R^{3+}$ ) к особому химическому семейству Периодической системы *f*-элементов выделяет кристаллохимию RF<sub>3</sub>. Благодаря малому  $\Delta Z = 1$  между соседними РЗЭ возникает уникальная особенность структуры RF<sub>3</sub>: КЧ катиона плавно меняется в пределах структурного типа в зависимости от размера  $R^{3+}$  [13, 15]. "Подгонка" КЧ под размер  $R^{3+}$  придает типу  $\beta$ -YF<sub>3</sub> толерантность – в нем кристаллизуются 12 RF<sub>3</sub>. Но это делает поправки ионных радиусов  $R^{3+}$  на КЧ неопределенными. В ряду  $RF_3$  тип  $\beta$ -YF<sub>3</sub> "центральный", от которого влево (уменьшение Z) и вправо (рост Z) проходят морфотропные изменения структурного типа  $RF_3$ .

Таким образом, морфотропные типы структур  $RF_3$  чрезвычайно близки. Несмотря на близость типов LaF<sub>3</sub> и β-YF<sub>3</sub> и отсутствие при МП скачка координационного числа катионов  $R^{3+}$ , морфотропия между ними наблюдается.

Морфотропные превращения в системах  $GdF_3$ -TbF<sub>3</sub> и HoF<sub>3</sub>-ErF<sub>3</sub>. Для нахождения границ истинных МП нужны системы из компонентов по обе стороны границ морфотропных групп *R*F<sub>3</sub> [22]. При трех типах структуры границ две, как и "пограничных" систем. На рис. За две границы СП: вертикали между *B* и *C* и между *C* и *D*. Эти вертикали окружены двумя парами РЗЭ: Gd-Tb и Ho-Er, соединенными горизонтальной штриховкой.

Компоненты системы  $GdF_3$ -TbF<sub>3</sub> из B-C(рис. 36) – последний фторид из B и первый из C, а системы  $HoF_3$ -ErF<sub>3</sub> из C-D (рис. 3в) – последний из C и первый из D. Система (рис. 36) моделирует МП: тип  $LaF_3 \leftrightarrow$ тип  $\beta$ -YF<sub>3</sub> (МП-I), система (рис. 3в) – МП тип  $\beta$ -YF<sub>3</sub>  $\leftrightarrow$  тип  $\alpha$ -YF<sub>3</sub> ( $\alpha$ -UO<sub>3</sub>) (МП-II).

Системы из фторидов этих РЗЭ дают информацию о механизмах МП. Системы GdF<sub>3</sub>—TbF<sub>3</sub> и HoF<sub>3</sub>—ErF<sub>3</sub> представлены на рис. Зб и Зв соответственно. Их качественный состав меняется на  $\Delta Z = 1$ . Количественный состав дробит этот интервал на 0–100 моль. % (0–1 мол. доли *x*) компонента *R*'F<sub>3</sub>.

В системе  $GdF_3$ -TbF<sub>3</sub> МП-I реализуется как перитектическая фазовая реакция при 1186  $\pm$  10°C, описываемая уравнением

$$\begin{aligned} Liq(\text{расплав}) + \alpha - (Gd_{0.57}\text{Tb}_{0.43})\text{F}_3 \leftrightarrow \\ \leftrightarrow \beta - (Gd_{0.49}\text{Tb}_{0.51})\text{F}_3. \end{aligned}$$

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

В системе  $HoF_3$ - $ErF_3$  (рис. 3в) МП-II происходит по эвтектической реакции при 1120  $\pm$  10°C по уравнению

$$Liq$$
(расплав)  $\leftrightarrow \beta$ -(Ho<sub>0.64</sub>Er<sub>0.36</sub>)F<sub>3</sub> +   
+  $\alpha$ -(Ho<sub>0.33</sub>Er<sub>0.67</sub>)F<sub>3</sub>.

МП-І и МП-ІІ протекают в системах  $RF_3 - R'F_3$ по инвариантным фазовым реакциям с участием расплава и двух насыщенных (для данной *T*) составов *ss* разных (морфотропных) типов структуры.

В изученных системах условия МП задаются: значениями *T* перитектики или эвтектики; составами *x* и *y* равновесных фаз  $R_{1-x}R'_xF_3$  и  $R_{1-y}R'_yF_3$  с разной структурой при *T* перитектики (эвтектики); составом расплава третьей фазы, делающей МП инвариантным.

Сопоставление  $RF_3$  и систем  $RF_3 - R'F_3$  с изменением катионов по периоду показывает различие "мысленной" и истинной морфотропии для гомологических рядов  $RF_3$  и  $R_{1-x}R'_xF_3$ . Если берется ряд  $RF_3$ , высшая точность МП ограничивается величиной  $\Delta Z = 1$ . Термодинамическая оценка [22] дает МП между GdF<sub>3</sub> и TbF<sub>3</sub> на любом составе 0–100% TbF<sub>3</sub>. "Мысленная" граница по выделению из расплава GdF<sub>3</sub> (тип LaF<sub>3</sub>) и TbF<sub>3</sub> (тип β-YF<sub>3</sub>), пунктир на рис. 1, имеет ту же точность.

Если берется система  ${}^{Z}RF_{3}-{}^{(Z+1)}RF_{3}$ , в данном случае GdF<sub>3</sub>-TbF<sub>3</sub>, в ней границы МП-I сужаются до ~8 ± 2 мол. % TbF<sub>3</sub> вблизи состава 1 : 1. Для фазы типа LaF<sub>3</sub>  $Z_{cp}$  = 64.43. Для фазы типа β-YF<sub>3</sub>  $Z_{cp}$  = 64.51. Истинный МП-I имеет  $\Delta Z$  = 0.08. Система GdF<sub>3</sub>-TbF<sub>3</sub> дает обе границы МП и самый тугоплавкий состав Gd<sub>0.49</sub>Tb<sub>0.51</sub>F<sub>3</sub> (Z = 64.51). Тип β-YF<sub>3</sub> в ряду  $RF_3$  не достигает максимальной устойчивости при целочисленных Z.

В системе такого же типа, но с МП-II, разница составов сосуществующих фаз больше и составляет ~30 мол. % ErF<sub>3</sub>. Центр тяжести МП-II близок к отношению 2:1. Для тисонитовой фазы  $Z_{cp} = 67.67$ , а для фазы типа β-YF<sub>3</sub> – 67.36. Для МП-II  $\Delta Z = 0.31$ , но и она много меньше единицы.

Изменение катионов в гомологическом ряду  $MCO_3$  по второй группе Периодической системы можно осуществить только для "мысленного" способа, поскольку изучение "сухих" систем  $MCO_3-M'CO_3$  невозможно из-за термического разложения. Для пары MgCO<sub>3</sub>-CaCO<sub>3</sub>  $\Delta Z = 8$  (катионы разделяет малый период), а для пары CaCO<sub>3</sub>-SrCO<sub>3</sub>  $\Delta Z = 18$  (большой период).

Результаты "мысленного" и экспериментального приемов определения положения границ МП в ряду  $RF_3$  не принципиальны. При "мысленном" проведении границы по одному фактору (составу Z) получаем приближение ~1 между Z и Z + 1. Из эксперимента по системам  $RF_3 - R'F_3$  для двух составов  $R_{1-x}R'_xF_3$  и  $R_{1-y}R'_yF_3$  (или  $Z_{cp}$ ) при истинной морфотропии границы много <1. В  $MCO_3$  с  $\Delta Z$  = 18 о точности можно не говорить.

Принципиальна разница между приемами по *T*: при "мысленном" способе температура неизвестна, а при экспериментальном имеет определяемые и фиксированные значения.

Границы МП фаз  $R_{1-x}R'_xF_3$ . Дополним данные [18] по температурам МП-I и МП-II для систем GdF<sub>3</sub>- $RF_3$  (R = Tb, Ho, Er, Yb) из компонентов, близких по ряду РЗЭ, системами из  $RF_3$ , далеко отстоящих по ряду. Число фаз, участвующих в морфотропных реакциях, увеличивается более чем вдвое. Привести их детально, как для систем GdF<sub>3</sub>-TbF<sub>3</sub> и HoF<sub>3</sub>-ErF<sub>3</sub>, в этом сообщении не представляется возможным.

Сравним границы всех обнаруженных МП на графике T-Z. Обычно сравнение свойств соединений РЗЭ проводят в соответствии со шкалой их ионных радиусов  $r_R$ . Однако системы  $r_R$  для  $R^{3+}$  неадекватны. В системе [32] стремление к универсальности привело к поправкам, не приемлемым для  $R^{3+}$  [33]. Заменим относительные величины  $r_R$  абсолтными средними  $Z_{cp}$  насыщенных фаз  $R_{1-x}R'_xF_3$  разных структур (особые точки систем  $RF_3-R'F_3$ ).

 $Z_{cp}$  в  $R_{1-x}R'_xF_3$  дает непосредственно качественный и количественный состав фазы, когда компоненты соседствуют. Так, для системы GdF<sub>3</sub>—TbF<sub>3</sub> состав фазы типа LaF<sub>3</sub> (<sup>64</sup>Gd<sub>0.57</sub><sup>65</sup>Tb<sub>0.43</sub>)F<sub>3</sub> описывается  $Z_{cp} = 64.43$ . Из нее следует, что Z =64 для катиона <sup>64</sup>Gd первого компонента – GdF<sub>3</sub>, а 0.43 – атомная доля второго компонента <sup>65</sup>TbF<sub>3</sub>. Когда компоненты разнесены по ряду, для расчета  $Z_{cp}$  необходимо использовать общее уравнение  $Z_{cp}$  (см. выше).

В  $R_{1-x}R'_xF_3$  реализуется набор  $Z_{cp}$  от <sup>57</sup>La до <sup>71</sup>Lu. На рис. 4 в координатах  $T-Z_{cp}$  приведены 23 фазы – участники МП. Они группируются вдоль шести вертикалей. Каждому МП отвечают две вертикали – границы двухфазной области. Рядом указаны соответствующие системы. Рисунок 4 включает в себя данные [18] по системам с  $RF_3$  второй половины ряда, дополненные здесь некоторыми сочетаниями A-C и A-D с  $RF_3$  начала ряда.

Первая пара вертикалей (МП-І) лежит вблизи  $Z = 62 ({}^{62}\text{Sm})$  и содержит данные по системам  $A - C (\text{NdF}_3 - \text{TbF}_3)$  и  $A - D (\text{NdF}_3 - \text{ErF}_3)$ . Из рис. 2 видно, что в системах проявляется неустойчивость фаз  $\beta$ -(Nd<sub>1-x</sub> $R_x$ )F<sub>3</sub> типа  $\beta$ -YF<sub>3</sub> в виде купола распада в первой и частичного обособления  $\beta_1$  во



Рис. 4. Границы морфотропных превращений структурных типов в изученных системах  $RF_3 - R'F_3$  в шкале атомных номеров РЗЭ Z. Шестиугольники — фазы типа LaF<sub>3</sub>, квадраты — типа  $\beta$ -YF<sub>3</sub>, кружки — типа  $\alpha$ -YF<sub>3</sub> ( $\alpha$ -UO<sub>3</sub>).

второй. В системе  $NdF_3$ -YbF<sub>3</sub> (на рис. 2 нет)  $\beta_1$  отрывается от  $\beta_2$ .

Взаимодействием далеко отстоящих  $RF_3$  получены  $Nd_{0.7}Er_{0.3}F_3$ ,  $Pr_{0.6}Er_{0.4}F_3$ ,  $Pr_{0.5}Dy_{0.5}F_3$ ,  $Ce_{0.5}Dy_{0.5}F_3$ ,  $Nd_{0.6}Ho_{0.4}F_3$ ,  $Nd_{0.6}Ho_{0.4}F_3$ ,  $Nd_{0.6}Y_{0.4}F_3$  [34, 35]. Все они без оснований трактуются как химические соединения. Природа фазы  $Nd_{0.7}Er_{0.3}F_3$  как "обрывка" твердых растворов  $\beta$ - $Nd_{1-x}Er_xF_3$  в  $NdF_3$ — $ErF_3$  показана в [21], рис. 2. Остальные требуют изучения.

Вторая пара вертикалей отвечает МП-I в известной по [18] области  $Z \sim 64-65$ . Системы GdF<sub>3</sub>-*R*F<sub>3</sub> (R = Er-Lu, Y) из сочетаний B-C и B-D наиболее изучены [17, 18, 20]. Морфотропная смена структуры через двухфазную область выделена на рис. 4 двумя вертикалями между Z = 64(<sup>64</sup>Gd) и 65 (<sup>65</sup>Tb), не совпадающими с целочисленными Z. МП-I имеют близкие  $Z_{cp}$  и составы фаз, близки и температуры фазовых реакций [18].

Близость средних радиусов РЗЭ (соответственно,  $Z_{cp}$ ) в твердых растворах, участвующих в МП, и *T* их разных типов (перитектического, эвтектического) [18] указывает на определяющее влияние геометрического фактора на пределы растворимости и термическую устойчивость фаз  $R_{1-x}R'_xF_3$ . Справедливость этого вывода ограничена сочетаниями *B*–*C* и *B*–*D*.

Обнаружение в настоящей работе первой (слева) на рис. 4 пары вертикалей в районе  $^{62}$ Sm на сочетаниях A-C (NdF<sub>3</sub>-TbF<sub>3</sub>) и A-D (NdF<sub>3</sub>-ErF<sub>3</sub>) стало неожиданностью. Это – неизвестный МП, увеличивающий число МП до трех. Число мор-



**Рис. 5.** Соотношение полиморфизма в  $RF_3$ , изоморфизма в  $R_{1-x}R'_xF_3$  и морфотропных превращений типа МП-I и МП-II в системах сочетания B-D (схема).

фотропных групп уравнивается с числом СП, что возможно только в случае существования еще одного типа структуры  $RF_3$ .

Четвертый тип структуры для  $RF_3$  неизвестен. Возможный вариант — признание диморфизма  $RF_3$  подгруппы A, отличающегося от диморфизма подгруппы B, — близок к реальности. Фториды типа La $F_3$  с R = La—Eu по [8] вблизи температуры плавления имеют "размытый" переход между формами h-La $F_3 \leftrightarrow l$ -La $F_3$ , рис. 1, кривая 2. Он не является переходом 1-го рода, но подвижки ионов регистрируются структурным анализом и ионной проводимостью.

Предел устойчивости типа LaF<sub>3</sub> в фазе  $Nd_{0.82}Yb_{0.18}F_3$  (Z = 61.8) отвечает МП между PmF<sub>3</sub> и SmF<sub>3</sub>. Это близко, но не совпадает с границей СП *A* и *B*. Вопрос о третьем МП у *R*F<sub>3</sub> остается открытым из-за недостатка данных.

Изученность систем  $RF_3 - R'F_3$  (34 из 105) [17– 22] мала для анализа морфотропии в системах с разнесенными по ряду  $RF_3$  (СП A-C, A-D).

Выводы. Границы составов и *T* МП в  $RF_3$  и  $R_{1-x}R'_xF_3$  из близких по ряду  $RF_3$  определены однозначно (рис. 3): МП-І между GdF<sub>3</sub> и TbF<sub>3</sub> ( $Z_{cp} = 64.43-64.51$ ; при 1186 ± 10°C), МП-ІІ между HoF<sub>3</sub> и ErF<sub>3</sub> ( $Z_{cp} = 67.67-67.36$ ; при 1120 ± 10°C) [18]. МП-ІІ дает меньшую точность. МП-І для далеко отстоящих NdF<sub>3</sub>–YbF<sub>3</sub> смещается для *t-ss* к Z = 61.8 (около <sup>62</sup>Sm).

Внутренняя периодичность ераниц МП-I и МП-II. Структурные подгруппы порождаются ВП заполнения 4f-подоболочки Ln [27]. Определяемая СП морфотропия в  $RF_3$  и  $R_{1-x}R'_xF_3$  может быть связана с ВП Ln. МП-I в системе GdF<sub>3</sub>—TbF<sub>3</sub> на границе СП B и C совпадает с делением внутрипериодной периодичности РЗЭ на Ce- и Tb-подсемей-

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

ства, на что впервые указали в [22]. МП-II между Но $F_3$  и β-Er $F_3$  коррелирует с изменением хода  $V_{form}$  от Zу изоструктурных  $RF_3$ , причина которого – немонотонные изменения  $R^{3+}$ — $F^{1-}$ -расстояний с ростом Z [13, 15]. Положение этой границы МП совпадает с границей между СП C и D. Положение обоих МП-I и МП-II коррелирует с внутрипериодной периодичностью Ln.

## СООТНОШЕНИЕ ПОЛИМОРФИЗМА, ИЗОМОРФИЗМА И МОРФОТРОПИИ В НЕКОТОРЫХ СИСТЕМАХ *R*F<sub>3</sub>-*R*'F<sub>3</sub>

Порознь полиморфизм и изоморфизм в рядах  $RF_3$  и  $R_{1-x}R'_xF_3$  рассмотрены выше. Сопоставим три категорийных явления в одной системе с обоими типами МП-I и МП-II. Компоненты такой системы должны иметь: полиморфные переходы с модификациями разной структуры; изоморфные замещения во всех типах структур; МП между структурами всех типов.

Трифториды РЗЭ отличаются от гомологических рядов простых соединений со сменой катионов по группе Периодической системы тем, что имеют смену Z катионов по периоду с малыми  $\Delta Z$ . Гомологический ряд  $RF_3$  в системах  $RF_3 - RF_3$  дал уникальную возможность установить механизмы истинных МП, недоступных для "мысленного" подхода к морфотропии.

В сочетании B-D полиморфны оба компонента. Изоморфизм проявляется в трех типах структур: совершенный в изоморфноемком типе  $\beta$ -YF<sub>3</sub> ( $\beta$ -ss) и ограниченный в типах LaF<sub>3</sub> (*t*-ss) и  $\alpha$ -YF<sub>3</sub> ( $\alpha$ -UO<sub>3</sub>) ( $\alpha$ -ss), рис. 5. МП-I и МП-II можно реализовать в любой системе из B-D. Одна из них GdF<sub>3</sub>-TmF<sub>3</sub> на рис. 2 (тип 7) взята за основу схемы рис. 5. Для краткости используем обозначения *B* и *D* как компоненты, помня, что в системах за ними стоят соответствующие  $RF_3$ . Интервал *Z* на рис. 5 ограничен <sup>64</sup>Gd-<sup>71</sup>Lu – РЗЭ второй половины ряда, системы с фторидами которых изучены.

Полиморфизм у *B* и *D* инвариантен. В системе *B*–*D* на рис. 5 из точки  $T_{trans}$  полиморфного превращения *B* выходят моновариантные кривые *1* и *2*, описывающие зависимости от состава *x* температур перехода фазы t- $R_{1-x}R'_xF_3$  типа LaF<sub>3</sub> и β- $R_{1-y}R'_yF_3$  типа β-YF<sub>3</sub>. Двухкомпонентные твердые растворы β-ss и *t*-ss наследуют структуры модификаций *B* и *D*, стабилизирующиеся в *T*–*x*-координатах изменением *x*. В β-ss  $\leftrightarrow$  *t*-ss-переходе участвуют те же типы структур, что и у *B*, но он идет через двухфазную область. Кривые доходят до перитектики (жирная линия на рис. 5), где начинается МП-I:

$$Liq + t - R_{l-x}R'_{x}F_{3} \leftrightarrow \beta - R_{l-y}R'_{y}F_{3}.$$

Зеркально аналогичные фазовые изменения B-D (рис. 5) происходят на основе D. Кривые 3 и 4 приводят к трехфазному равновесию:

$$Liq \leftrightarrow \alpha - R_{1-x}R'_{x}F_{3} + \beta - R_{1-y}R'_{y}F_{3}.$$

Тип МП определяется соотношением температур плавления компонентов и перехода. МП-I перитектический, когда его T находится между температурами плавления компонентов. Когда она ниже, переход становится эвтектическим (МП-II).

Морфотропия в системе T-x определена: температурой фазовой реакции (МП-I перитектика и МП-II эвтектика); составами 1 и 2 равновесных фаз *t-ss* и  $\beta$ -ss разных (морфотропных) структур, насыщенных при T перитектики, и составами 3, 4 – при T эвтектики; двухфазной областью превращений *t-ss*  $\leftrightarrow \beta$ -ss или  $\alpha$ -ss  $\leftrightarrow \beta$ -ss, задающей границы МП.

В исторически первом определении морфотропии для гомологических рядов простых соединений "изотермичность" не могла привязываться к фазовой реакции, которой у них, как у однокомпонентных фаз, нет. Для минералов со сложным катионным составом (аналоги химических систем) температурные условия морфотропии оставались неизвестными, поскольку не были изучены фазовые диаграммы.

На фазовой диаграмме системы T-x "изотермичность" морфотропии определяется однозначно: это "температура инвариантной фазовой реакции расплава и фаз двух морфотропных типов структур разного состава". Каждому из составляющих триады на фазовой диаграмме соответствует геометрический образ (принцип соответствия). На рис. 5 это:

- полиморфизм компонента - точка  $T_{trans}$ ;

- полиморфизм фаз  $R_{1-x}R'_xF_3$  – кривые 1-4;

- изоморфизм – области гомогенности фаз *t*-ss, β-ss и α-ss;

– морфотропные изменения структуры – горизонтали: МП-I – перитектическая; МП-II – эвтектическая.

Бинарные системы необходимы для определения температур МП и их фазовых механизмов (перитектика или эвтектика). Только в системах T-x может наблюдаться изоморфизм, а следовательно, и вся триада.

Полиморфизм в  $RF_3$  и  $R_{1-x}R'_xF_3$  регулируется температурой *T* через соотношение радиусов "катион/анион" ( $r_+/r_-$ ). Изоморфизм в  $R_{1-x}R'_xF_3$  регулирует структуру составом *x* через то же соотношение  $r_+/r_-$ , готовя с *T* морфотропное превращение. Морфотропию фаз в системах  $RF_3-R'F_3$ регулируют *T* и состав через  $r_+/r_-$ . Изменение  $r_+/r_-$  с *T* играет определяющую роль в полиморфизме, изоморфизме, морфотропии. Сжимаемость, термическое расширение и другие аналогичные характеристики *R*F<sub>3</sub> изучены мало.

Выводы. Полиморфизм, изоморфизм и морфотропия в бинарных системах в координатах T-x(P = const) различаются степенью свободы. Полиморфизм компонента  $t-B \leftrightarrow \beta-B$  инвариантен (вырождение бинарной системы с x = 0). В системе B-D полиморфизм твердых растворов  $t-R_{1-x}R'_xF_3 \leftrightarrow$  $\leftrightarrow \beta-R_{1-y}R'_yF_3$  моновариантен, изоморфизм бивариантен (поля t-ss,  $\beta$ -ss и  $\alpha$ -ss), а МП-I (Liq + t-ss  $\leftrightarrow$  $\leftrightarrow \beta$ -ss) и МП-II ( $Liq \leftrightarrow \alpha$ -ss +  $\beta$ -ss) инвариантны.

Отношения полиморфизма  $RF_3$ ,  $R_{1-x}R'_xF_3$  и МП-I и МП-II в системах  $RF_3-R'F_3$  из сочетаний B-C и B-D позволяют уточнить определение истинной морфотропии для бинарных систем. Введение в определение истинной морфотропии температуры применимо и к "мысленной". Проблема в том, что для классических случаев морфотропии карбонатов и им подобных соединений определение *T* не всегда выполнимо технически.

*Морфотропия* — изменение структуры с дискретным изменением состава фаз в T—x-системе (P = const) из соединений гомологического ряда при температуре инвариантной фазовой реакции.

В определение не внесены "качественного и (или) количественного состава" — они связаны и являются одним фактором. Не внесено "участие расплава", так как такие реакции возможны и в твердом состоянии. "Резкое изменение структуры" исключено потому, что оно не отвечает, в частности, ряду  $RF_3$ , в котором МП меняет структуры подвижками ионов без скачка КЧ.

Морфотропные переходы при высоких температурах с участием расплавов затрудняют сравнение морфотропных структур фаз — высокотемпературных структурных исследований  $RF_3$  нет, и структурный механизм их мофротропии не ясен.

Гомологические ряды соединений 4*f*-элементов по *периоду* определяют морфотропию с точностью выше любых рядов с изменением катионов по *группам* Периодической системы. "Мысленный" метод проводит границы морфотропии в таких рядах с точностью от  $\Delta Z = 8$  (короткий период) до 18 (длинный период). Температуры МП он не определяет вовсе.

Системы  $RF_3 - R'F_3$  дают точность определения истинной морфотропии в  $RF_3$  и  $R_{1-x}R'_xF_3$ , по температуре равную точности дифференциальнотермического анализа (до ±5°С), а по  $\Delta Z$  до ~0.1. Соотношения полиморфизма, изоморфизма и морфотропии основаны на экспериментальных фазовых диаграммах систем  $RF_3 - R'F_3$  из СП B-Cи B-D. Изучение систем  $RF_3 - R'F_3$  с далеко отстоящими по ряду РЗЭ (из СП A-C, A-D) углубит информацию по триаде. Автор глубоко благодарен своему учителю – академику А.В. Новоселовой и выражает признательность В.С. Сидорову, А.К. Галкину и И.Д. Ратниковой за большой вклад в изучение систем *R*F<sub>3</sub>–*R*'F<sub>3</sub>.

Работа выполнена при поддержке Министерства науки и высшего образования в рамках работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

## СПИСОК ЛИТЕРАТУРЫ

- 1. *Урусов В.С.* Теоретическая кристаллохимия. М.: изд-во МГУ, 1987. 476 с.
- Sobolev B.P. The Rare Earth Trifluorides. Part 1. Barcelona: Institut d'Estudis Catalans, 2000. 520 p. (www.books.google.ru/books/rare earth trifluorides).
- 3. *Sobolev B.P.* The Rare Earth Trifluorides. Part 2. Barcelona: Institut d'Estudis Catalans, 2001. 460 p. (*www.books.google.ru/books/rare earth trifluorides*).
- Spedding F.H., Henderson D.C. // J. Chem. Phys. 1971.
  V. 54. № 6. P. 2476.
- Spedding F.H., Beaudry B.J., Henderson D.C. et al. // J. Chem. Phys. 1974. V. 60. № 4. P. 1578.
- 6. *Sobolev B.P., Fedorov P.P., Steinberg D.V. et al.* // J. Solid State Chem. 1976. V. 17. № 2. P. 191.
- Sobolev B.P., Fedorov P.P., Seiranian K.B. et al. // J. Solid State Chem. 1976. V. 17. № 2. P. 201.
- Greis O., Cader M.S.R. // Thermochim. Acta. 1985.
  V. 87. № 1. P. 145.
- Konings R.J.M., Kovacs A. // Handbook on the Physics and Chemistry of Rare Earths / Ed. Gscheidner K.A. Amsterdam; N.-Y., Oxford. 2003. V. 33. Ch. 213. P. 147.
- 10. Oftedal I. // Z. Phys. Chem. 1929. B. 5. № 3-4. S. 272.
- Zalkin A., Templeton D.H. // J. Am. Chem. Soc. 1953.
  V. 75. № 10. P. 2453.
- Соболев Б.П., Федоров П.П. // Кристаллография. 1973. Т. 18. Вып. 3. С. 624.
- 13. Соболев Б.П., Гарашина Л.С., Федоров П.П. и др. // Кристаллография. 1973. Т. 18. Вып. 4. С. 751.
- Буквецкий Б.В., Гарашина Л.С. IV Всесоюз. симп. по химии неорган. фторидов. Душанбе. 29 сент.— 3 окт. 1975. Тез. докл. М.: Наука, 1975. С. 29.
- Гарашина Л.С., Соболев Б.П., Александров В.Б., Вишняков Ю.С. // Кристаллография. 1980. Т. 25. № 2. С. 294.
- 16. Соболев Б.П., Федоров П.П., Синицын Б.В., Шахкаламян Г.С. IV Всесоюз. симп. по химии неорган.

КРИСТАЛЛОГРАФИЯ том 65 № 4 2020

фторидов. Душанбе. 29 сент.—3 окт. 1975. Тез. докл. М.: Наука, 1975. С. 28.

- 17. Соболев Б.П., Федоров П.П., Галкин А.К. и др. // Рост кристаллов. М.: Наука, 1980. Т. 13. С. 198.
- Соболев Б.П., Сидоров В.С., Федоров П.П., Икрами Д.Д. // Кристаллография. 1977. Т. 22. Вып. 5. С. 1009.
- Sobolev B.P., Fedorov P.P., Ikrami D.D. et al. EUCHEM Conf. on the Chemistry of the Rare Earths. Matinryla-Helsinki. Finland. May 30–June 2. 1978. P. 134.
- Сидоров В.С., Федоров П.П., Икрами Д.Д., Соболев Б.П. // V Всесоюз. симп. по химии неорган. фторидов. Днепропетровск. 27–30 июня 1978. Тез. докл. М.: Наука, 1978. С. 258.
- Галкин А.К., Сидоров В.С., Икрами Д.Д. и др. // VI Всесоюз. симп. по химии неорган. фторидов. Новосибирск. 21–23 июля 1981. Тез. докл. Новосибирск. 1981. С. 118.
- 22. Федоров П.П., Соболев Б.П. // Кристаллография. 1995. Т. 40. Вып. 2. С. 315.
- Соболев Б.П. Автореферат дис. "Нестехиометрия в системах из фторидов щелочноземельных и редкоземельных элементов" д-ра хим. наук. М.: Ин-т кристаллографии РАН, 1978. 48 с.
- 24. *Fedorov P.P.* // Russ. J. Inorgan. Chem. 2000. V. 45. Suppl. 3. P. 268.
- 25. *Ranieri I.M., Baldochi S.L., Klimm D.* // J. Solid State Chem. 2008. V. 181. P. 1070.
- 26. Fedorov P.P. // Mater. Res. Bull. 2012. V. 47. P. 2700.
- Соболев Б.П. // Кристаллография. 2019. Т. 64. № 5. С. 701.
- Соболев Б.П. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 373.
- Mansmann M. // Z. Kristallogr. 1965. B. 122. № 5–6. S. 375.
- 30. Schlyter K. // Arkiv Kemi. 1953. V. 5. № 1. P. 61.
- Буквецкий Б.В., Гарашина Л.С. // IV Всесоюз. симп. по химии неорган. фторидов. Душанбе. 29 сент.— 3 окт. 1975. Тез. докл. М.: Наука, 1975. С. 29.
- Shannon R.D. // Acta Cryst. A. 1976. V. 32. № 5. P. 751.
- Greis O., Petzel T. // Z. Anorgan. Allgem. Chem. 1974.
  B. 403. № 1. S. 1.
- 34. *Okamura K.* // Chem. Industry. 1972. V. 23. № 5. P. 628.
- Okamura K., Yajima S. // Bull. Chem. Soc. Jpn. 1974.
  V. 46. № 6. P. 1531.