_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ _ СОЕДИНЕНИЙ

УДК 539.26; 548.313.25; 546.16; 546.65; 549.461; 546.66

НАНОСТРУКТУРИРОВАННЫЕ КРИСТАЛЛЫ ФЛЮОРИТОВЫХ ФАЗ $Sr_{1-x}R_xF_{2+x}$ (R – РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ) И ИХ УПОРЯДОЧЕНИЕ. 16. ДЕФЕКТНАЯ СТРУКТУРА НЕСТЕХИОМЕТРИЧЕСКИХ ФАЗ $Sr_{1-x}R_xF_{2+x}$ (R = Pr, Tb-Yb) AS GROWN

© 2020 г. Е. А. Сульянова^{1,*}, Д. Н. Каримов¹, Б. П. Соболев¹

¹Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

**E-mail: sulyanova@gmail.com* Поступила в редакцию 02.10.2019 г. После доработки 28.11.2019 г. Принята к публикации 04.12.2019 г.

Методом рентгеноструктурного анализа изучена дефектная структура монокристаллов *as grown* $Sr_{0.72}Pr_{0.28}F_{2.28}$, $Sr_{0.87}Tb_{0.13}F_{2.13}$, $Sr_{0.88}Dy_{0.12}F_{2.12}$, $Sr_{0.89}Ho_{0.11}F_{2.11}$ и $Sr_{0.9}R_{0.1}F_{2.1}$ (R = Y, Er, Tm, Yb), выращенных в идентичных условиях. Все кристаллы относятся к структурному типу CaF_2 , пр. гр. $Fm\overline{3}m$, имеют вакансии в основном анионном мотиве и межузельные анионы фтора, которые расположены в позиции 32f в кристалле с R = Pr и в позиции 48i для остальных R. В кристаллах с R = Tb и Dy межузельные анионы фтора обнаружены вблизи позиции 4b (позиции 32f и 24e соответственно), а в кристалле с R = Er в позиции 4b. Во всех кристаллах, кроме R = Tb, наблюдается релаксация – статическое смещение части основных анионов в позицию 32f. Смещение части катионов Sr^{2+} в позиции 32f и 24e одновременно наблюдается в кристаллах с R = Tb, Dy, Tm и Yb. В кристаллах с R = Ho, Y, Er часть катионов Sr^{2+} смещается только в позицию 32f, для R = Pr смещения катионов не наблюдается. Предложена модель дефектного строения фаз на основе строения изученных кристаллов, согласно которой межузельные анионы фтора и катионы R^{3+} группируются в кластеры [$Sr_{4-n}R_nF_{26}$] тетраэдрической конфигурации в фазе с R = Pr, для остальных R - в кластеры [$Sr_{14-n}R_nF_{64+n}$] октаэдро-кубической конфигурации.

DOI: 10.31857/S0023476120040232

ВВЕДЕНИЕ

Работа продолжает серию публикаций, посвященных получению монокристаллов флюоритовых нестехиометрических фаз $Sr_{1-x}R_xF_{2+x}$ (R = 16 редкоземельных элементов) [1] и упорядоченных фаз $Sr_mR_nF_{2m+3n}$ (R = Gd-Lu, Y) [2], изучению их дефектной структуры [3, 4] и выявлению ее связи с некоторыми структурно-чувствительными свойствами (ионной проводимостью, механическими, оптическими и др.) [5, 6].

Цель настоящей работы – изучение дефектной структуры монокристаллов $Sr_{0.72}Pr_{0.28}F_{2.28}$, $Sr_{0.87}Tb_{0.13}F_{2.13}$, $Sr_{0.88}Dy_{0.12}F_{2.12}$, $Sr_{0.89}Ho_{0.11}F_{2.11}$ и $Sr_{0.9}R_{0.1}F_{2.1}$ (R = Y, Er, Tm Yb) нестехиометрических фаз $Sr_{1-x}R_xF_{2+x}$ в состоянии *as grown* (без дополнительной термической обработки после выращивания), полученных в идентичных ростовых условиях. Составы изучаемых кристаллов (кроме R = Yb) соответствуют составам максимумов на кривых плавления в системах SrF_2-RF_3 (R = La-Tm), которые свидетельствуют о силь-

ных химических взаимодействиях компонентов в расплавленном и кристаллическом состояниях.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Кристаллы $Sr_{0.72}Pr_{0.28}F_{2.28}$, $Sr_{0.87}Tb_{0.13}F_{2.13}$, $Sr_{0.88}Dy_{0.12}F_{2.12}$, $Sr_{0.89}Ho_{0.11}F_{2.11}$ и $Sr_{0.9}R_{0.1}F_{2.1}$ (R = Y, Er, Tm, Yb) выращены из расплава методом Бриджмена одновременно в многоячеистом тигле. Режим охлаждения ~100 град/ч [1]. Пирогидролиз подавлялся продуктами пиролиза политетрафторэтилена. Составы кристаллов определяли по параметрам элементарных ячеек с использованием зависимостей [7]. Отклонения рассчитанных по данным зависимостям составов кристаллов от соответствующих составов шихты не превышали 1 мол. %.

Для рентгеноструктурного анализа отбирали оптически однородные фрагменты, вырезанные из средних частей кристаллических буль.

Параметры дифракционных экспериментов для каждого кристалла приведены в табл. 1. Ана-

R	Pr	Tb	Dy	Но	Y	Er	Tm	Yb
Сингония, пр. гр., Z				Кубическа	я, <i>Fm</i> 3 <i>m</i> , 4			
*a, Å	5.8125(3)	5.7783(3)	5.7770(1)	5.7761(1)	5.7752(1)	5.7737(3)	5.7718(4)	5.7702(3)
<i>V</i> , Å ³	196.38(5)	192.93(5)	192.80(5)	192.71(5)	192.62(5)	192.47(5)	192.28(5)	192.12(5)
D_x , г/см ³	4.9214(5)	4.7288(5)	4.7028(5)	4.6815(5)	4.3981(5)	4.6652(5)	4.6720(5)	4.6786(5)
Излучение, λ, Å	$MoK_{\alpha}, 0.71073$							
<i>Т</i> , К				29	295			
μ, мм ⁻¹	26.321	28.727	28.864	29.010	27.853	29.169	29.422	29.624
T_{\min}, T_{\max}	0.1021,	0.0556,	0.0961,	0.0953,	0.1021,	0.0944,	0.0693,	0.0792,
	0.1759	0.1249	0.1696	0.1578	0.1757	0.1679	0.1392	0.1508
Диаметр образца, мм	0.150	0.156	0.142	0.142	0.142	0.142	0.170	0.156
Дифрактометр	CAD4 Enraf Nonius							
Тип сканирования	$\Omega/2\theta$							
θ _{тах} , град	75.41	75.57	75.62	75.65	75.69	75.75	75.82	75.88
Пределы <i>h</i> , <i>k</i> , <i>l</i>	-15 < h < 15, -15 < k < 15, -15 < l < 15							
Число отражений:	4120/130,	3965/135,	3966/137,	3963/135,	3964/137,	3973/133,	3962/137,	3959/137,
измеренных/незави-	0.0267	0.0302	0.0323	0.0331	0.03	0.0366	0.0257	0.027
симых с $I > 3\sigma(I), R_{int}$								
Метод уточнения				MHK	по <i>F</i> ²			
Число уточняемых параметров	13	17	17	14	13	15	16	16
Весовая схема	$\omega = 1/(4F^2[\sigma^2(F) + (0.008 \cdot F)^2)])$							
<i>R</i> / <i>wR</i> , %	0.65/1.76	0.72/2.10	0.53/1.31	0.64/1.71	0.75/1.91	0.52/1.47	0.51/1.34	0.62/1.59
S	0.98	1.00	0.97	0.99	0.99	1.01	1.01	1.02
$\Delta \rho_{min} / \Delta \rho_{max}$, $\Im / Å^{-3}$	-0.27/0.28	-0.29/0.26	-0.20/0.22	-0.35/0.30	-0.45/0.36	-0.32/0.18	-0.22/0.18	-0.17/0.26
Использованные	Jana2006							
программы								

Таблица 1. Данные дифракционных экспериментов и параметры уточнения структуры изученных кристаллов

* Параметр ячейки рассчитан по рентгенограмме порошка [1].

лиз полученных данных показал принадлежность всех изученных кристаллов к структурному типу CaF₂. Уточнение структуры проводили в рамках пр. гр. $Fm\overline{3}m$ с использованием программы Jana2006 [8]. В процессе уточнения в экспериментальный массив интенсивностей вводили поправку на изотропную экстинкцию в приближении Беккера–Коппенса [9] (I тип, угловое распределение блоков мозаики по закону Гаусса). При уточнении ангармонических компонент тензора тепловых колебаний атомов использовали разложение температурного множителя в ряд Грама–Шарлье [10].

Разностные синтезы электронной плотности (ЭП) в плоскости (110) для исследованных кристаллов показаны на рис. 1а, 2а. Синтезы построены после вычитания катионов (Sr^{2+} , R^{3+}), занимающих в структуре позицию 4*a*, для которых задана смешанная кривая рассеяния, и матричных анионов $F_{(8c)}$, занимающих в структуре изучен-

ных образцов позицию 8*c*, уточнена заселенность этой позиции.

На разностных синтезах всех исследованных кристаллов присутствует ЭП в межузельных позициях, которые занимают анионы фтора. Электронная плотность в позициях 32f и 48i принадлежит анионам, обозначенным как $F_{int(32f)3}$ и $F_{int(48i)}$ соответственно. Распределение ЭП вблизи позиции 8с, которую занимают матричные анионы F_(8c), свидетельствует о наличии в кристаллах с R = Pr, Tb, Dy и Ho динамических смещений анионов F_(8c). В данных кристаллах после учета отклонения тепловых колебаний анионов F_(8c) от гармонического закона до третьего порядка разложения ЭП вблизи данной позиции сохранилась, что свидетельствует о наличии в их структуре статически смещенных (релаксировавших) матричных анионов $F_{(8c)}$, обозначенных как $F_{int(32f)1}$. В кристалле с R = Tb провести уточнение с учетом релаксированного аниона не удалось, релаксации

Рис. 1. Разностные (а) и нулевые разностные (б) синтезы электронной плотности $Sr_{0.87}Tb_{0.13}F_{2.13}$, $Sr_{0.88}Dy_{0.12}F_{2.12}$ и $Sr_{0.89}Ho_{0.11}F_{2.11}$ в плоскости (110). Шаг изолиний 0.1 э/Å³.

анионной подрешетки в данном кристалле не наблюдается.

На синтезах образцов с R = Tb, Dy и Ег присутствует ЭП вблизи центра кубической пустоты {F₈} в позициях 32*f*, 24*e* и 4*b* соответственно, принадлежащая межузельным анионам, обозначенным как $F_{int(32f)4}$, $F_{int(24e)}$ и $F_{int(4b)}$.

Нулевые синтезы ЭП для всех изученных кристаллов показаны на рис. 16, 26. Распределение ЭП вблизи позиции катиона в кристалле Sr_{0.72}Pr_{0.28}F_{2.28} характерно для ангармонического характера тепловых колебаний. Учет отклонения тепловых колебаний катионов от гармонического закона до четвертого порядка разложения привел к устранению на разностном синтезе образца Sr_{0.72}Pr_{0.28}F_{2.28} неоднородностей распределения ЭП вблизи позиции 4а (рис. 2б). Распределение ЭП вблизи позиции катиона в остальных кристаллах характерно для статического смещения части катионов из позиции 4*a* в позицию 32*f*. В твердых растворах с R = Tb, Dy, Tm и Yb часть катионов также смещается статически из позиции 4а в позицию 24е. Учет этих смещений привел к устранению на разностных синтезах данных образцов неоднородностей распределения ЭП вблизи позиции 4*a* (рис. 16, 26).

На последнем этапе уточнения суммарное количество анионов было зафиксировано в соответствии с составом каждого кристалла. Координатные и эквивалентные параметры атомных смещений в изученных кристаллах приведены в табл. 2. Параметры атомного смещения аниона $F_{(8c)}$ в твердых растворах с R = Pr, Tb, Dy и Ho и катиона в кристалле с R = Pr уточнены в ангармоническом приближении. Стандартные отклонения для заселенностей позиций каждого атома рассчитаны при фиксированном значении всех остальных уточняемых параметров.

МОДЕЛЬ СТРОЕНИЯ ИЗУЧЕННЫХ ФАЗ

Известно, что дефекты, образующиеся в нестехиометрических флюоритовых фазах $M_{1-x}R_xF_{2+x}$ (M – щелочноземельные элементы) в результате гетеровалентного замещения катионов M^{2+} на R^{3+} группируются в кластеры, анионное ядро которых составляют межузельные анионы фтора. Согласно принципу локальной компенсации заряда вокруг анионного ядра располагаются примесные катионы R^{3+} [11–13], образуя катион-анионные кластеры. В Sr_{0.72}Pr_{0.28}F_{2.28} обнаружены межузельные анионы F_{int(32)/3} в позиции 32*f*, которые формируют тетраэдрические группировки {F₄}, являющиеся анионным ядром тетраэдрического кластера [Sr_{4-n}R_nF₂₆] [14]. В остальных кристаллах обнаружены межузельные анионы F_{int(48i}) в

Рис. 2. Разностные (а) и нулевые разностные (б) синтезы электронной плотности $Sr_{0.72}Pr_{0.28}F_{2.28}$ и $Sr_{0.9}R_{0.1}F_{2.1}$ (R = Y, Er, Tm, Yb) в плоскости (110). Шаг изолиний 0.1 э/Å³.

позиции 48*i*, которые формируют кубооктаэдрические группировки $\{F_{12}\}$, являющиеся анионным ядром октаэдро-кубического кластера (**OKK**) $[Sr_{14-n}R_nF_{64+n}]$ [15].

Октаэдро-кубический кластер является структурной единицей упорядоченной фазы $M_4R_3F_{17}$. В структуре Sr₄Lu₃F₁₇ [3] ОКК присутствует в искаженном виде: все катионы Lu³⁺ смещены вдоль оси 4 от центра кластера, часть катионов Sr²⁺ – вдоль оси 3 к центру кластера. Вероятно, в катионном мотиве фаз с R = Y, Tb–Yb реализуются смещения катионов, аналогичные таковым в упорядоченной фазе Sr₄Lu₃F₁₇: все катионы R^{3+} и часть катионов Sr²⁺ (Sr3) смещаются вдоль оси 4 в позицию 24*e*, а часть катионов Sr²⁺ (Sr1) – вдоль оси 3 в позицию 32*f*. В кристаллах с R = Ho, Y и Ег катионы смещаются только в позицию 32*f*, в кристаллах с R = Tb, Dy, Tm и Yb наблюдаются оба смещения.

В фазах с R = Tb, Dy и Er установлено присутствие межузельных анионов в позициях 32f($F_{int(32f)4}$), 24e ($F_{int(24e)}$) и 4b ($F_{int(4b)}$) соответственно. Известно, что в упорядоченных фазах $M_4R_3F_{17}$ анионы, соответствующие $F_{int(32f)4}$, находятся внутри ядра ОКК, а анионы, соответствующие $F_{int(4b)}$, занимают кубические пустоты за пределами ОКК. Вероятно, данная схема размещения межузельных анионов реализуется и в исследуемых разупорядоченных фазах.

ЗАКЛЮЧЕНИЕ

Установлено, что кристаллы составов Sr_{0.72}Pr_{0.28}F_{2.28}, Sr_{0.87}Tb_{0.13}F_{2.13}, Sr_{0.88}Dy_{0.12}F_{2.12}, Sr_{0.89}Ho_{0.11}F_{2.11} и Sr_{0.9} $R_{0.1}$ F_{2.1} (R = Y, Er, Tm Yb) принадлежат структурному типу CaF₂, пр. гр. $Fm\overline{3}m$. Во всех образцах найдены вакансии в основном анионном мотиве и межузельные анионы фтора в позициях 32*f* (F_{int(32/3)}) и 48*i* (F_{int(48i)}). В образцах с R = Tb, Dy и Er установлено присутствие межузельных анионов в позициях 32*f* (F_{int(32/4}), 24*e* (F_{int(24e)}) и 4*b* (F_{int(4b)}) соответственно. В исследованных кристаллах со всеми *R*, кроме R = Tb, обнаружена релаксация анионной подрешетки F_(8c) \rightarrow F_{int(32/1}.

Предложена модель дефектного строения кристаллов составов $Sr_{0.72}Pr_{0.28}F_{2.28}$, $Sr_{0.87}Tb_{0.13}F_{2.13}$, $Sr_{0.88}Dy_{0.12}F_{2.12}$, $Sr_{0.89}Ho_{0.11}F_{2.11}$ и $Sr_{0.9}R_{0.1}F_{2.1}$ (R = Y, Er, Tm Yb), согласно которой межузельные анионы фтора и примесные катионы R^{3+} группируются в кластеры [$Sr_{4-n}R_nF_{26}$] тетраэдрической конфигурации в кристалле сR = Pr, а в остальных – в кластеры [$Sr_{14-n}R_nF_{64+n}$] октаэдро-кубической конфигурации. Тетраэдрическое { F_4 } и кубоокта-

R	Атом*	<i>q*</i>	x/a	y/b	z/c	$\beta_{ m ikb}$
Pr	(Sr1) _(32f)	_	_	_	_	_
Tb		0.004(1)	0.044(4)	0.044(4)	0.044(4)	0.69(8)
Dy		0.005(1)	0.038(3)	0.038(3)	0.038(3)	0.67(9)
Но		0.007(2)	0.047(2)	0.047(2)	0.047(2)	1.3(2)
Y		0.005(1)	0.042(1)	0.042(1)	0.042(1)	0.65(8)
Er		0.008(1)	0.045(1)	0.045(1)	0.045(1)	1.4(2)
Tm		0.014(4)	0.029(3)	0.029(3)	0.029(3)	0.8(1)
Yb		0.009(2)	0.039(3)	0.039(3)	0.039(3)	0.99(9)
Pr	$(Sr2 + R)_{(4a)}$	0.72 + 0.28	0	0	0	0.868(4)
Tb		0.810 + 0	0	0	0	0.671(7)
Dy		0.835 + 0	0	0	0	0.681(5)
Но		0.841 + 0.106	0	0	0	0.698(3)
Y		0.863 + 0.095	0	0	0	0.714(3)
Er		0.836 + 0.097	0	0	0	0.730(3)
Tm		0.739 + 0	0	0	0	0.669(5)
Yb		0.818 + 0	0	0	0	0.668(7)
Pr	$(Sr3 + R)_{(24e)}$	_	_	_	_	_
Tb		0.005 + 0.022	0.024(3)	0	0	0.77(8)
Dy		0.0019(10) + 0.019	0.024(3)	0	0	0.52(6)
Но		_	_	_	_	_
Y		_	_	_	_	_
Er		_	_	_	_	_
Tm		0.008(2) + 0.016	0.024(1)	0	0	0.303(9)
Yb		0.003(1) + 0.016	0.0256(6)	0	0	0.61(3)
Pr	$F_{(8c)}$	0.803	1/4	1/4	1/4	1.333(9)
Tb		0.888	1/4	1/4	1/4	1.090(7)
Dy		0.877	1/4	1/4	1/4	1.038(4)
Но		0.894	1/4	1/4	1/4	0.971(3)
Y		0.864	1/4	1/4	1/4	0.99(7)
Er		0.886	1/4	1/4	1/4	1.02(2)
Tm		0.863	1/4	1/4	1/4	1.042(4)
Yb		0.871	1/4	1/4	1/4	1.03(2)
Pr	$F_{int(32f)1}$	0.039(7)	0.293(5)	0.293(5)	0.293(5)	2.5(4)
Tb		-	—	—	—	—
Dy		0.010(3)	0.300(3)	0.300(3)	0.300(3)	2.4(9)
Но		0.006(2)	0.277(4)	0.277(4)	0.277(4)	1.1(9)
Y		0.013(3)	0.283(5)	0.283(5)	0.283(5)	0.83(9)
Er		0.009(5)	0.288(4)	0.288(4)	0.288(4)	0.91(9)
Tm		0.012(4)	0.289(5)	0.289(5)	0.289(5)	1.3(5)
Yb		0.016(5)	0.288(5)	0.288(5)	0.288(5)	1.7(5)
Pr	$F_{int(32f)3}$	0.045(4)	0.416(3)	0.416(3)	0.416(3)	2.2(2)
Pr	F _{int(48i)}	-	_	_	_	_
Tb		0.026(1)	0.132(5)	0.132(5)	1/2	2.3(4)
Dy		0.021(1)	0.133(3)	0.133(3)	1/2	2.0(3)

Таблица 2. Координаты атомов, заселенности позиций (*q*) и эквивалентные параметры атомных смещений в структуре $Sr_{0.72}Pr_{0.28}F_{2.28}$, $Sr_{0.87}Tb_{0.13}F_{2.13}$, $Sr_{0.88}Dy_{0.12}F_{2.12}$, $Sr_{0.89}Ho_{0.11}F_{2.11}$ и $Sr_{0.9}R_{0.1}F_{2.1}$ (*R* = Y, Er, Tm, Yb)

R	Атом*		q^*	x/a	y/b	<i>z,</i> / <i>c</i>	$\beta_{ m 3KB}$
Но			0.023(1)	0.134(4)	0.134(4)	1/2	1.9(3)
Y			0.022(1)	0.141(5)	0.141(5)	1/2	2.5(5)
Er			0.020(3)	0.143(4)	0.143(4)	1/2	2.1(3)
Tm			0.023(3)	0.143(3)	0.143(3)	1/2	1.9(3)
Yb			0.019(2)	0.152(3)	0.152(3)	1/2	1.6(2)
Tb	F _{int}	(32 <i>f</i>)4	0.005(2)	0.470(5)	0.470(5)	0.470(5)	0.30(9)
Dy		(24 <i>e</i>)	0.005(1)	0.439(9)	0	0	0.8(1)
Er		(4 <i>b</i>)	0.013(8)	1/2	1/2	1/2	1.2(6)

Таблица 2. Окончание

* $q_{F(8c)}$ и q_{Sr2} определяются по формулам: $q_{F(8c)} = [4(2 + x) - q_{Fint(32f)1} - q_{Fint(32f)3} - q_{Fint(32f)4} - q_{Fint(48i)} - q_{Fint(24e)}]/8$, $q_{Sr2} = [4(1 - x) - q_{Sr1} - q_{Sr3}]/4$, где $q_{Fint(32f)1}$, $q_{Fint(32f)3}$, $q_{Fint(32f)4}$, $q_{Fint(48i)}$, $q_{Fint(24e)}$ – количество анионов фтора в позициях (32f)1, (32f)3, (32f)4, 48i, 4b и 24e соответственно, q_{Sr1} , q_{Sr3} – количество катионов Sr²⁺ в позициях 32f и 24e соответственно.

эдрическое $\{F_{12}\}$ ядро тетраэдрического кластера и ОКК образуют анионы в позициях $32f F_{int(32f)3}$ и $48i F_{int(48i)}$ соответственно.

Данные о кристаллической структуре исследованных образцов депонированы в Банке данных неорганических соединений (ICSD № 1967838 – $Sr_{0.87}Tb_{0.13}F_{2.13}$, 1967839 – $Sr_{0.88}Dy_{0.12}F_{2.12}$ и 1967841 – $Sr_{0.89}Ho_{0.11}F_{2.11}$, 1967843 – $Sr_{0.72}Pr_{0.28}F_{2.28}$, 1967840 – $Sr_{0.9}Y_{0.1}F_{2.1}$, 1967842 – $Sr_{0.9}Er_{0.1}F_{2.1}$, 1967845 – $Sr_{0.9}Tm_{0.1}F_{2.1}$, 1967844 – $Sr_{0.9}Yb_{0.1}F_{2.1}$).

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проекты № 17-00-00118, 19-02-00877) в части отработки методик выращивания монокристаллов и Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию в части исследования структурных характеристик кристаллических образцов с использованием оборудования ЦКП ФНИЦ "Кристаллография и фотоника" РАН (проект RFMEFI62119X0035).

СПИСОК ЛИТЕРАТУРЫ

1. Соболев Б.П., Каримов Д.Н., Сульянов С.Н. и др. // Кристаллография. 2009. Т. 54. № 1. С. 129.

- 2. Сульянова Е.А., Каримов Д.Н., Сульянов С.Н. и др. // Кристаллография. 2015. Т. 60. № 1. С. 159.
- 3. Сульянова Е.А., Молчанов В.Н., Верин И.А. и др. // Кристаллография. 2009. Т. 54. № 3. С. 554.
- 4. Сульянова Е.А., Болотина Н.Б., Каримов Д.Н. и др. // Кристаллография. 2019. Т. 64. № 2. С. 196.
- 5. Глушкова Т.М., Каримов Д.Н., Кривандина Е.А. и др. // Кристаллография. 2009. Т. 54. № 4. С. 642.
- 6. Сорокин Н.И., Каримов Д.Н., Сульянова Е.А. и др. // Кристаллография. 2010. Т. 55. № 4. С. 708.
- Sobolev B.P., Seiranian K.B., Garashina L.S. et al. // J. Solid State Chem. 1979. V. 28. № 1. P. 51.
- Petricek V., Dusek M., Palatinus L. // Z. Kristallogr. 2014. B. 229. № 5. S. 345.
- Becker P.J., Coppens P. // Acta Cryst. A. 1974. V. 30. № 2. P. 129.
- International Tables for Crystallography V. C / Ed. Wilson A.J.C. Dordrecht; Boston; London: Kluwer Acad. Publ., 1992.
- Cheetham A.K., Fender B.E.F., Cooper M.J. // J. Phys. C. 1971. V. 4. № 18. P. 3107.
- Hull S., Wilson C.C. // J. Solid State Chem. 1992. V. 100. № 1. P. 101.
- 13. *Hofmann M., Hull S., McIntyre G.J. et al.* // J. Phys.: Condens. Matter. 1997. V. 9. № 4. P. 845.
- 14. *Мурадян Л.А., Максимов Б.А., Симонов В.И.* // Координац. химия. 1986. Т. 12. № 10. С. 1398.
- 15. Сульянова Е.А., Молчанов В.Н., Соболев Б.П. // Кристаллография. 2008. Т. 53. № 4. С. 605.